Search results

Search for "photoluminescence" in Full Text gives 196 result(s) in Beilstein Journal of Nanotechnology.

Investigating ripple pattern formation and damage profiles in Si and Ge induced by 100 keV Ar+ ion beam: a comparative study

  • Indra Sulania,
  • Harpreet Sondhi,
  • Tanuj Kumar,
  • Sunil Ojha,
  • G R Umapathy,
  • Ambuj Mishra,
  • Ambuj Tripathi,
  • Richa Krishna,
  • Devesh Kumar Avasthi and
  • Yogendra Kumar Mishra

Beilstein J. Nanotechnol. 2024, 15, 367–375, doi:10.3762/bjnano.15.33

Graphical Abstract
  • photoluminescence spectroscopy. Stupp et al. [14] have explored possible applications of self-assembly of biomolecules with controlled stereochemistry in materials technology. However, the fundamental reasoning behind how this self-organization process evolves in terms of defect creation or damage still needs to be
PDF
Album
Supp Info
Full Research Paper
Published 05 Apr 2024

Determining by Raman spectroscopy the average thickness and N-layer-specific surface coverages of MoS2 thin films with domains much smaller than the laser spot size

  • Felipe Wasem Klein,
  • Jean-Roch Huntzinger,
  • Vincent Astié,
  • Damien Voiry,
  • Romain Parret,
  • Houssine Makhlouf,
  • Sandrine Juillaguet,
  • Jean-Manuel Decams,
  • Sylvie Contreras,
  • Périne Landois,
  • Ahmed-Azmi Zahab,
  • Jean-Louis Sauvajol and
  • Matthieu Paillet

Beilstein J. Nanotechnol. 2024, 15, 279–296, doi:10.3762/bjnano.15.26

Graphical Abstract
  • transition to a direct bandgap semiconductor with very high photoluminescence quantum yield when thinned down to a monolayer [13][14][15][16][17]. Its unique electronic and optical properties could provide an edge in many future applications. The multilayers MoS2 structures are of the most common 2Hc type
  • growth of wafer-scale MoS2 thin films on SiO2/Si substrates by direct liquid injection pulsed-pressure chemical vapor deposition (DLI-PP-CVD) using low-toxicity precursors [27]. Such MoS2 thin films showed good stoichiometry (Mo/S = 1.94–1.95) and the potential for high photoluminescence quantum yield
  • signal in the wavelength range of photoluminescence emission (around 650 nm). The third parameter to define is the power of the 532 nm light, Pλ, impinging the sample. Much of the Raman information available to evaluate the thickness of MoS2 flakes is based on the following parameters: (i) on precise
PDF
Album
Supp Info
Full Research Paper
Published 07 Mar 2024

CdSe/ZnS quantum dots as a booster in the active layer of distributed ternary organic photovoltaics

  • Gabriela Lewińska,
  • Piotr Jeleń,
  • Zofia Kucia,
  • Maciej Sitarz,
  • Łukasz Walczak,
  • Bartłomiej Szafraniak,
  • Jerzy Sanetra and
  • Konstanty W. Marszalek

Beilstein J. Nanotechnol. 2024, 15, 144–156, doi:10.3762/bjnano.15.14

Graphical Abstract
  • [39][40]. One of the main existing challenges in synthesizing QDs is to increase their photoluminescence efficiency while simultaneously shifting the photoluminescence maximum to longer wavelengths. Initial applications focused on OLEDs. CdSe/ZnS quantum dots are luminescent inorganic nanostructures
  • ultraviolet with a small exponentially decreasing band up to 500–600 nm (Figure 2). The absorption band maximum is about 260 nm in the solid state (quartz was used as reference) and 330 nm in chloroform solution. The photoluminescence spectra, excited by a 405 nm laser, are shown in Figure 3. This type of
  • P3HT:PC71BM:QDs (ratio 1:0.5:0.5) measured in solution. In the case of absorption, spectrum shape and absorption range remain unchanged. The addition of quantum dots slightly increases the intensity in the range from 350 to 550 nm compared to the base P3HT:PC71BM array. In the case of photoluminescence spectra
PDF
Album
Supp Info
Full Research Paper
Published 02 Feb 2024

In situ optical sub-wavelength thickness control of porous anodic aluminum oxide

  • Aleksandrs Dutovs,
  • Raimonds Popļausks,
  • Oskars Putāns,
  • Vladislavs Perkanuks,
  • Aušrinė Jurkevičiūtė,
  • Tomas Tamulevičius,
  • Uldis Malinovskis,
  • Iryna Olyshevets,
  • Donats Erts and
  • Juris Prikulis

Beilstein J. Nanotechnol. 2024, 15, 126–133, doi:10.3762/bjnano.15.12

Graphical Abstract
  • ] and optical sensors [4][5], require precise control of PAAO layer thickness in the optical sub-wavelength range. Among other examples, by tuning the thickness of PAAO between 200 and 600 nm, it becomes possible to selectively enhance or suppress photoluminescence (PL) bands originating from defects in
  • absorption and photoluminescence characteristics of PAAO [38]. In order to achieve nanometer-scale thickness uniformity of the PAAO layers (Figure 4), it was necessary to use single-crystal aluminum substrates as starting material. In previous studies it was shown that anodization of polycrystalline aluminum
PDF
Album
Full Research Paper
Published 31 Jan 2024

Dual-heterodyne Kelvin probe force microscopy

  • Benjamin Grévin,
  • Fatima Husainy,
  • Dmitry Aldakov and
  • Cyril Aumaître

Beilstein J. Nanotechnol. 2023, 14, 1068–1084, doi:10.3762/bjnano.14.88

Graphical Abstract
PDF
Album
Supp Info
Full Research Paper
Published 07 Nov 2023

Nanoarchitectonics of photothermal materials to enhance the sensitivity of lateral flow assays

  • Elangovan Sarathkumar,
  • Rajasekharan S. Anjana and
  • Ramapurath S. Jayasree

Beilstein J. Nanotechnol. 2023, 14, 988–1003, doi:10.3762/bjnano.14.82

Graphical Abstract
  • ]. NIR light irradiation for 10 min can yield temperatures up to 61 °C in mesoporous PDA with a photoconversion efficiency of 26.7%. Despite the advantages, many of the polymer nanoparticles show strong photoluminescence and do not withstand long-term light irradiation. To overcome this challenge, hybrid
PDF
Album
Review
Published 04 Oct 2023

Isolation of cubic Si3P4 in the form of nanocrystals

  • Polina K. Nikiforova,
  • Sergei S. Bubenov,
  • Vadim B. Platonov,
  • Andrey S. Kumskov,
  • Nikolay N. Kononov,
  • Tatyana A. Kuznetsova and
  • Sergey G. Dorofeev

Beilstein J. Nanotechnol. 2023, 14, 971–979, doi:10.3762/bjnano.14.80

Graphical Abstract
  • spectra of the samples SP550, SP670, and SP900 are shown in Figure 3 (SP400 exhibited photoluminescence of an organic origin that hindered Raman studies). The spectra consist of multiple bands that provide a stark contrast to the zinc blende SiP structure, which exhibits a singular Raman mode (with a LO
PDF
Album
Supp Info
Full Research Paper
Published 26 Sep 2023

A graphene quantum dots–glassy carbon electrode-based electrochemical sensor for monitoring malathion

  • Sanju Tanwar,
  • Aditi Sharma and
  • Dhirendra Mathur

Beilstein J. Nanotechnol. 2023, 14, 701–710, doi:10.3762/bjnano.14.56

Graphical Abstract
  • hydrothermal process with glucose as a precursor undergoing carbonization. Different spectroscopic techniques were used to analyze the optical characteristics of GQDs, including UV–visible, photoluminescence, FTIR, and Raman spectroscopy. Atomic force microscopy, transmission electron microscopy, and X-ray
  • was excited at 320 nm, the photoluminescence (PL) spectrum of GQDs showed a strong peak around 425 nm, similar to those reported for GQDs [32]. When excited at wavelengths between 320 and 420 nm, the PL peak shifts from 420 nm (violet) to 520 nm (green), and the PL intensity also decreases
  • -based nanosensor described here could be used in future to develop portable monitoring systems for water contamination. Fabrication of the GQDs/GCE electrochemical nanosensor for the detection of malathion. (a) UV–vis absorption spectrum and (b) photoluminescence spectra of GQDs. (a) TEM image, (b) size
PDF
Album
Full Research Paper
Published 09 Jun 2023

Metal-organic framework-based nanomaterials as opto-electrochemical sensors for the detection of antibiotics and hormones: A review

  • Akeem Adeyemi Oladipo,
  • Saba Derakhshan Oskouei and
  • Mustafa Gazi

Beilstein J. Nanotechnol. 2023, 14, 631–673, doi:10.3762/bjnano.14.52

Graphical Abstract
  • excitation, for photoluminescence to occur, whether it be fluorescence or phosphorescence. The molecule-bound electron in the fluorescence mechanism absorbs a photon and is activated after the analyte interacts with the molecular recognition element. The transition from the ground state (S0) to the excited
PDF
Album
Review
Published 01 Jun 2023

Titania nanoparticles for photocatalytic degradation of ethanol under simulated solar light

  • Evghenii Goncearenco,
  • Iuliana P. Morjan,
  • Claudiu Teodor Fleaca,
  • Florian Dumitrache,
  • Elena Dutu,
  • Monica Scarisoreanu,
  • Valentin Serban Teodorescu,
  • Alexandra Sandulescu,
  • Crina Anastasescu and
  • Ioan Balint

Beilstein J. Nanotechnol. 2023, 14, 616–630, doi:10.3762/bjnano.14.51

Graphical Abstract
  • transmission electron microscopy. Also, specific surface area and photoluminescence with optical absorbance were evaluated. By varying the synthesis parameters (especially the working pressure), different TiO2 nanopowders were obtained, whose photodegradation properties were tested compared to a commercial
  • transitions, the values obtained in our powders are smaller. A possible explanation is the smaller volume of the particles with anatase crystal structure or the formation of shallow donor levels near the conduction band [64][65]. Photoluminescence (PL) spectra at 260 nm excitation wavelength are presented in
  • using a JEM ARM 200F analytical microscope (Jeol, Japan). The specific surface area was measured using a BET flowing gas surface area analyzer, Horiba SA-9600, with a 30% N2/70% He gas mixture. Photoluminescence measurements were carried out using a Horiba Flourolog-3. The excitation source was a xenon
PDF
Album
Full Research Paper
Published 22 May 2023

Conjugated photothermal materials and structure design for solar steam generation

  • Chia-Yang Lin and
  • Tsuyoshi Michinobu

Beilstein J. Nanotechnol. 2023, 14, 454–466, doi:10.3762/bjnano.14.36

Graphical Abstract
  • photophysical properties and hydrophobicity through organic reactions. In general, DPP dyes have high photoluminescence quantum yields, but they have a relatively low photostability, degrading after 150 min under a collimated 300 W Xe lamp light source. It was previously reported that introducing electron
  • -INCN (Figure 4b and Figure 4c). This suggests that stronger EW end groups and longer conjugation lengths induce more potent ICTs for the DPP derivatives, resulting in smaller bandgaps. In the photoluminescence (PL) spectra of the DPP derivatives, DPP-DCV displayed a much weaker PL than DPP-H, and no PL
  • THF solution and (c) for drop-cast films. (d) The photoluminescence (PL) spectra of the DPP derivatives in THF solution. (Figure 4 was adapted with permission from [27], Copyright 2021 American Chemical Society.) Typical polymeric PTMs used for SSG. (a) Schematic illustration of the fabrication
PDF
Album
Review
Published 04 Apr 2023

Structural, optical, and bioimaging characterization of carbon quantum dots solvothermally synthesized from o-phenylenediamine

  • Zoran M. Marković,
  • Milica D. Budimir,
  • Martin Danko,
  • Dušan D. Milivojević,
  • Pavel Kubat,
  • Danica Z. Zmejkoski,
  • Vladimir B. Pavlović,
  • Marija M. Mojsin,
  • Milena J. Stevanović and
  • Biljana M. Todorović Marković

Beilstein J. Nanotechnol. 2023, 14, 165–174, doi:10.3762/bjnano.14.17

Graphical Abstract
  • characterization methods (AFM, TEM, EDS, FTIR, photoluminescence, and EPR) indicate the significant influence of the precursor on structural, chemical, and optical properties. Antibacterial and cytotoxicity tests showed that these dots did not have any antibacterial potential, because of the low extent of reactive
  • resistance, and better antioxidant properties compared to pristine CQDs [5]. Functionalization of CQDs with amino groups (NH2 groups) induces a redshift of the photoluminescence because of the charge transfer from the amino groups to the carbon honeycomb core [6]. Also, grafting with NH2 groups, by means of
  • . Photoluminescence of CQDs can be tuned, and quantum dots emit light in the range from blue to red. Some of them have very good prooxidant and antioxidant properties [14]. Under blue light irradiation, CQDs produce reactive oxygen species (ROS), which cause oxidative stress and further bacterial death [17][18][19
PDF
Album
Supp Info
Full Research Paper
Published 30 Jan 2023

Formation of nanoflowers: Au and Ni silicide cores surrounded by SiOx branches

  • Feitao Li,
  • Siyao Wan,
  • Dong Wang and
  • Peter Schaaf

Beilstein J. Nanotechnol. 2023, 14, 133–140, doi:10.3762/bjnano.14.14

Graphical Abstract
  • and surrounding SiOx nanowires (NWs) show a significant enhancement of the photoluminescence (PL) emission compared with pure SiOx NWs due to the coupling effect between the local surface plasmon resonance (LSPR) of Au nanoparticles and the PL emission of SiOx [2]. Similar Au–SiOx nanoflowers have
PDF
Album
Supp Info
Full Research Paper
Published 20 Jan 2023

Single-step extraction of small-diameter single-walled carbon nanotubes in the presence of riboflavin

  • Polina M. Kalachikova,
  • Anastasia E. Goldt,
  • Eldar M. Khabushev,
  • Timofei V. Eremin,
  • Timofei S. Zatsepin,
  • Elena D. Obraztsova,
  • Konstantin V. Larionov,
  • Liubov Yu. Antipina,
  • Pavel B. Sorokin and
  • Albert G. Nasibulin

Beilstein J. Nanotechnol. 2022, 13, 1564–1571, doi:10.3762/bjnano.13.130

Graphical Abstract
  • between the SWCNTs and gel media. Our experimental findings are supported by ab initio calculations demonstrating the impact of the riboflavin wrapping pattern around the SWCNTs on their interaction with the allyl dextran gel. Keywords: carbon nanotubes; photoluminescence spectroscopy; riboflavin; size
  • . Biomedical applications apply an additional constraint on the diameter of nanotubes. Small-diameter SWCNTs display intrinsic photoluminescence in the spectral range of 900–1100 nm within the biological transparency window, making them ideal candidates for single-molecule biosensors or biomedical imaging
  • an average diameter of 1.5 nm. The set of chiralities present in CoMoCat demonstrates a high affinity towards riboflavin, leading to a high riboflavin density on the SWCNT surface. As a result, we do not observe significant changes in UV–vis–NIR spectra or photoluminescence of dispersions before and
PDF
Album
Supp Info
Full Research Paper
Published 22 Dec 2022

Supramolecular assembly of pentamidine and polymeric cyclodextrin bimetallic core–shell nanoarchitectures

  • Alexandru-Milentie Hada,
  • Nina Burduja,
  • Marco Abbate,
  • Claudio Stagno,
  • Guy Caljon,
  • Louis Maes,
  • Nicola Micale,
  • Massimiliano Cordaro,
  • Angela Scala,
  • Antonino Mazzaglia and
  • Anna Piperno

Beilstein J. Nanotechnol. 2022, 13, 1361–1369, doi:10.3762/bjnano.13.112

Graphical Abstract
  • electromagnetic field [4]. However, for <5 nm sized NPs, the LSPR phenomenon disappears, and they exhibit a tunable intrinsic photoluminescence with high Stokes shift and excellent photostability [5]. Plasmonic NPs can be produced in monometallic (MNPs) or bimetallic (BMNPs) forms and, in the latter, the internal
PDF
Album
Supp Info
Full Research Paper
Published 18 Nov 2022

Near-infrared photoactive Ag-Zn-Ga-S-Se quantum dots for high-performance quantum dot-sensitized solar cells

  • Roopakala Kottayi,
  • Ilangovan Veerappan and
  • Ramadasse Sittaramane

Beilstein J. Nanotechnol. 2022, 13, 1337–1344, doi:10.3762/bjnano.13.110

Graphical Abstract
  • ) and a photoluminescence spectrofluorometer (Jobin Yvon Horiba Nanolog). Impedance analysis of the fabricated QDSCs was conducted by using a CH instruments 760 A electrochemical workstation at applied frequencies of 100 kHz to 1 MHz with 10 mV AC voltage recording the Nyquist plots. The J–V curves were
  • efficient photoanode for QDSCs and it produces more electron–hole pairs, which helps to improve the photocurrent density. Time-resolved photoluminescence (TRPL) studies were carried out to evaluate the electrons decay time of AZGSSe/TiO2. The decay curve was fitted with a biexponential function [33] and it
PDF
Album
Full Research Paper
Published 14 Nov 2022

Rapid fabrication of MgO@g-C3N4 heterojunctions for photocatalytic nitric oxide removal

  • Minh-Thuan Pham,
  • Duyen P. H. Tran,
  • Xuan-Thanh Bui and
  • Sheng-Jie You

Beilstein J. Nanotechnol. 2022, 13, 1141–1154, doi:10.3762/bjnano.13.96

Graphical Abstract
  • spectroscopy (DRS) was used to determine the optical properties and bandgap energies of the material. The bandgap of the material decreases with increasing amounts of MgO. The photoluminescence spectra indicate that the recombination of electron–hole pairs is hindered by doping MgO onto g-C3N4. Also, NO
  • (HR-XPS). The photoluminescence (PL) spectra of the materials was carried out in the form of fluorescence analysis with an excitation wavelength range of 200–900 nm. Finally, the photocatalytic mechanism was determined by trapping tests and ESR measurements. Photocatalytic performance The
  • strongly depends on the optical properties. Photoluminescence Fluorescence spectra of MgO and 3% MgO@g-C3N4 are shown in Figure 10a and Figure 10b, respectively. MgO shows strong fluorescence at 270 nm with an excitation wavelength (270 nm) in the UV range. MgO also shows another emission wavelength at 380
PDF
Album
Supp Info
Full Research Paper
Published 18 Oct 2022

Recent advances in green carbon dots (2015–2022): synthesis, metal ion sensing, and biological applications

  • Aisha Kanwal,
  • Naheed Bibi,
  • Sajjad Hyder,
  • Arif Muhammad,
  • Hao Ren,
  • Jiangtao Liu and
  • Zhongli Lei

Beilstein J. Nanotechnol. 2022, 13, 1068–1107, doi:10.3762/bjnano.13.93

Graphical Abstract
  • photobleaching), and efficient photoluminescence. CDs have a broad spectrum of applications in the analytical, medical, biotechnology, biology, and theranostics domains [3][4]. The typical photoluminescence yield of CDs is less than 10%. Surface-passivating chemicals are used to improve the photoluminescence
  • applications [36], tumor marker detection [37], bioanalytical studies [38], biomedical [39][40] and biotechnological applications [3], biosensing and bioimaging [31][32], and fluorescence [41] and photoluminescence processes [42]. Many reviews about CDs obtained from natural resources have been published
  • juice) were tested. It was found that the photoluminescence (PL) intensity of citric acid was higher than that of lemon juice, which, in turn, was higher than that of orange juice. This outcome is the result of lemon juice having a greater citric acid concentration than orange juice. Compared to ripe
PDF
Album
Review
Published 05 Oct 2022

Spindle-like MIL101(Fe) decorated with Bi2O3 nanoparticles for enhanced degradation of chlortetracycline under visible-light irradiation

  • Chen-chen Hao,
  • Fang-yan Chen,
  • Kun Bian,
  • Yu-bin Tang and
  • Wei-long Shi

Beilstein J. Nanotechnol. 2022, 13, 1038–1050, doi:10.3762/bjnano.13.91

Graphical Abstract
  • ) with BaSO4 as a reference. The photoluminescence spectrum (PL) was obtained from a luminescence spectrometer at an excitation wavelength of 446 nm (RF-530IPC, Shimadzu, Japan). The photocurrent response and electrochemical impedance spectra (EIS) were measured by an electrochemical workstation
PDF
Album
Supp Info
Full Research Paper
Published 28 Sep 2022

Hierarchical Bi2WO6/TiO2-nanotube composites derived from natural cellulose for visible-light photocatalytic treatment of pollutants

  • Zehao Lin,
  • Zhan Yang and
  • Jianguo Huang

Beilstein J. Nanotechnol. 2022, 13, 745–762, doi:10.3762/bjnano.13.66

Graphical Abstract
  • reference standard for solid samples. The photoluminescence (PL) spectra were obtained on a Shimadzu RF-5301PC fluorescence spectrometer under a laser excitation of 360 nm. In order to observe the microstructures of the samples, a small amount of a given sample was dispersed in ethanol to generate a
PDF
Album
Supp Info
Full Research Paper
Published 04 Aug 2022

Revealing local structural properties of an atomically thin MoSe2 surface using optical microscopy

  • Lin Pan,
  • Peng Miao,
  • Anke Horneber,
  • Alfred J. Meixner,
  • Pierre-Michel Adam and
  • Dai Zhang

Beilstein J. Nanotechnol. 2022, 13, 572–581, doi:10.3762/bjnano.13.49

Graphical Abstract
  • molybdenum diselenide (MoSe2) flake as surface-enhanced Raman spectroscopy (SERS) platform, we demonstrate the dependency of the Raman enhancement on laser beam polarization and local structure using copper phthalocyanine (CuPc) as probe. Second harmonic generation (SHG) and photoluminescence spectroscopy
  • with the SHG and photoluminescence optical images, indicating the relationship between local structure and optical properties of the MoSe2 flake. These results contribute to understand the impacts of local structural properties on the Raman enhancement at the surface of the 2D transition-metal
  • addition, point defect-induced trions in monolayer WS2 on a nonconducting substrate can be visualized via photoluminescence in order to precisely explore the exciton binding energy [15]. The optical properties of edges and grain boundaries in 2D-TMDC materials have also been characterized by
PDF
Album
Supp Info
Full Research Paper
Published 01 Jul 2022

Zinc oxide nanostructures for fluorescence and Raman signal enhancement: a review

  • Ioana Marica,
  • Fran Nekvapil,
  • Maria Ștefan,
  • Cosmin Farcău and
  • Alexandra Falamaș

Beilstein J. Nanotechnol. 2022, 13, 472–490, doi:10.3762/bjnano.13.40

Graphical Abstract
  • as well as on tuning the photoluminescence properties of ZnO nanostructures through combination with metal nanoparticles. This review covers the major recent results of ZnO-based nanostructures used for fluorescence and Raman signal enhancement. The broad range of ZnO and ZnO–metal nanostructures
  • synthesis methods are discussed, highlighting low-cost methods and the recyclability of ZnO-based nanosubstrates. Also, the SERS signal enhancement by ZnO-based nanostructures and the influences of lattice defects on the SERS signal are described. The photoluminescence enhancement of ZnO in the presence of
  • applications [13]. This review article seeks to present the fabrication methods and applications of zinc oxide nanostructures enhancing the photoluminescence emission or the Raman signal of analyte molecules. First, we focus on a wide range of synthesis methods of ZnO nanostructures and nanocomposites based on
PDF
Album
Review
Published 27 May 2022

Micro- and nanotechnology in biomedical engineering for cartilage tissue regeneration in osteoarthritis

  • Zahra Nabizadeh,
  • Mahmoud Nasrollahzadeh,
  • Hamed Daemi,
  • Mohamadreza Baghaban Eslaminejad,
  • Ali Akbar Shabani,
  • Mehdi Dadashpour,
  • Majid Mirmohammadkhani and
  • Davood Nasrabadi

Beilstein J. Nanotechnol. 2022, 13, 363–389, doi:10.3762/bjnano.13.31

Graphical Abstract
  • TE, there are other nanoscale tube-based compounds, which can potentially be used for biomedical purposes. Among these, silica nanotubes have the greatest potential for integration in biomaterials because of their biocompatibility, photoluminescence activity, and ease of surface modification. Silica
PDF
Album
Review
Published 11 Apr 2022

Tin dioxide nanomaterial-based photocatalysts for nitrogen oxide oxidation: a review

  • Viet Van Pham,
  • Hong-Huy Tran,
  • Thao Kim Truong and
  • Thi Minh Cao

Beilstein J. Nanotechnol. 2022, 13, 96–113, doi:10.3762/bjnano.13.7

Graphical Abstract
  • •O2− radicals played a primary role in the photocatalytic NO oxidation. Additionally, using photoluminescence (PL) spectroscopy, XPS, active species trapping tests, and ESR spectroscopy, the authors studied the photoinduced charge migration and trapping. They proposed the band structure of the SnO2
PDF
Album
Review
Published 21 Jan 2022

Theranostic potential of self-luminescent branched polyethyleneimine-coated superparamagnetic iron oxide nanoparticles

  • Rouhollah Khodadust,
  • Ozlem Unal and
  • Havva Yagci Acar

Beilstein J. Nanotechnol. 2022, 13, 82–95, doi:10.3762/bjnano.13.6

Graphical Abstract
  • selective uptake and hence the targeting ability of Erb-tagged nanoparticles. Altogether, this study proves luminescent, cationic, and small SPION@bPEI nanoparticles as strong candidates for imaging and gene therapy. Keywords: Erbitux; photoluminescence; polyethyleneimine; polyinosinic–polycytidylic acid
  • (1.2 and 0.6 µg/mL) with N/P ratios of 30 and 45, respectively. The cell fixation procedure was performed 48 h after the treatment. Characterization The photoluminescence spectroscopy (PL) measurements were performed by using a Horiba Jobin Yvon FluoroMax-3 spectrofluorometer at room temperature (λexc
  • N/P ratio of 1.4/1, 50% and at an N/P ratio of 2.8/1, almost all of poly I:C interacted with the nanoparticles, which resulted in the retardation of this dsRNA analogue (Figure 2a). The examination of the photoluminescence spectra of PIC-loaded SPION@bPEI (the amount of nanoparticles was kept
PDF
Album
Supp Info
Full Research Paper
Published 18 Jan 2022
Other Beilstein-Institut Open Science Activities