Search results

Search for "plants" in Full Text gives 122 result(s) in Beilstein Journal of Nanotechnology.

Classification and application of metal-based nanoantioxidants in medicine and healthcare

  • Nguyen Nhat Nam,
  • Nguyen Khoi Song Tran,
  • Tan Tai Nguyen,
  • Nguyen Ngoc Trai,
  • Nguyen Phuong Thuy,
  • Hoang Dang Khoa Do,
  • Nhu Hoa Thi Tran and
  • Kieu The Loan Trinh

Beilstein J. Nanotechnol. 2024, 15, 396–415, doi:10.3762/bjnano.15.36

Graphical Abstract
  • normal metabolism or an effect of exposure to external factors [3][4]. However, the natural antioxidants in our body do not always work efficiently because ROS are so pervasive. Although antioxidant supplements from natural sources such as plants and animals are considered an effective strategy to combat
  • resistance to severe environments than the antioxidants originating from plants and animals. More interestingly, through nanoencapsulation and nanodelivery, antioxidant nanomaterials improve the pharmacokinetics of natural antioxidants by preventing their degradation under stress conditions [9][10
  • ]. Pharmacokinetic analysis of curcumin-loaded polymeric nanoparticles after oral delivery in mice demonstrated a 20-fold decrease in dose requirement compared to natural curcumin [140]. Both experimental and molecular dynamics simulation studies suggested an optimal ferulic acid (an antioxidant in plants
PDF
Album
Review
Published 12 Apr 2024

Insect attachment on waxy plant surfaces: the effect of pad contamination by different waxes

  • Elena V. Gorb and
  • Stanislav N. Gorb

Beilstein J. Nanotechnol. 2024, 15, 385–395, doi:10.3762/bjnano.15.35

Graphical Abstract
  • used and positively correlated with each other [34]. The degree of pad contamination was higher in the tests with plants having larger dimensions and higher aspect ratios of the wax projections; however, the correlation between these two factors was non-significant in both cases (P = 0.068 for
  • insects needed significantly more time during the second experiment on glass gl2 compared with the first experiment on glass gl1 (paired t-test: t = 2.203, p = 0.033) (Figure 6c). Considering force data obtained in experiments with different plant species, we found that in all plants studied, the waxy
  • needed to reach the maximum traction force TFmax in the first gl1 and second gl2 experiments on glass, only in the case of I. germanica, it was significantly shorter during the second experiment on glass gl2 (Figure 7d and Table 1); for all other plants, this time was not significantly longer. Thus, the
PDF
Album
Full Research Paper
Published 11 Apr 2024

Comparative electron microscopy particle sizing of TiO2 pigments: sample preparation and measurement

  • Ralf Theissmann,
  • Christopher Drury,
  • Markus Rohe,
  • Thomas Koch,
  • Jochen Winkler and
  • Petr Pikal

Beilstein J. Nanotechnol. 2024, 15, 317–332, doi:10.3762/bjnano.15.29

Graphical Abstract
  • for product quality assurance by three TiO2 manufacturing companies and present number-based primary particle size distributions (PSDs) obtained in a round-robin study performed on five anatase pigments fabricated by means of sulfate processes in different plants and commonly used worldwide in food
PDF
Album
Supp Info
Full Research Paper
Published 25 Mar 2024

Assessing phytotoxicity and tolerance levels of ZnO nanoparticles on Raphanus sativus: implications for widespread adoptions

  • Pathirannahalage Sahan Samuditha,
  • Nadeesh Madusanka Adassooriya and
  • Nazeera Salim

Beilstein J. Nanotechnol. 2024, 15, 115–125, doi:10.3762/bjnano.15.11

Graphical Abstract
  • (p < 0.05) in soluble protein content by 23.1%, accompanied by a notable increase in IAA by 31.1%, indicating potential toxicity. The use of atomic absorption spectroscopy confirmed the internalization of zinc in seedlings, with a statistically significant increase (p < 0.05). In control plants
  • ]. High concentrations of Zn are implicated in the shifting of soil microbial communities and inhibition of microbial enzymes, thereby affecting soil fertility [1]. The excess levels of Zn, disrupting soil homeostasis, negatively affects plants and human health by inducing acute toxicity due to the
  • elevated accumulation of Zn [1][3]. Long-term, high-dose Zn supplementation disrupts copper intake, induces brain cell death, contributes to prostate cancer, and also functions as a gliotoxin and a neurotoxin [3][4]. Conversely, the most common micronutrient deficiency of crop plants is Zn deficiency
PDF
Album
Full Research Paper
Published 23 Jan 2024

Development and characterization of potential larvicidal nanoemulsions against Aedes aegypti

  • Jonatas L. Duarte,
  • Leonardo Delello Di Filippo,
  • Anna Eliza Maciel de Faria Mota Oliveira,
  • Rafael Miguel Sábio,
  • Gabriel Davi Marena,
  • Tais Maria Bauab,
  • Cristiane Duque,
  • Vincent Corbel and
  • Marlus Chorilli

Beilstein J. Nanotechnol. 2024, 15, 104–114, doi:10.3762/bjnano.15.10

Graphical Abstract
  • naturally occurring in essential oils (EOs) of various aromatic plants, including the genera Artemisia, Protium, Origanum, and Thymus. Myrcene is an acyclic monoterpene found in hops, lemongrass, basil, and mangos [10]. Some intrinsic characteristics of monoterpenes, mainly poor water solubility and high
PDF
Album
Supp Info
Full Research Paper
Published 18 Jan 2024

Berberine-loaded polylactic acid nanofiber scaffold as a drug delivery system: The relationship between chemical characteristics, drug-release behavior, and antibacterial efficiency

  • Le Thi Le,
  • Hue Thi Nguyen,
  • Liem Thanh Nguyen,
  • Huy Quang Tran and
  • Thuy Thi Thu Nguyen

Beilstein J. Nanotechnol. 2024, 15, 71–82, doi:10.3762/bjnano.15.7

Graphical Abstract
  • systems, and tissue engineering, according to the requirement of BBR concentration for the desired therapeutic effects. Keywords: antibacterial activity; berberine; drug-release system; electrospun nanofiber; polylactic acid; Introduction Medicinal plants have various biologically active compounds, such
  • as phenolic acids, alkaloids, saponins, coumarins, flavonoids, terpenoids, and carotenoids with great therapeutic effects [1]. Berberine (BBR) is a quaternary isoquinoline alkaloid, extracted from different medicinal plants, such as Coptis chinensis and Berberis vulgaris [2], and used in the
PDF
Album
Supp Info
Full Research Paper
Published 12 Jan 2024

Nanotechnological approaches in the treatment of schistosomiasis: an overview

  • Lucas Carvalho,
  • Michelle Sarcinelli and
  • Beatriz Patrício

Beilstein J. Nanotechnol. 2024, 15, 13–25, doi:10.3762/bjnano.15.2

Graphical Abstract
  • drugs were able to cause alterations in parasite tegument [64]. Another work used carvacrol, a monoterpene present in essential oils derived from plants such as Origanum vulgare. Besides being commonly used as a flavoring agent in food and cosmetics, it shows antimicrobial activity. Xavier et al. [67
PDF
Album
Supp Info
Review
Published 03 Jan 2024

Prediction of cytotoxicity of heavy metals adsorbed on nano-TiO2 with periodic table descriptors using machine learning approaches

  • Joyita Roy,
  • Souvik Pore and
  • Kunal Roy

Beilstein J. Nanotechnol. 2023, 14, 939–950, doi:10.3762/bjnano.14.77

Graphical Abstract
  • , leading to bioaccumulation and biological hazards [13]. Heavy metals enter the human body through the consumption of fish and plants [14]. To date, heavy metals are removed through various methods. Among all methods available for removing heavy metals and toxic pollutants from waters, adsorption is the
PDF
Album
Supp Info
Full Research Paper
Published 12 Sep 2023

Biomimetics on the micro- and nanoscale – The 25th anniversary of the lotus effect

  • Matthias Mail,
  • Kerstin Koch,
  • Thomas Speck,
  • William M. Megill and
  • Stanislav N. Gorb

Beilstein J. Nanotechnol. 2023, 14, 850–856, doi:10.3762/bjnano.14.69

Graphical Abstract
  • “Purity of the sacred lotus” [1] in which they described the superhydrophobic surfaces and the self-cleaning ability of some plants (the so-called “lotus effect”, see Figure 1). This paper led to a paradigm shift in surface sciences. It generated a lot of interest at the time and continues today to
  • concept of “copying” nature or learning from it arose (e.g., the story of Daedalus and Icarus [4]). This and other examples show that often physical phenomena in animals and plants can be described; however, it is not possible to immediately understand the mechanisms behind them and to transfer those to
  • and insect attachment on leaf surfaces of Schismatoglottis calyptrata (Araceae)” a study of the development of cuticular ridges on the adaxial leaf surfaces during leaf ontogeny of the tropical Araceae S. calyptrata. The structure of these microscopic ridges helps plants to defend themselves against
PDF
Album
Editorial
Published 03 Aug 2023

Carboxylic acids and light interact to affect nanoceria stability and dissolution in acidic aqueous environments

  • Matthew L. Hancock,
  • Eric A. Grulke and
  • Robert A. Yokel

Beilstein J. Nanotechnol. 2023, 14, 762–780, doi:10.3762/bjnano.14.63

Graphical Abstract
  • dissolution and stabilization have been previously studied in vitro using acidic aqueous environments. Nanoceria agglomerated in the presence of some carboxylic acids over 30 weeks, and degraded in others, at pH 4.5 (i.e., the pH value in phagolysosomes). Plants release carboxylic acids, and cerium
  • a second carboxylic acid group may optimally complex with nanoceria. The results provide mechanistic insight into the role of carboxylic acids in nanoceria dissolution and its fate in soils, plants, and biological systems. Keywords: acidic aqueous environments; carboxylic acids; electron microscopy
  • , where it is known to dissolve and transform in the presence of chelating agents at low pH [15]. In cucumber plants, there is clear evidence of ceria uptake and transport throughout the plant. A fraction of the ceria formed cerium carboxyl complexes. No phytotoxicity was reported to the plant itself [16
PDF
Album
Supp Info
Full Research Paper
Published 27 Jun 2023

A graphene quantum dots–glassy carbon electrode-based electrochemical sensor for monitoring malathion

  • Sanju Tanwar,
  • Aditi Sharma and
  • Dhirendra Mathur

Beilstein J. Nanotechnol. 2023, 14, 701–710, doi:10.3762/bjnano.14.56

Graphical Abstract
  • insecticide is malathion, which kills insects such as fleas and ants that attack plants. Malathion has been detected so far using chromatography [4][5], colorimetry [6], and mass spectrometry [7], although these methods are complicated and time-consuming and require expensive equipment with specialized
PDF
Album
Full Research Paper
Published 09 Jun 2023

Quercetin- and caffeic acid-functionalized chitosan-capped colloidal silver nanoparticles: one-pot synthesis, characterization, and anticancer and antibacterial activities

  • Akif Hakan Kurt,
  • Elif Berna Olutas,
  • Fatma Avcioglu,
  • Hamza Karakuş,
  • Mehmet Ali Sungur,
  • Cansu Kara Oztabag and
  • Muhammet Yıldırım

Beilstein J. Nanotechnol. 2023, 14, 362–376, doi:10.3762/bjnano.14.31

Graphical Abstract
  • present in plants such as onions, soybeans, lettuce, apples, red grapes, broccoli, and tomatoes [17]. It is also a naturally forming polar auxin transport inhibitor [18]. Various biological and pharmacological properties of quercetin have been reported, including antiviral, antibacterial, antimicrobial
PDF
Album
Supp Info
Full Research Paper
Published 20 Mar 2023

Bismuth-based nanostructured photocatalysts for the remediation of antibiotics and organic dyes

  • Akeem Adeyemi Oladipo and
  • Faisal Suleiman Mustafa

Beilstein J. Nanotechnol. 2023, 14, 291–321, doi:10.3762/bjnano.14.26

Graphical Abstract
  • the environment in low concentrations (micrograms per litre to nanograms per litre), are persistent and bioactive, potentially posing a threat to the food chain. Macrolides, fluoroquinolones, and tetracycline also have an impact on the synthesis of mitochondrial proteins and chloroplasts in plants [48
  • ][66]. Fluoroquinolones have a detrimental impact on the morphology and photosynthesis of plants, as well as on the ability of eukaryotic cells to synthesise DNA and replicate plastids. Streptomycin prevents Hordeum vulgare from producing chlorophyll, while ciprofloxacin, enrofloxacin, and
  • sulfadimethoxine considerably slow down plant growth. Additionally, tetracyclines have phytotoxic effects that may result in chromosomal abnormalities and the reduction of plant growth. Although β-lactams are thought to be less harmful, they also have an impact on the plastid division in lower plants [48][67]. The
PDF
Album
Review
Published 03 Mar 2023

In search of cytotoxic selectivity on cancer cells with biogenically synthesized Ag/AgCl nanoparticles

  • Mitzi J. Ramírez-Hernández,
  • Mario Valera-Zaragoza,
  • Omar Viñas-Bravo,
  • Ariana A. Huerta-Heredia,
  • Miguel A. Peña-Rico,
  • Erick A. Juarez-Arellano,
  • David Paniagua-Vega,
  • Eduardo Ramírez-Vargas and
  • Saúl Sánchez-Valdes

Beilstein J. Nanotechnol. 2022, 13, 1505–1519, doi:10.3762/bjnano.13.124

Graphical Abstract
  • ][27][28]. As mentioned by Raven [29], Cl− is an essential micronutrient for oxygenic photosynthetic organisms and is found in the environment in concentrations higher than those required by plants. Teixeira et al. [30] reported that the use of potassium chloride as a source of potassium for pineapple
PDF
Album
Full Research Paper
Published 13 Dec 2022

Dry under water: air retaining properties of large-scale elastomer foils covered with mushroom-shaped surface microstructures

  • Matthias Mail,
  • Stefan Walheim,
  • Thomas Schimmel,
  • Wilhelm Barthlott,
  • Stanislav N. Gorb and
  • Lars Heepe

Beilstein J. Nanotechnol. 2022, 13, 1370–1379, doi:10.3762/bjnano.13.113

Graphical Abstract
  • Matthias Mail Stefan Walheim Thomas Schimmel Wilhelm Barthlott Stanislav N. Gorb Lars Heepe Nees Institute for Biodiversity of Plants, University of Bonn, Venusbergweg 22, D-53115 Bonn, Germany Institute of Nanotechnology (INT) and Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of
  • Holzgerlingen, Germany 10.3762/bjnano.13.113 Abstract Superhydrophobic surfaces are well known for most different functions in plants, animals, and thus for biomimetic technical applications. Beside the Lotus Effect, one of their features with great technical, economic and ecologic potential is the Salvinia
PDF
Album
Full Research Paper
Published 21 Nov 2022

Straight roads into nowhere – obvious and not-so-obvious biological models for ferrophobic surfaces

  • Wilfried Konrad,
  • Christoph Neinhuis and
  • Anita Roth-Nebelsick

Beilstein J. Nanotechnol. 2022, 13, 1345–1360, doi:10.3762/bjnano.13.111

Graphical Abstract
  • both biological models for the tuyère problem. Instead, a seemingly not obvious biological model was identified, namely micropores within the cell walls of water-transporting conduits of plants that connect the conduits to a three-dimensional flow network. These specially shaped pores are assumed to be
  • furnace; Collembola; gas/liquid interfaces; interfacial effects; persistant air layers; pits; Salvinia molesta; surfaces; tuyère failure; water transport in plants; xylem; Young–Laplace equation; Introduction and Motivation The basic concept of biomimetics is the derivation of technical applications from
  • . Identification of a not-so-obvious biological model An improbable biological model for ferrophobic surfaces: xylem structures of vascular plants In a former biomimetic project (the research project “Hydrotex”, see appendix A), in which one co-author (W. K.) participated, the project goal was to construct a drag
PDF
Album
Perspective
Published 17 Nov 2022

Application of nanoarchitectonics in moist-electric generation

  • Jia-Cheng Feng and
  • Hong Xia

Beilstein J. Nanotechnol. 2022, 13, 1185–1200, doi:10.3762/bjnano.13.99

Graphical Abstract
  • commonly used because cellulose is easy to obtain. The main component of plant cell walls in nature is cellulose, and more than 50% of the carbon content of plants in nature is cellulose. Cotton contains almost 100% cellulose, therefore, cellulose is abundant in nature and can be used to fabricate MEG
PDF
Album
Review
Published 25 Oct 2022

Rapid fabrication of MgO@g-C3N4 heterojunctions for photocatalytic nitric oxide removal

  • Minh-Thuan Pham,
  • Duyen P. H. Tran,
  • Xuan-Thanh Bui and
  • Sheng-Jie You

Beilstein J. Nanotechnol. 2022, 13, 1141–1154, doi:10.3762/bjnano.13.96

Graphical Abstract
  • plants [46]. MgO generates the lowest amount of NO2 and by-products due to the lowest photocatalytic NO removal efficiency (16.8%). 3% MgO@g-C3N4 has the lowest NO2 (21.9%) and highest by-product (53.5%) generation. In addition, the NO2 generation of g-C3N4 is almost equal to that of 1% MgO@g-C3N4. This
PDF
Album
Supp Info
Full Research Paper
Published 18 Oct 2022

Green synthesis of zinc oxide nanoparticles toward highly efficient photocatalysis and antibacterial application

  • Vo Thi Thu Nhu,
  • Nguyen Duy Dat,
  • Le-Minh Tam and
  • Nguyen Hoang Phuong

Beilstein J. Nanotechnol. 2022, 13, 1108–1119, doi:10.3762/bjnano.13.94

Graphical Abstract
  • alternative route is a promising method for synthesizing nanomaterials due to its rapid, low-cost protocol, and safety to the environment [18]. Numerous studies applied green methods for the synthesis of ZnO nanoparticles from plants, fruits, plant extracts, and seaweeds [19][20][21][22]. Rafaie et al. [23
PDF
Album
Full Research Paper
Published 07 Oct 2022

Recent advances in green carbon dots (2015–2022): synthesis, metal ion sensing, and biological applications

  • Aisha Kanwal,
  • Naheed Bibi,
  • Sajjad Hyder,
  • Arif Muhammad,
  • Hao Ren,
  • Jiangtao Liu and
  • Zhongli Lei

Beilstein J. Nanotechnol. 2022, 13, 1068–1107, doi:10.3762/bjnano.13.93

Graphical Abstract
  • manufacturing CDs from these plant components. Plant-based precursors that contain heteroatoms (nitrogen and sulfur) are preferred over carbon sources that demand supplementary heteroatoms for the synthesis of CDs [53]. Without surface-passivating agent: Plants are rich in biomolecules such as carbohydrates and
PDF
Album
Review
Published 05 Oct 2022

Interaction between honeybee mandibles and propolis

  • Leonie Saccardi,
  • Franz Brümmer,
  • Jonas Schiebl,
  • Oliver Schwarz,
  • Alexander Kovalev and
  • Stanislav Gorb

Beilstein J. Nanotechnol. 2022, 13, 958–974, doi:10.3762/bjnano.13.84

Graphical Abstract
  • development process that led to the anatomical investigation of honeybee mandibles. The hypothesis is that animal species that regularly have close contact with resinous plants or even actively harvest resins may have developed counter-stickiness strategies. This is because animals that permanently stick to a
  • resin sources. Some plants might release chemicals that are picked up by bees [4][13]. Some bees have also been observed probing different plants before collecting resin [14]. When they have found a resin source, they start by first biting off a piece of resin and working it with the mandibles [4][15
PDF
Album
Full Research Paper
Published 14 Sep 2022

Design of a biomimetic, small-scale artificial leaf surface for the study of environmental interactions

  • Miriam Anna Huth,
  • Axel Huth,
  • Lukas Schreiber and
  • Kerstin Koch

Beilstein J. Nanotechnol. 2022, 13, 944–957, doi:10.3762/bjnano.13.83

Graphical Abstract
  • with its superimposed epicuticular waxes represents the barrier of all aboveground parts of higher plant primary tissues. Epicuticular waxes have multiple effects on the interaction of plants with their living and non-living environment, whereby their shape, dimension, arrangement, and chemical
  • among the most common wax structures. An overview of the morphology of various wax structures has been given by Barthlott and co-workers [24]. Wetting The wettability of leaves plays an important role in the interaction of plants with the environment, such as the interaction with pathogens and the
  • artificial test system is independent of the environmental influences to which plants in a field are exposed. It can be developed in large numbers with little resources towards the detailed understanding of interfacial effects under laboratory conditions. Experimental Plant material Wheat plants (Triticum
PDF
Supp Info
Full Research Paper
Published 13 Sep 2022

Bioselectivity of silk protein-based materials and their bio-inspired applications

  • Hendrik Bargel,
  • Vanessa T. Trossmann,
  • Christoph Sommer and
  • Thomas Scheibel

Beilstein J. Nanotechnol. 2022, 13, 902–921, doi:10.3762/bjnano.13.81

Graphical Abstract
  • bioselectivity. Keywords: antifouling; bacteriostatic; biofouling; bioselective cell adhesion; spider silk protein; Review 1 Introduction 1.1 Bioadhesive protein surfaces Biological adhesion is important for all organisms such as plants, animals, bacteria, and fungi, covering a wide range of biological aspects
PDF
Album
Review
Published 08 Sep 2022

Hierachical epicuticular wax coverage on leaves of Deschampsia antarctica as a possible adaptation to severe environmental conditions

  • Elena V. Gorb,
  • Iryna A. Kozeretska and
  • Stanislav N. Gorb

Beilstein J. Nanotechnol. 2022, 13, 807–816, doi:10.3762/bjnano.13.71

Graphical Abstract
  • /bjnano.13.71 Abstract Using cryo scanning electron microscopy, the surface micromorphology of vegetative (leaf blade and ligule) and generative (pedicel and outer glume) organs in Deschampsia antarctica, one of the only two flowering plants native to Antarctica, was examined. Whereas the pedicel and
  • hierarchical structure of the wax coverage on both leaf surfaces is described in D. antarctica for the first time. Keywords: cryo-SEM; microstructure; plant; surface; wax projection; Introduction The Antarctic hair grass Deschampsia antarctica É. Desv. (Poaceae) is one of the only two flowering plants native
  • to Antarctica, where it inhabits northern and western parts of the Antarctic Peninsula and adjacent islands free of permanent ice and snow in summer [1]. These perennial, 3–20 cm high plants have leaves with narrow folded or V-shaped ribbed leaf blades and true panicle inflorescences. They grow
PDF
Album
Full Research Paper
Published 22 Aug 2022

Antibacterial activity of a berberine nanoformulation

  • Hue Thi Nguyen,
  • Tuyet Nhung Pham,
  • Anh-Tuan Le,
  • Nguyen Thanh Thuy,
  • Tran Quang Huy and
  • Thuy Thi Thu Nguyen

Beilstein J. Nanotechnol. 2022, 13, 641–652, doi:10.3762/bjnano.13.56

Graphical Abstract
  • Phytochemicals are organic substances produced by plants with pharmacological and biological activity. Phytochemical-based medicines have become popular in the pharmaceutical market because of their diversity, availability, low cost, and little or no undesirable side effects [1]. Berberine (BBR) has been widely
  • known as a phytochemical substance in treating diarrhea, digestive disorders, and gastroenteritis. It is the quaternary salt of the isoquinoline alkaloid extracted from many plants, such as Berberis aristata, Berberis aquifolium, Berberis vulgaris, Coptis chinensis, Coptis japonica, and Hydrastis
PDF
Album
Supp Info
Full Research Paper
Published 11 Jul 2022
Other Beilstein-Institut Open Science Activities