Search results

Search for "polyacrylonitrile" in Full Text gives 21 result(s) in Beilstein Journal of Nanotechnology.

Batch preparation of nanofibers containing nanoparticles by an electrospinning device with multiple air inlets

  • Dong Wei,
  • Chengwei Ye,
  • Adnan Ahmed and
  • Lan Xu

Beilstein J. Nanotechnol. 2023, 14, 141–150, doi:10.3762/bjnano.14.15

Graphical Abstract
  • addition, experiments and theoretical analysis were used to discuss the spinning mechanism of this new device for the batch preparation of nanofibers, and the optimal spinning parameters were determined. Materials and Methods Materials Polyacrylonitrile (PAN, average molecular weight 15000) and zinc oxide
PDF
Album
Full Research Paper
Published 23 Jan 2023

Recent trends in Bi-based nanomaterials: challenges, fabrication, enhancement techniques, and environmental applications

  • Vishal Dutta,
  • Ankush Chauhan,
  • Ritesh Verma,
  • C. Gopalkrishnan and
  • Van-Huy Nguyen

Beilstein J. Nanotechnol. 2022, 13, 1316–1336, doi:10.3762/bjnano.13.109

Graphical Abstract
PDF
Album
Review
Published 11 Nov 2022

A comprehensive review on electrospun nanohybrid membranes for wastewater treatment

  • Senuri Kumarage,
  • Imalka Munaweera and
  • Nilwala Kottegoda

Beilstein J. Nanotechnol. 2022, 13, 137–159, doi:10.3762/bjnano.13.10

Graphical Abstract
  • common synthetic polymer membranes such as polycaprolactone (PCL), polyacrylonitrile (PAN), polyacrylic acid (PAA), polysulfones (PSF), polyimides (PI), polyvinyl alcohol (PVA), polystyrene (PS), polyethylene oxide (PEO), poly(vinylidene fluoride) (PVDF) and natural polymers such as gelatin, keratin
PDF
Album
Review
Published 31 Jan 2022

The effect of cobalt on morphology, structure, and ORR activity of electrospun carbon fibre mats in aqueous alkaline environments

  • Markus Gehring,
  • Tobias Kutsch,
  • Osmane Camara,
  • Alexandre Merlen,
  • Hermann Tempel,
  • Hans Kungl and
  • Rüdiger-A. Eichel

Beilstein J. Nanotechnol. 2021, 12, 1173–1186, doi:10.3762/bjnano.12.87

Graphical Abstract
  • , Institute of Physical Chemistry, 52056 Aachen, Germany IM2NP, CNRS, Aix-Marseille Université, Université de Toulon, Toulon, France 10.3762/bjnano.12.87 Abstract An innovative approach for the design of air electrodes for metal–air batteries are free-standing scaffolds made of electrospun polyacrylonitrile
  • , electrodes intended for mass production need to be composed of cheap materials, ideally from sustainable sources, and to be produced in a way that is scalable. Carbonised polyacrylonitrile (PAN) fibre mats, which are a promising alternative to pressed carbon powders, are one such approach. These mats are a
  • electrochemical activity using linear sweep voltammetry with a focus on the oxygen reduction reaction. Experimental Synthesis of carbon fibres and electrode preparation Polyacrylonitrile (PAN) (98%, MW = 150,000 g·mol−1; BOC sciences, USA) was dissolved in N,N-dimethyl formamide (DMF) to obtain 10 wt % solutions
PDF
Album
Supp Info
Full Research Paper
Published 19 Oct 2021

Progress and innovation of nanostructured sulfur cathodes and metal-free anodes for room-temperature Na–S batteries

  • Marina Tabuyo-Martínez,
  • Bernd Wicklein and
  • Pilar Aranda

Beilstein J. Nanotechnol. 2021, 12, 995–1020, doi:10.3762/bjnano.12.75

Graphical Abstract
  • intermediates. Consequently, the shuttle effect is minimized resulting in excellent cycle stability for 1000 cycles with 0.035% capacity decay per cycle. The research based on covalently bonded sulfur–carbon cathodes has been mostly focused on electrodes with a polyacrylonitrile (PAN) skeleton [38][39][40][41
PDF
Album
Review
Published 09 Sep 2021

Structure and electrochemical performance of electrospun-ordered porous carbon/graphene composite nanofibers

  • Yi Wang,
  • Yanhua Song,
  • Chengwei Ye and
  • Lan Xu

Beilstein J. Nanotechnol. 2020, 11, 1280–1290, doi:10.3762/bjnano.11.112

Graphical Abstract
  • configurations were used as a material to fabricate supercapacitor electrodes. These nanofibers were synthesized by applying a modified parallel electrode to the electrospinning method (MPEM) in order to generate electrospun polyacrylonitrile (PAN) nanofibers containing graphene. After synthesis, these fibers
  • nanofibers have been widely used as a material to synthesize electrodes upon a carbonization step [13][14]. Polyacrylonitrile (PAN) is often used as a precursor to synthesize carbon nanofibers. It can be obtained from a variety of sources and it has good spinnability [14][15]. However, carbon-based materials
PDF
Album
Full Research Paper
Published 27 Aug 2020

Preparation, characterization and photocatalytic performance of heterostructured CuO–ZnO-loaded composite nanofiber membranes

  • Wei Fang,
  • Liang Yu and
  • Lan Xu

Beilstein J. Nanotechnol. 2020, 11, 631–650, doi:10.3762/bjnano.11.50

Graphical Abstract
  • electrospinning and observed their photocatalytic performance. Yuan et al. [35] obtained TiO2/WO3 CNFs using electrospinning and applied them in the photocatalytic removal of mercury. Teng et al. [36] prepared TiO2/NiO CNFs by electrospinning and used them for photocatalysis. Polyacrylonitrile (PAN) has been
  • methyl orange. Experimental Materials Anhydrous copper acetate (Cu(Ac)2, Mw = 199.65 g/mol) and anhydrous zinc acetate (Zn(Ac)2, Mw = 183.48 g/mol) were supplied by Shanghai Macklin Biochemical Co., Ltd. and Aladdin industrial Corporation (Shanghai, China), respectively. Polyacrylonitrile (PAN, Mw
PDF
Album
Full Research Paper
Published 15 Apr 2020

Four self-made free surface electrospinning devices for high-throughput preparation of high-quality nanofibers

  • Yue Fang and
  • Lan Xu

Beilstein J. Nanotechnol. 2019, 10, 2261–2274, doi:10.3762/bjnano.10.218

Graphical Abstract
  • electrospinning methods were presented to obtain the high-throughput production of nanofibers [13][14][15][16][17][18][19][20][21][22][23]. Niu et al. [13] prepared high-throughput polyacrylonitrile (PAN) nanofibers using a needleless electrospinning method. He et al. [14][15] presented bubble electrospinning (BE
  • software. Our results show that all four FSE devices can be used to prepare large quantities of high-quality nanofibers, whereas the SSFSE aparatus is the optimal FSE device, providing the highest quality and the highest yield of nanofibers. Experimental Materials Polyacrylonitrile (PAN, MW = 150,000) was
PDF
Album
Full Research Paper
Published 15 Nov 2019

A novel all-fiber-based LiFePO4/Li4Ti5O12 battery with self-standing nanofiber membrane electrodes

  • Li-li Chen,
  • Hua Yang,
  • Mao-xiang Jing,
  • Chong Han,
  • Fei Chen,
  • Xin-yu Hu,
  • Wei-yong Yuan,
  • Shan-shan Yao and
  • Xiang-qian Shen

Beilstein J. Nanotechnol. 2019, 10, 2229–2237, doi:10.3762/bjnano.10.215

Graphical Abstract
  • : 0.007 mol of Fe(NO3)3·9H2O and C2H3O2Li·2H2O, H3PO4 were dissolved in 29 g of N,N-dimethylformamide (DMF) to obtain solution A; 4 g of polyacrylonitrile (PAN) and 2 g of polyvinylpyrrolidone (PVP) were dissolved in 29 g of DMF to obtain solution B. A precursor spinning solution for the LiFePO4 nanofiber
  • titanate (C16H36O4Ti), 0.9593 g C2H3O2Li·2H2O, and 0.25 mL HNO3 were dissolved in 29 g of N,N-dimethylformamide (DMF) to obtain solution A; 4 g of polyacrylonitrile (PAN) and 2 g of polyvinylpyrrolidone (PVP) were dissolved in 29 g of DMF to obtain solution B. A precursor spinning solution for the
PDF
Album
Supp Info
Full Research Paper
Published 13 Nov 2019

Tuning the performance of vanadium redox flow batteries by modifying the structural defects of the carbon felt electrode

  • Ditty Dixon,
  • Deepu Joseph Babu,
  • Aiswarya Bhaskar,
  • Hans-Michael Bruns,
  • Joerg J. Schneider,
  • Frieder Scheiba and
  • Helmut Ehrenberg

Beilstein J. Nanotechnol. 2019, 10, 1698–1706, doi:10.3762/bjnano.10.165

Graphical Abstract
  • Universität Darmstadt, Alarich-Weiss-Straße 12, 64287 Darmstadt, Germany Institute for Applied Materials - Energy Storage Systems (IAM-ESS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany 10.3762/bjnano.10.165 Abstract Polyacrylonitrile (PAN
  • electrochemical performance in a VRFB compared to the untreated sample with fewer defects. The commercial carbon felts (GFD-type) used as electrode materials in the present study are made out of a polyacrylonitrile (PAN) precursor. In contrast to the commonly employed thermal activation process, the plasma
PDF
Album
Full Research Paper
Published 13 Aug 2019

An efficient electrode material for high performance solid-state hybrid supercapacitors based on a Cu/CuO/porous carbon nanofiber/TiO2 hybrid composite

  • Mamta Sham Lal,
  • Thirugnanam Lavanya and
  • Sundara Ramaprabhu

Beilstein J. Nanotechnol. 2019, 10, 781–793, doi:10.3762/bjnano.10.78

Graphical Abstract
  • capacitance fade and offers superior cycling stability. Our work introduces a new avenue and offers prospective electrode materials for advanced supercapacitors in the near future. Experimental Chemicals Polyacrylonitrile (PAN, Mw = 150,000 g mol−1), polyvinylidene fluoride (PVDF, Mw = 120,000 g mol−1
  • Cu/porous carbon nanofibers (Cu/PCNF), PCNF and carbon nanofiber (CNF) In a typical electrospinning process, initially 1 g of polyacrylonitrile (PAN) was dissolved in N,N-dimethylformamide (DMF) under magnetic stirring for 4 h at 50 °C to obtain a homogeneous transparent viscous solution. 20 wt % of
PDF
Album
Supp Info
Full Research Paper
Published 01 Apr 2019

Electrospun one-dimensional nanostructures: a new horizon for gas sensing materials

  • Muhammad Imran,
  • Nunzio Motta and
  • Mahnaz Shafiei

Beilstein J. Nanotechnol. 2018, 9, 2128–2170, doi:10.3762/bjnano.9.202

Graphical Abstract
  • polyurethane (PU) nanofibers using electrospinning [64]. These nanoparticles embedded in polymer nanofibers could be promising materials for room temperature gas sensing. Furthermore, graphene oxide (GO) sheets have also been incorporated with electrospun polyacrylonitrile (PAN) fibers [65][66][67]. The fibers
PDF
Album
Supp Info
Review
Published 13 Aug 2018

Single-step process to improve the mechanical properties of carbon nanotube yarn

  • Maria Cecilia Evora,
  • Xinyi Lu,
  • Nitilaksha Hiremath,
  • Nam-Goo Kang,
  • Kunlun Hong,
  • Roberto Uribe,
  • Gajanan Bhat and
  • Jimmy Mays

Beilstein J. Nanotechnol. 2018, 9, 545–554, doi:10.3762/bjnano.9.52

Graphical Abstract
  • polyacrylonitrile (PAN) from the literature (Figure 1c). This process relies on the fundamentals of radiation grafting polymerization. The advantage of the process is that an initiator is not required, avoiding the formation of free radicals on the substrate backbone/monomer, contamination and problems with local
PDF
Album
Full Research Paper
Published 13 Feb 2018

Synthesis and characterization of electrospun molybdenum dioxide–carbon nanofibers as sulfur matrix additives for rechargeable lithium–sulfur battery applications

  • Ruiyuan Zhuang,
  • Shanshan Yao,
  • Maoxiang Jing,
  • Xiangqian Shen,
  • Jun Xiang,
  • Tianbao Li,
  • Kesong Xiao and
  • Shibiao Qin

Beilstein J. Nanotechnol. 2018, 9, 262–270, doi:10.3762/bjnano.9.28

Graphical Abstract
  • using an electrospinning technique followed by calcination, using sol–gel precursors and polyacrylonitrile (PAN) as a processing aid. The resulting samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, Brunauer–Emmet–Teller (BET
  • than the pristine sulfur cathode. The proposed electrospinning technique might open new avenues for making promising nanofibers for practical applications. Experimental Synthesis of MoO2–CNFs Phosphomolybdic acid (PMA: H3PO4·12MoO3), polyacrylonitrile (PAN, Mw = 150,000) and N,N-dimethylformamide (DMF
PDF
Album
Supp Info
Full Research Paper
Published 24 Jan 2018

Fabrication of carbon nanospheres by the pyrolysis of polyacrylonitrile–poly(methyl methacrylate) core–shell composite nanoparticles

  • Dafu Wei,
  • Youwei Zhang and
  • Jinping Fu

Beilstein J. Nanotechnol. 2017, 8, 1897–1908, doi:10.3762/bjnano.8.190

Graphical Abstract
  • , College of Materials Science and Engineering, Donghua University, Shanghai 201620, China 10.3762/bjnano.8.190 Abstract Carbon nanospheres with a high Brunauer–Emmett–Teller (BET) specific surface area were fabricated via the pyrolysis of polyacrylonitrile–poly(methyl methacrylate) (PAN–PMMA) core–shell
  • –shell nanoparticles; emulsion polymerization; polyacrylonitrile; Introduction Due to their high specific surface area, chemical inertness, good mechanical stability and unique electrical properties, carbon nanospheres have numerous potential applications in nanocomposites [1], gas storage [2], lithium
  • carbonization treatments, polyacrylonitrile (PAN) can be converted into carbon. High-performance carbon fibers, carbon nanofiber membranes, 3D-ordered carbon materials, and carbon nanoparticles have been fabricated from various PAN precursors [28][29][30][31][32][33][34][35]. Discrete and well-defined carbon
PDF
Album
Supp Info
Full Research Paper
Published 11 Sep 2017

Oxidative stabilization of polyacrylonitrile nanofibers and carbon nanofibers containing graphene oxide (GO): a spectroscopic and electrochemical study

  • İlknur Gergin,
  • Ezgi Ismar and
  • A. Sezai Sarac

Beilstein J. Nanotechnol. 2017, 8, 1616–1628, doi:10.3762/bjnano.8.161

Graphical Abstract
  • during carbonization. Thus, the understanding of the oxidation mechanism is an essential part of the production of CNF. The oxidation process of polyacrylonitrile was studied and nanofiber webs containing graphene oxide (GO) are obtained to improve the electrochemical properties of CNF. Structural and
  • interior pores filled with electrolyte. Keywords: carbon nanofiber; graphene oxide; oxidized polyacrylonitrile (PAN); Introduction Carbon nanofibers are of great interest because of their chemical similarity to fullerenes and carbon nanotubes. Carbon nanofibers (CNF) have promising electrochemical and
  • mechanical properties and a potential for a variety of applications; such as supercapacitor applications, battery applications, and catalyst support materials. Polyacrylonitrile (PAN) is one of the well-known precursor for obtaining carbon nanofibers that have a diameter ranging between nanometers and
PDF
Album
Full Research Paper
Published 07 Aug 2017

Development of adsorptive membranes by confinement of activated biochar into electrospun nanofibers

  • Mehrdad Taheran,
  • Mitra Naghdi,
  • Satinder K. Brar,
  • Emile Knystautas,
  • Mausam Verma,
  • Rao. Y. Surampalli and
  • Jose. R. Valero

Beilstein J. Nanotechnol. 2016, 7, 1556–1563, doi:10.3762/bjnano.7.149

Graphical Abstract
  • study, a series of polyacrylonitrile (PAN)/activated biochar nanofibrous membranes (NFMs) with different loadings of biochar (0–2%, w/w) were fabricated using electrospinning. The morphology and structure of fabricated membranes was investigated by scanning electron microscopy, Fourier transform
  • atrazine from water [10]. Kampalanonwat and Supaphol and also Neghlani et al. used aminated polyacrylonitrile (PAN) nanofibers to remove heavy metals from water and achieved up to 150 mg/g adsorption capacity for copper [11][12]. Haider and Park fabricated chitosan nanofibers to take advantage of its
PDF
Album
Full Research Paper
Published 01 Nov 2016

Improved lithium-ion battery anode capacity with a network of easily fabricated spindle-like carbon nanofibers

  • Mengting Liu,
  • Wenhe Xie,
  • Lili Gu,
  • Tianfeng Qin,
  • Xiaoyi Hou and
  • Deyan He

Beilstein J. Nanotechnol. 2016, 7, 1289–1295, doi:10.3762/bjnano.7.120

Graphical Abstract
  • be observed in the XRD pattern, meaning that the carbon nanofibers derived from the carbonization of the polyacrylonitrile (PAN) precursor has an amorphous structure. The Raman spectrum of the sample is shown in the inset of Figure 2a. The weak signal at about 648 cm−1 can be attributed to the Mn–O
PDF
Album
Full Research Paper
Published 14 Sep 2016

Manufacturing and investigation of physical properties of polyacrylonitrile nanofibre composites with SiO2, TiO2 and Bi2O3 nanoparticles

  • Tomasz Tański,
  • Wiktor Matysiak and
  • Barbara Hajduk

Beilstein J. Nanotechnol. 2016, 7, 1141–1155, doi:10.3762/bjnano.7.106

Graphical Abstract
  • of a matrix of polyacrylonitrile (PAN) and a reinforcing phase in the form of SiO2/TiO2/Bi2O3 nanoparticles, by electrospinning the solution. The effect of the nanoparticles and the electrospinning process parameters on the morphology and physical properties of the obtained composite nanofibres was
  • determine the dielectric constant, refractive index and the thickness of the obtained fibrous mats. Keywords: ceramic nanoparticles; electrospinning methods; polyacrylonitrile; polymer composite nanofibres; spectroscopic ellipsometry; Introduction Over the last decade, there has been a noticeable
  • produced by using electrospinning from solutions of polymers based on polyacrylonitrile (PAN) and N,N-dimethylformamide (DMF) with ceramic nanoparticles of SiO2/TiO2/Bi2O3. PAN/SiO2 composite nanofibres are used as membranes in the production of air filters, gas absorbents and new types of lithium-ion
PDF
Album
Full Research Paper
Published 05 Aug 2016

From lithium to sodium: cell chemistry of room temperature sodium–air and sodium–sulfur batteries

  • Philipp Adelhelm,
  • Pascal Hartmann,
  • Conrad L. Bender,
  • Martin Busche,
  • Christine Eufinger and
  • Juergen Janek

Beilstein J. Nanotechnol. 2015, 6, 1016–1055, doi:10.3762/bjnano.6.105

Graphical Abstract
PDF
Album
Review
Published 23 Apr 2015

A catechol biosensor based on electrospun carbon nanofibers

  • Dawei Li,
  • Zengyuan Pang,
  • Xiaodong Chen,
  • Lei Luo,
  • Yibing Cai and
  • Qufu Wei

Beilstein J. Nanotechnol. 2014, 5, 346–354, doi:10.3762/bjnano.5.39

Graphical Abstract
  • a variety of polymers. The carbonization of electrospun polyacrylonitrile nanofibers can be employed to fabricate CNFs [24]. Lin et al. reported that an electrospun-CNF-modified carbon-paste electrode (CNF–CPE) could be used for the mediatorless detection of NADH [25]. Electrodes modified with Pd
  • spectrophotometer (UNNICO Instruments Co., Ltd., Shanghai) was used to calculate the activity of laccase. Preparation of ECNFs The ECNFs were prepared by the following steps. Firstly, the electrospinning solution was prepared by dissolving 10 wt % polyacrylonitrile (PAN) powders in DMF with magnetic stirring for 8
PDF
Album
Full Research Paper
Published 24 Mar 2014
Other Beilstein-Institut Open Science Activities