Search results

Search for "polarizability" in Full Text gives 52 result(s) in Beilstein Journal of Nanotechnology.

Fragmentation of metal(II) bis(acetylacetonate) complexes induced by slow electrons

  • Janina Kopyra and
  • Hassan Abdoul-Carime

Beilstein J. Nanotechnol. 2023, 14, 980–987, doi:10.3762/bjnano.14.81

Graphical Abstract
  • TNI decomposition [23]. ML2 compounds usually possess high dipole moment, quadrupole moment, and/or polarizability [15][16][17][18][19], which allow this mechanism to occur. All these processes are involved in the yield functions reported below in Figures 1–6. At first glance, the formation of the
PDF
Album
Full Research Paper
Published 26 Sep 2023

Plasmonic nanotechnology for photothermal applications – an evaluation

  • A. R. Indhu,
  • L. Keerthana and
  • Gnanaprakash Dharmalingam

Beilstein J. Nanotechnol. 2023, 14, 380–419, doi:10.3762/bjnano.14.33

Graphical Abstract
  • charges are arranged in the direction of electric field and negative charges opposite to the field, causing a polarisation. The wavelength-dependent electric field and dipole moment determine the dielectric property of the material and also the plasmon absorption (by affecting the polarizability, as was
  • polarizability (causing interband transitions), and χD is the corresponding susceptibility of the conduction electrons (modelled through the Drude assumption of a free electron “sea”). Hence, PT applications targeting plasmonic materials must account for the contributions to the dielectric function of the terms
  • radiation, is derived starting from Laplace’s equation with an electric potential (ϕ), Calculation of the resulting scalar potentials inside and outside the particle leads to the expression for the polarizability (α) of the particle, εm is the dielectric constant of the surrounding medium. The extinction
PDF
Album
Review
Published 27 Mar 2023

Recent advances in green carbon dots (2015–2022): synthesis, metal ion sensing, and biological applications

  • Aisha Kanwal,
  • Naheed Bibi,
  • Sajjad Hyder,
  • Arif Muhammad,
  • Hao Ren,
  • Jiangtao Liu and
  • Zhongli Lei

Beilstein J. Nanotechnol. 2022, 13, 1068–1107, doi:10.3762/bjnano.13.93

Graphical Abstract
  • contrast to nitrogen, phosphorus atoms are larger than carbon atoms. As a result, it has the potential to act as an n-type donor and create substitutional defects in the carbon cluster, changing the electronic and optical characteristics of CDs with great impact on polarizability, quantum yield, and
PDF
Album
Review
Published 05 Oct 2022

Revealing local structural properties of an atomically thin MoSe2 surface using optical microscopy

  • Lin Pan,
  • Peng Miao,
  • Anke Horneber,
  • Alfred J. Meixner,
  • Pierre-Michel Adam and
  • Dai Zhang

Beilstein J. Nanotechnol. 2022, 13, 572–581, doi:10.3762/bjnano.13.49

Graphical Abstract
  • single-molecule detection level [18][19]. The Raman enhancement originates from an electromagnetic mechanism, provided by the excitation of surface plasmons, and a chemical mechanism which is related to the modification of Raman polarizability of molecules [20]. It has been reported that 2D materials
  • the Raman polarizability of the molecule; thus, it is essential to investigate the dependency of chemical enhancement on the local structure of 2D-TMDC materials. In this article, the structure-related optical properties of a triangular MoSe2 flake covered with a 5 nm film of CuPc molecules are
PDF
Album
Supp Info
Full Research Paper
Published 01 Jul 2022

Identifying diverse metal oxide nanomaterials with lethal effects on embryonic zebrafish using machine learning

  • Richard Liam Marchese Robinson,
  • Haralambos Sarimveis,
  • Philip Doganis,
  • Xiaodong Jia,
  • Marianna Kotzabasaki,
  • Christiana Gousiadou,
  • Stacey Lynn Harper and
  • Terry Wilkins

Beilstein J. Nanotechnol. 2021, 12, 1297–1325, doi:10.3762/bjnano.12.97

Graphical Abstract
PDF
Album
Supp Info
Full Research Paper
Published 29 Nov 2021

First-principles study of the structural, optoelectronic and thermophysical properties of the π-SnSe for thermoelectric applications

  • Muhammad Atif Sattar,
  • Najwa Al Bouzieh,
  • Maamar Benkraouda and
  • Noureddine Amrane

Beilstein J. Nanotechnol. 2021, 12, 1101–1114, doi:10.3762/bjnano.12.82

Graphical Abstract
  • , the computation of the optical properties is decreased towards the assessment of the response function, which is called dielectric tensor or polarizability. For practical optoelectronics applications, it is essential to investigate the optical response of the π-SnSe alloy. For this purpose, we have
PDF
Album
Full Research Paper
Published 05 Oct 2021

Structural and optical characteristics determined by the sputtering deposition conditions of oxide thin films

  • Petronela Prepelita,
  • Florin Garoi and
  • Valentin Craciun

Beilstein J. Nanotechnol. 2021, 12, 354–365, doi:10.3762/bjnano.12.29

Graphical Abstract
  • of the oxide films. This allowed for the assessment of the permittivity and polarizability of the material, as well as the density of states in the band interval. Based on calculus, the value of the real dielectric constant (εr) can be obtained by: and the relationship to compute the imaginary
PDF
Album
Full Research Paper
Published 19 Apr 2021

The influence of an interfacial hBN layer on the fluorescence of an organic molecule

  • Christine Brülke,
  • Oliver Bauer and
  • Moritz M. Sokolowski

Beilstein J. Nanotechnol. 2020, 11, 1663–1684, doi:10.3762/bjnano.11.149

Graphical Abstract
  • and the substrate occurs due to the chemisorptive bonding, which leads to a change in the polarizability of the molecule and thus to an enhancement of the Raman signal. It is also possible that electronic excitations of the adsorbed molecule allow for a resonance Raman effect, which causes an
  • by the polar character of the B–N bonds, which induced a dipole in the adsorbed molecule. The resulting interfacial dipole–dipole interactions are thought to have a similar effect on the polarizability of the adsorbed molecule as a CT. Regarding the Raman enhancement effect of a noble metal surface
PDF
Album
Full Research Paper
Published 03 Nov 2020

Electrokinetic characterization of synthetic protein nanoparticles

  • Daniel F. Quevedo,
  • Cody J. Lentz,
  • Adriana Coll de Peña,
  • Yazmin Hernandez,
  • Nahal Habibi,
  • Rikako Miki,
  • Joerg Lahann and
  • Blanca H. Lapizco-Encinas

Beilstein J. Nanotechnol. 2020, 11, 1556–1567, doi:10.3762/bjnano.11.138

Graphical Abstract
  • a device for further data collection and analysis [19]. Both AC and DC electric potentials can be used to exploit differences in specific biological particle properties, such as electrical charge, size, shape, and polarizability [20][21]. An important fraction of miniaturized EK devices employ a
  • migrating (i.e., become trapped) at a certain voltage at the constrictions between the insulating posts. The voltage at which a particle is trapped is directly related to the properties of the particle (i.e., electrical charge, size, shape, and polarizability). Therefore, every particle will be trapped at a
  • migration due to the polarizability of particles when exposed to a non-homogenous electric field. The DEP velocity is characterized by the following equation: where µDEP is the DEP mobility. Therefore, summarizing the four phenomena discussed above, the total particle velocity within our system (Figure 2b
PDF
Album
Supp Info
Full Research Paper
Published 13 Oct 2020

Analysis of catalyst surface wetting: the early stage of epitaxial germanium nanowire growth

  • Owen C. Ernst,
  • Felix Lange,
  • David Uebel,
  • Thomas Teubner and
  • Torsten Boeck

Beilstein J. Nanotechnol. 2020, 11, 1371–1380, doi:10.3762/bjnano.11.121

Graphical Abstract
  • of solid–fluid and AFF of fluid-fluid interactions: The Hamaker constants are a gauge for the interaction between particles of certain materials and the electric fields they generate [28]. This electrical responsiveness (or susceptibility) is closely related to the permittivity/polarizability, α, of
  • difference between the surface energy of the pristine substrate, γS, and the sum of the surface energy values of the wetted substrate (γSF + γF): In an ideal van der Waals system, it can be shown that the surface energy values are also associated with polarizability [34]. For real systems, however, it is
  • hysteresis effects, making the interpretation of the results even more complicated [39]. ii. The vW model: As mentioned before, the surface energy values are also connected with the polarizability of the system (i.e., with the Hamaker constants). In order to approximate the interfacial energy, it can be
PDF
Album
Supp Info
Full Research Paper
Published 09 Sep 2020

Role of redox-active axial ligands of metal porphyrins adsorbed at solid–liquid interfaces in a liquid-STM setup

  • Thomas Habets,
  • Sylvia Speller and
  • Johannes A. A. W. Elemans

Beilstein J. Nanotechnol. 2020, 11, 1264–1271, doi:10.3762/bjnano.11.110

Graphical Abstract
  • rates. First, only the overall potential difference between the tip and the sample is known. The potential drops from the surfaces to the solution are governed by the material of the surface and structural properties of the interface, the type and polarizability of the solvent, the solutes (and their
PDF
Album
Full Research Paper
Published 24 Aug 2020

Measurement of electrostatic tip–sample interactions by time-domain Kelvin probe force microscopy

  • Christian Ritz,
  • Tino Wagner and
  • Andreas Stemmer

Beilstein J. Nanotechnol. 2020, 11, 911–921, doi:10.3762/bjnano.11.76

Graphical Abstract
  • . Similarly, other sources of asymmetry may be included here, although the detectability of the system needs to be confirmed. For instance, the polarizability of a sample could be added through an additional state γ and by modifying Equation 10, e.g., according to Equation 8 in [28]. For the sake of
PDF
Album
Supp Info
Full Research Paper
Published 15 Jun 2020

The role of Ag+, Ca2+, Pb2+ and Al3+ adions in the SERS turn-on effect of anionic analytes

  • Stefania D. Iancu,
  • Andrei Stefancu,
  • Vlad Moisoiu,
  • Loredana F. Leopold and
  • Nicolae Leopold

Beilstein J. Nanotechnol. 2019, 10, 2338–2345, doi:10.3762/bjnano.10.224

Graphical Abstract
  • surface of the cit-AgNPs such as surface defects and kinks [36][37] and will increase the number of available positively charged adsorption sites for anionic analytes. As highlighted by Attard, the polarizability of the adion will influence greatly its surface activity [35]. This explains why cations with
  • a high polarizability such as Ca2+, Pb2+ or Al3+ promote the specific adsorption of anionic analytes, whereas cations with a low polarizability such as Na+ have a negligible effect on the surface adsorption. In order to provide further evidence in support of this model, we showed that only the
PDF
Album
Supp Info
Full Research Paper
Published 27 Nov 2019

Synthesis of highly active ETS-10-based titanosilicate for heterogeneously catalyzed transesterification of triglycerides

  • Muhammad A. Zaheer,
  • David Poppitz,
  • Khavar Feyzullayeva,
  • Marianne Wenzel,
  • Jörg Matysik,
  • Radomir Ljupkovic,
  • Aleksandra Zarubica,
  • Alexander A. Karavaev,
  • Andreas Pöppl,
  • Roger Gläser and
  • Muslim Dvoyashkin

Beilstein J. Nanotechnol. 2019, 10, 2039–2061, doi:10.3762/bjnano.10.200

Graphical Abstract
  • micropores. In the case of treatment of ETS-10 titanosilicates with H2O2 at elevated temperatures, if accompanied by microexplosions [39], the appearance of such domains is possible. To address this, a number of NMR experiments with adsorbed Xe possessing a polarizability that is high enough to distinguish
PDF
Album
Supp Info
Full Research Paper
Published 28 Oct 2019

Biocatalytic oligomerization-induced self-assembly of crystalline cellulose oligomers into nanoribbon networks assisted by organic solvents

  • Yuuki Hata,
  • Yuka Fukaya,
  • Toshiki Sawada,
  • Masahito Nishiura and
  • Takeshi Serizawa

Beilstein J. Nanotechnol. 2019, 10, 1778–1788, doi:10.3762/bjnano.10.173

Graphical Abstract
  • ability (acidity) α, the hydrogen bond acceptor ability (basicity) β, and the dipolarity/polarizability π*, β was found to be correlated. The organic solvents with relatively high β-values were found to induce the nanoribbon network formation (Table 2). This finding suggests that the precipitation of the
PDF
Album
Correction
Full Research Paper
Published 26 Aug 2019

On the transformation of “zincone”-like into porous ZnO thin films from sub-saturated plasma enhanced atomic layer deposition

  • Alberto Perrotta,
  • Julian Pilz,
  • Stefan Pachmajer,
  • Antonella Milella and
  • Anna Maria Coclite

Beilstein J. Nanotechnol. 2019, 10, 746–759, doi:10.3762/bjnano.10.74

Graphical Abstract
  • the Lorentz–Lorenz relationship and calculated as: where Vads is the volume of the liquid adsorptive in pores, B0 and Bs are the volume polarizability of the film before and during adsorption, Bt is the volume polarizability of the adsorbate multilayer that develops on top of the layer, d0 and dt are
  • the thickness of the layer and the adsorbate multilayer, respectively, Vmol is the molecular volume of the adsorptive, and αads is the polarizability of the adsorptive molecule. If swelling occurs, dt is ignored in the equation and only the layer thickness is taken into account, as reported in [49
PDF
Album
Supp Info
Full Research Paper
Published 21 Mar 2019

Quantification and coupling of the electromagnetic and chemical contributions in surface-enhanced Raman scattering

  • Yarong Su,
  • Yuanzhen Shi,
  • Ping Wang,
  • Jinglei Du,
  • Markus B. Raschke and
  • Lin Pang

Beilstein J. Nanotechnol. 2019, 10, 549–556, doi:10.3762/bjnano.10.56

Graphical Abstract
  • modulate the substrate polarizability, and thus enhance the Raman scattering [20][21][22]. This possible coupling effect was investigated theoretically, but not yet explored experimentally. Therefore, establishing a routine experimental procedure to separate and quantify CE and EM effects, as well as
  • can be obtained by normalization to a mode with zero deformation potential ∂ωH/∂Qn. As for the ω1 = 1000 cm−1 mode, it was proposed that there is almost no change of the frontier energy levels as the atoms vibrate, and very little interfacial contribution to the change in polarizability [15]. Thus
  • frequency-dependent but not particularly sensitive to the strength of the local optical field within the range of frequencies and field strengths studied. The CE corresponds to the static chemical enhancement (CHEM), which is induced by non-resonant changes in the molecular polarizability upon adsorption on
PDF
Album
Supp Info
Full Research Paper
Published 25 Feb 2019

Nanocomposite–parylene C thin films with high dielectric constant and low losses for future organic electronic devices

  • Marwa Mokni,
  • Gianluigi Maggioni,
  • Abdelkader Kahouli,
  • Sara M. Carturan,
  • Walter Raniero and
  • Alain Sylvestre

Beilstein J. Nanotechnol. 2019, 10, 428–441, doi:10.3762/bjnano.10.42

Graphical Abstract
  • to be found in the presence of AgOx nanoparticles in the parylene matrix. The incorporation of conductive particles into a dielectric matrix can lead to a consequent increase in the dielectric constant due to the high polarizability of these conductive particles [69]. A moderate amount of Ag
PDF
Album
Full Research Paper
Published 12 Feb 2019

Electrostatic force microscopy for the accurate characterization of interphases in nanocomposites

  • Diana El Khoury,
  • Richard Arinero,
  • Jean-Charles Laurentie,
  • Mikhaël Bechelany,
  • Michel Ramonda and
  • Jérôme Castellon

Beilstein J. Nanotechnol. 2018, 9, 2999–3012, doi:10.3762/bjnano.9.279

Graphical Abstract
  • , and SiO2 is a highly hydrophilic material, it can be hypothesized that a thin water layer was adsorbed on the surface. The high dielectric polarizability and permittivity of water films could explain the higher effective permittivity of superficial SiO2. Along the same lines, the normal value of the
PDF
Album
Full Research Paper
Published 07 Dec 2018

Two-dimensional semiconductors pave the way towards dopant-based quantum computing

  • José Carlos Abadillo-Uriel,
  • Belita Koiller and
  • María José Calderón

Beilstein J. Nanotechnol. 2018, 9, 2668–2673, doi:10.3762/bjnano.9.249

Graphical Abstract
  • function is non-local. As discussed in [35], it may be written as ε(q) = 1 + 2πα|q|, with α being the polarizability. Hence, for the description of the impurity potential we should take into account the dependence of the screening ε on the distance from the donor. However, it has been recently found that
PDF
Album
Supp Info
Full Research Paper
Published 12 Oct 2018

Polarization-dependent strong coupling between silver nanorods and photochromic molecules

  • Gwénaëlle Lamri,
  • Alessandro Veltri,
  • Jean Aubard,
  • Pierre-Michel Adam,
  • Nordin Felidj and
  • Anne-Laure Baudrion

Beilstein J. Nanotechnol. 2018, 9, 2657–2664, doi:10.3762/bjnano.9.247

Graphical Abstract
  • band and the plasmonic resonance in the SPY isomer. This anti-crossing behavior is a signature of a strong coupling regime. To support these experimental results, analytical calculations were made. The polarizability of the silver nanorod is calculated using a prolate spheroid in the dipole
PDF
Album
Full Research Paper
Published 08 Oct 2018

Photoluminescence of CdSe/ZnS quantum dots in nematic liquid crystals in electric fields

  • Margarita A. Kurochkina,
  • Elena A. Konshina and
  • Daria Khmelevskaia

Beilstein J. Nanotechnol. 2018, 9, 1544–1549, doi:10.3762/bjnano.9.145

Graphical Abstract
  • polarizability and the dipole moment of the nanoparticles. The enhancement of the QD luminescence results from the transfer of energy, when the channels of nonradiative deactivation of QDs are eliminated [22]. The polarity of the surrounding molecules affects the optical properties of the QDs. The interaction
PDF
Album
Full Research Paper
Published 23 May 2018

Formation and development of nanometer-sized cybotactic clusters in bent-core nematic liquid crystalline compounds

  • Yuri P. Panarin,
  • Sithara P. Sreenilayam,
  • Jagdish K. Vij,
  • Anne Lehmann and
  • Carsten Tschierske

Beilstein J. Nanotechnol. 2018, 9, 1288–1296, doi:10.3762/bjnano.9.121

Graphical Abstract
  • the high frequency dielectric permittivity that depends on the electronic and atomic polarizability of the material, ω = 2πf is the angular frequency of the probe field, ε0 is the permittivity of free space, σDC is DC conductivity, τj is the relaxation time of the jth process, Δεj is the dielectric
PDF
Album
Full Research Paper
Published 25 Apr 2018

Surface characterization of nanoparticles using near-field light scattering

  • Eunsoo Yoo,
  • Yizhong Liu,
  • Chukwuazam A. Nwasike,
  • Sebastian R. Freeman,
  • Brian C. DiPaolo,
  • Bernardo Cordovez and
  • Amber L. Doiron

Beilstein J. Nanotechnol. 2018, 9, 1228–1238, doi:10.3762/bjnano.9.114

Graphical Abstract
  • optical trapping force, Ftrap = [(2πα/c)·(∂I/∂z)], where z is the particle–waveguide separation, F0 is the force required to completely compress the coating whereby the particle touchs the waveguide, γ is the Fcoat force decay constant, α is the particle polarizability, c is the speed of light, and I is
  • the local intensity of the laser light at the location the nanoparticle. Assuming the evanescent field behaves as I = Imax exp(−βz), we obtain the following expression for z after expanding about an average height above the waveguide, zave: where αave is the average polarizability of a particle. The
  • particle polarizability is α = [3V(ε − εs)/(ε + 2εs)], V is the particle volume, ε and εS are the dielectric constants of the particle and solution, respectively, and I is the local intensity. As the particle travels in solution, a drag force also acts on the particle along the opposite direction of the
PDF
Album
Full Research Paper
Published 18 Apr 2018

Tuning adhesion forces between functionalized gold colloidal nanoparticles and silicon AFM tips: role of ligands and capillary forces

  • Sven Oras,
  • Sergei Vlassov,
  • Marta Berholts,
  • Rünno Lõhmus and
  • Karine Mougin

Beilstein J. Nanotechnol. 2018, 9, 660–670, doi:10.3762/bjnano.9.61

Graphical Abstract
  • , electrostatic forces, H-bonding and capillary forces are crucial to understand the dependence of adhesive force on the type of functional layer. First, the high adhesion values of –SH and –NH2 coated NPs are explainable by the high polarizability of the molecules. Hence, adhesion forces acting between
PDF
Album
Supp Info
Full Research Paper
Published 20 Feb 2018
Other Beilstein-Institut Open Science Activities