Search results

Search for "ripples" in Full Text gives 26 result(s) in Beilstein Journal of Nanotechnology.

Investigating ripple pattern formation and damage profiles in Si and Ge induced by 100 keV Ar+ ion beam: a comparative study

  • Indra Sulania,
  • Harpreet Sondhi,
  • Tanuj Kumar,
  • Sunil Ojha,
  • G R Umapathy,
  • Ambuj Mishra,
  • Ambuj Tripathi,
  • Richa Krishna,
  • Devesh Kumar Avasthi and
  • Yogendra Kumar Mishra

Beilstein J. Nanotechnol. 2024, 15, 367–375, doi:10.3762/bjnano.15.33

Graphical Abstract
  • microscopy (AFM) [3] and transmission electron microscopy (TEM), it is possible to visualize these features. Formation of dots, ripples, and pits have been well studied using IBS [4][5][6][7][8][9]. In the last few decades, numerous efforts have been made to understand IBS through simulations [10] as well as
  • understood. Despite controlled fabrication of patterns has been achieved, details that influence the process of self-assembly still remain open. Ion beam sputtering is an important method for inducing topographical changes in specific materials. For silicon, self-organized dots, ripples, and cones have been
  • ° incidence angle. The pattern formation starts on any surface with amorphization through ion-induced defects resulting from collision cascades [16]. As shown in the AFM micrographs, the Si surface shows ripple patterns. These ripples are more organized and become more regular with ion fluence, with a ripple
PDF
Album
Supp Info
Full Research Paper
Published 05 Apr 2024

Laser-processed antiadhesive bionic combs for handling nanofibers inspired by nanostructures on the legs of cribellate spiders

  • Sebastian Lifka,
  • Kristóf Harsányi,
  • Erich Baumgartner,
  • Lukas Pichler,
  • Dariya Baiko,
  • Karsten Wasmuth,
  • Johannes Heitz,
  • Marco Meyer,
  • Anna-Christin Joel,
  • Jörn Bonse and
  • Werner Baumgartner

Beilstein J. Nanotechnol. 2022, 13, 1268–1283, doi:10.3762/bjnano.13.105

Graphical Abstract
  • kind of mesh on the surface ripples, as can be seen in Figure 6. Thus, not all fibers will orient perpendicular to the surface ripples. During electrospinning, the first contact with the surface takes place in form of a single, thin nanofiber. Therefore, the theory presented above, where a single, thin
PDF
Album
Supp Info
Full Research Paper
Published 07 Nov 2022

A review of defect engineering, ion implantation, and nanofabrication using the helium ion microscope

  • Frances I. Allen

Beilstein J. Nanotechnol. 2021, 12, 633–664, doi:10.3762/bjnano.12.52

Graphical Abstract
PDF
Album
Review
Published 02 Jul 2021

Properties of graphene deposited on GaN nanowires: influence of nanowire roughness, self-induced nanogating and defects

  • Jakub Kierdaszuk,
  • Piotr Kaźmierczak,
  • Justyna Grzonka,
  • Aleksandra Krajewska,
  • Aleksandra Przewłoka,
  • Wawrzyniec Kaszub,
  • Zbigniew R. Zytkiewicz,
  • Marta Sobanska,
  • Maria Kamińska,
  • Andrzej Wysmołek and
  • Aneta Drabińska

Beilstein J. Nanotechnol. 2021, 12, 566–577, doi:10.3762/bjnano.12.47

Graphical Abstract
  • distance between the nanopillars [26]. For small distances, graphene was clearly suspended while graphene ripples caused by strain in the samples with larger distances between pillars were observed. Nevertheless, nanowire substrates could also gate graphene and affect carrier concentration and its
PDF
Album
Full Research Paper
Published 22 Jun 2021

Application of contact-resonance AFM methods to polymer samples

  • Sebastian Friedrich and
  • Brunero Cappella

Beilstein J. Nanotechnol. 2020, 11, 1714–1727, doi:10.3762/bjnano.11.154

Graphical Abstract
  • polymer film. At lower static forces, ripples [32][33][34] may be formed. This well-known wear phenomenon has been studied in detail, mostly through scans in contact mode, that is, without oscillations of the AFM tip. In particular, it is known that the amplitude and the wavelength of the ripples increase
  • with decreasing scanning speed [35] and with increasing load, temperature, or number of scans [35][36]. Some works have shown that oscillations of the AFM tip with increasing amplitude lead to a reduction of the ripples and finally to their suppression [37]. As an example, Figure 4 shows a tapping-mode
  • 440 and 80 pm were employed. Some studies show that polymer samples on which ripples have been formed are more compliant than the corresponding unmodified samples [38]. This agrees with the hypothesis that ripples result from the formation of (microscale) cracks and voids in the polymer bulk. Though
PDF
Album
Supp Info
Full Research Paper
Published 12 Nov 2020

Out-of-plane surface patterning by subsurface processing of polymer substrates with focused ion beams

  • Serguei Chiriaev,
  • Luciana Tavares,
  • Vadzim Adashkevich,
  • Arkadiusz J. Goszczak and
  • Horst-Günter Rubahn

Beilstein J. Nanotechnol. 2020, 11, 1693–1703, doi:10.3762/bjnano.11.151

Graphical Abstract
  • irradiation of the PDMS samples with He+ FIB results in the formation of complex surface patterns. The patterns are composed of surface depressions in the irradiated areas and surface ripples surrounding the irradiated areas. The surface depressions have concave shapes, which are characterized by maximum
  • surface elevations or depressions at the corners of the irradiated squares in Figure 7b. Considering continuum mechanics, these features are places where mechanical stress can concentrate, resulting in the enhancement of local deformations. In numerous previous studies, the occurrence of ripples (also
PDF
Album
Supp Info
Full Research Paper
Published 06 Nov 2020

Formation of nanoripples on ZnO flat substrates and nanorods by gas cluster ion bombardment

  • Xiaomei Zeng,
  • Vasiliy Pelenovich,
  • Bin Xing,
  • Rakhim Rakhimov,
  • Wenbin Zuo,
  • Alexander Tolstogouzov,
  • Chuansheng Liu,
  • Dejun Fu and
  • Xiangheng Xiao

Beilstein J. Nanotechnol. 2020, 11, 383–390, doi:10.3762/bjnano.11.29

Graphical Abstract
  • formation is studied. Wavelength and height of the nanoripples increase with increasing accelerating voltage and fluence for both targets. The nanoripples formed on the flat substrates remind of aeolian sand ripples. The ripples formed at high ion fluences on the nanorod facets resemble well-ordered
  • parallel steps or ribs. The more ordered ripple formation on nanorods can be associated with the confinement of the nanorod facets in comparison with the quasi-infinite surface of the flat substrates. Keywords: cluster ion bombardment; gas cluster ion beam; surface ripples; ZnO nanorods; Introduction The
  • self-assembled structures still suffers from poor control as well as the lack of understanding regarding the mechanisms involved [1]. Nowadays, self-assembled surface nanoscale structures are of interest in many applications. Substrates with nanoscale ripples are excellent templates for the deposition
PDF
Album
Full Research Paper
Published 24 Feb 2020

Design and facile synthesis of defect-rich C-MoS2/rGO nanosheets for enhanced lithium–sulfur battery performance

  • Chengxiang Tian,
  • Juwei Wu,
  • Zheng Ma,
  • Bo Li,
  • Pengcheng Li,
  • Xiaotao Zu and
  • Xia Xiang

Beilstein J. Nanotechnol. 2019, 10, 2251–2260, doi:10.3762/bjnano.10.217

Graphical Abstract
  • simple and efficient hydrothermal route followed by annealing. The SEM image in Figure 2a clearly reveals the morphology of the pristine ultrathin MoS2 nanosheets. The apparent corrugations and ripples can be shown and the lateral size of the nanosheets is 200–300 nm. A corresponding TEM image also
PDF
Album
Supp Info
Full Research Paper
Published 14 Nov 2019

Biomimetic surface structures in steel fabricated with femtosecond laser pulses: influence of laser rescanning on morphology and wettability

  • Camilo Florian Baron,
  • Alexandros Mimidis,
  • Daniel Puerto,
  • Evangelos Skoulas,
  • Emmanuel Stratakis,
  • Javier Solis and
  • Jan Siegel

Beilstein J. Nanotechnol. 2018, 9, 2802–2812, doi:10.3762/bjnano.9.262

Graphical Abstract
  • ripples were formed, featuring a period close to that of the laser wavelength with an orientation perpendicular to the laser polarization. This discovery opened a new field of research, and soon thereafter, similar and more complex self-organized structures were reported for many other types of materials
  • material by a variety of processes, including local ablation [17], amorphization [18], convection [19] and others. The type of structures that are formed is diverse and depends on the irradiation parameters, the most common ones being the so-called ripples (parallel lines with a period near the laser
  • wetting and friction properties of a material for numerous applications [5][6][8][23][24]. Yet the type of LIPSSs investigated so far for these applications was mostly limited to those mentioned above (ripples, groves and spikes), and less so the more complex structures that are accessible by exploring a
PDF
Album
Supp Info
Full Research Paper
Published 05 Nov 2018

Electro-optical interfacial effects on a graphene/π-conjugated organic semiconductor hybrid system

  • Karolline A. S. Araujo,
  • Luiz A. Cury,
  • Matheus J. S. Matos,
  • Thales F. D. Fernandes,
  • Luiz G. Cançado and
  • Bernardo R. A. Neves

Beilstein J. Nanotechnol. 2018, 9, 963–974, doi:10.3762/bjnano.9.90

Graphical Abstract
  • ordering of such RA SAM is evidenced in Figure 1b, which shows periodically spaced ripples within the monolayer that are verified by the fast Fourier transform image inset. Both images in Figure 1b clearly indicate a 2.7 nm structural periodicity. This value is about twice the length of a RA molecule, and
  • covering a graphite microplate substrate. (b) High-resolution AFM image (adhesion channel in peak force mode – see Experimental section) of the RA monolayer. The inset shows its fast Fourier transform, evidencing well-defined periodical RA ripples (periodicity: 2.7 ± 0.1 nm). (c) Schematic representation
PDF
Album
Supp Info
Full Research Paper
Published 23 Mar 2018

Near-field surface plasmon field enhancement induced by rippled surfaces

  • Mario D’Acunto,
  • Francesco Fuso,
  • Ruggero Micheletto,
  • Makoto Naruse,
  • Francesco Tantussi and
  • Maria Allegrini

Beilstein J. Nanotechnol. 2017, 8, 956–967, doi:10.3762/bjnano.8.97

Graphical Abstract
  • conditions, temperature, etc. It is commonly accepted that ripples formed as a consequence of light–matter interaction present a periodicity that is dependent on the polarization of the incident light. In addition, the formation of ripples by ultrashort laser pulses (<1 ps) enables fabrication on solid
  • processes or self-organization have been demonstrated to be an excellent and relatively low-cost alternative, allowing maskless patterning of macroscopic surface areas [18]. Many of such techniques lead to typical patterns including fractal surfaces. Regular, or nearly regular, nanoscale ripples have width
  • , or transversal instability, which leads to the generation of longitudinal ripples or, again, longitudinal instability which leads to transversal ripples. In the last decades several models have been proposed for describing the dynamic behavior of growing surfaces and corresponding patterns. In all
PDF
Album
Supp Info
Full Research Paper
Published 28 Apr 2017

Flexible photonic crystal membranes with nanoparticle high refractive index layers

  • Torben Karrock,
  • Moritz Paulsen and
  • Martina Gerken

Beilstein J. Nanotechnol. 2017, 8, 203–209, doi:10.3762/bjnano.8.22

Graphical Abstract
  • from 3M) was added. This results in an even lower contact angle between the solution and the PDMS substrate. The mixture is stirred for 5 min (Figure 6b1). The PDMS membranes are clamped to an appropriate spin coating chuck we designed for the specific geometry of our membranes. To avoid ripples in the
PDF
Album
Full Research Paper
Published 20 Jan 2017

Monolayer graphene/SiC Schottky barrier diodes with improved barrier height uniformity as a sensing platform for the detection of heavy metals

  • Ivan Shtepliuk,
  • Jens Eriksson,
  • Volodymyr Khranovskyy,
  • Tihomir Iakimov,
  • Anita Lloyd Spetz and
  • Rositsa Yakimova

Beilstein J. Nanotechnol. 2016, 7, 1800–1814, doi:10.3762/bjnano.7.173

Graphical Abstract
  • , it was reported that the formation of ripples and ridges in graphene may be responsible for the fluctuations in the Schottky barrier height [35][42], thereby leading to increased values of the ideality factor. The most influential factors on the uniformity of the Schottky barrier height and the
PDF
Album
Full Research Paper
Published 22 Nov 2016

Fabrication of hybrid graphene oxide/polyelectrolyte capsules by means of layer-by-layer assembly on erythrocyte cell templates

  • Joseba Irigoyen,
  • Nikolaos Politakos,
  • Eleftheria Diamanti,
  • Elena Rojas,
  • Marco Marradi,
  • Raquel Ledezma,
  • Layza Arizmendi,
  • J. Alberto Rodríguez,
  • Ronald F. Ziolo and
  • Sergio E. Moya

Beilstein J. Nanotechnol. 2015, 6, 2310–2318, doi:10.3762/bjnano.6.237

Graphical Abstract
  • carbon grids show micrometre-size, few-layer GO sheets with some gentle folds and ripples (Figure 1a,b). The SAED inset in panel b shows diffraction spots indicative of hexagonal patterns [27]. Raman spectroscopy (Figure 1c) shows the expected prominent peaks for GO at 1349 and 1601 cm−1, with a D/G
PDF
Album
Full Research Paper
Published 04 Dec 2015

Nanoscale rippling on polymer surfaces induced by AFM manipulation

  • Mario D’Acunto,
  • Franco Dinelli and
  • Pasqualantonio Pingue

Beilstein J. Nanotechnol. 2015, 6, 2278–2289, doi:10.3762/bjnano.6.234

Graphical Abstract
  • applications. The advent of AFM cantilevers with integrated heaters has promoted further advances in the field. An alternative method to heating up the tip is based on solvent-assisted viscoplastic deformations, where the ripples develop upon the application of a relatively low force to a solvent-rich film. An
  • phenomenon is still far from being achieved. This review aims at summarizing the current state of the art in the perspective of achieving control over the rippling process on polymers at a nanoscale level. Keywords: atomic force microscopy (AFM); films; nanomanipulation; nanomechanics; polymers; ripples
  • ; Introduction On deforming surfaces that are subject to external perturbations, ripple patterns commonly form over a wide range of length scales. For instance, macro ripples with a periodicity from meters to several centimeters are created by the wind blowing on sandy deserts and seashores [1]. The same
PDF
Album
Review
Published 02 Dec 2015

Nonconservative current-driven dynamics: beyond the nanoscale

  • Brian Cunningham,
  • Tchavdar N. Todorov and
  • Daniel Dundas

Beilstein J. Nanotechnol. 2015, 6, 2140–2147, doi:10.3762/bjnano.6.219

Graphical Abstract
  • winds generate forward-travelling ripples on a lake, or the uncompensated stimulated emission of directional phonons [12][15]. However, this process hinges on momentum conservation, and for waves, this information requires a sufficiently long-ranged physical property. For atomic motion under current
  • with the (independent) estimate of WNC above. Conclusion Long low-dimensional metallic systems are a promising testbed for NC current-driven atomic dynamics. We have highlighted two aspects of these effects here: the physical interpretation of NC motion as “ripples” driven by the electron “wind”, and
PDF
Album
Full Research Paper
Published 13 Nov 2015

Graphene on SiC(0001) inspected by dynamic atomic force microscopy at room temperature

  • Mykola Telychko,
  • Jan Berger,
  • Zsolt Majzik,
  • Pavel Jelínek and
  • Martin Švec

Beilstein J. Nanotechnol. 2015, 6, 901–906, doi:10.3762/bjnano.6.93

Graphical Abstract
  • possible only at very stable conditions, e.g., at low temperatures. The lower part of the image in Figure 3 (also zoomed in the inset) possesses features arising from armchair graphene boundaries. The boundaries residing in the left and right lower corners, produce characteristic ripples on graphene
PDF
Album
Full Research Paper
Published 07 Apr 2015

Nanostructuring of GeTiO amorphous films by pulsed laser irradiation

  • Valentin S. Teodorescu,
  • Cornel Ghica,
  • Adrian V. Maraloiu,
  • Mihai Vlaicu,
  • Andrei Kuncser,
  • Magdalena L. Ciurea,
  • Ionel Stavarache,
  • Ana M. Lepadatu,
  • Nicu D. Scarisoreanu,
  • Andreea Andrei,
  • Valentin Ion and
  • Maria Dinescu

Beilstein J. Nanotechnol. 2015, 6, 893–900, doi:10.3762/bjnano.6.92

Graphical Abstract
  • the film surface by a fast diffusion process in the surface layer related to the laser absorption depth. The formation of periodic ripples due to laser pulse irradiation was already reported a long time ago [25][26], and in the case of perpendicular laser irradiation, the period of the ripple is equal
  • to the laser wavelength or harmonics [27]. This happens at all wavelengths and pulse durations, as in the case of femtosecond laser irradiation [28]. The stress-induced periodic-ripples mechanism demonstrated for crystalline Si [29] could be used for amorphous materials if we define a stress yield
PDF
Album
Full Research Paper
Published 07 Apr 2015

Exploiting the hierarchical morphology of single-walled and multi-walled carbon nanotube films for highly hydrophobic coatings

  • Francesco De Nicola,
  • Paola Castrucci,
  • Manuela Scarselli,
  • Francesca Nanni,
  • Ilaria Cacciotti and
  • Maurizio De Crescenzi

Beilstein J. Nanotechnol. 2015, 6, 353–360, doi:10.3762/bjnano.6.34

Graphical Abstract
  • observed. It is noteworthy that the characteristic dimension d of MWCNTs is bigger by about one order than that of SWCNTs. In particular, we considered the microstructures shown in Figure 1c as ripples randomly distributed within the film. Such self-assembly occurs by an out-of-plane bending process during
  • (ripples) and nanostructured (carbon nanotubes) roughness able to enhance the wetting properties of the SWCNT film. Conversely, the MWCNT sample (Figure 1d) just aligned vertically out of plane. Furthermore, we induced an extrinsic hierarchical architecture by depositing a SWCNT film on a MWCNT film (SWCNT
  • taken at grazing incidence (c,d) it is possible to observe that SWCNTs (c) self-assemble in ripples forming several microstructures, while MWCNTs (d) just aligned in the out-of-plane vertical direction. (d) Black areas are holes in the film. Scanning electron micrographs of SWCNT/MWCNT (a,c) and MWCNT
PDF
Album
Full Research Paper
Published 02 Feb 2015

Cathode lens spectromicroscopy: methodology and applications

  • T. O. Menteş,
  • G. Zamborlini,
  • A. Sala and
  • A. Locatelli

Beilstein J. Nanotechnol. 2014, 5, 1873–1886, doi:10.3762/bjnano.5.198

Graphical Abstract
  • length-scales, relieving the strain accumulated upon cooling to room temperature. Most interestingly, the buckled graphene phase is characterized by large and extremely regular one-dimensional ripples showing a periodicity of 2.1 nm. Dark-field PEEM experiments have demonstrated that the buckled graphene
PDF
Album
Review
Published 27 Oct 2014

Fringe structures and tunable bandgap width of 2D boron nitride nanosheets

  • Peter Feng,
  • Muhammad Sajjad,
  • Eric Yiming Li,
  • Hongxin Zhang,
  • Jin Chu,
  • Ali Aldalbahi and
  • Gerardo Morell

Beilstein J. Nanotechnol. 2014, 5, 1186–1192, doi:10.3762/bjnano.5.130

Graphical Abstract
  • such as spiraling layer is also observed as shown in Figure 2c that could be related to nanotube in the “parchment model” [20]. Associated with the widths, density or directions of the ripples, in a significant number of cases, we observe various cases, in which two structures of ripples are combined
  • BNNSs, and improving the quality of BNNSs. TEM images of BNNSs with different magnifications. TEM images of BNNSs with a), curved, b), ellipse-shaped bent, c) unusual curled structures, and (d) combination of structures of ripples where tiny ripple construction are related the stacked atomic layers
PDF
Album
Full Research Paper
Published 31 Jul 2014

Electronic and transport properties of kinked graphene

  • Jesper Toft Rasmussen,
  • Tue Gunst,
  • Peter Bøggild,
  • Antti-Pekka Jauho and
  • Mads Brandbyge

Beilstein J. Nanotechnol. 2013, 4, 103–110, doi:10.3762/bjnano.4.12

Graphical Abstract
  • der Waals (vdW) interaction with the substrate is of importance. The substrate interactions, which make graphene cling to small features, may be exploited by manufacturing nanostructures in the substrate. Periodic steps in a Cu substrate has been used to induce “wrinkles” or ripples in graphene with
  • geometry of hydrogenated ripple structures in unsupported, strain-induced, graphene ripples [24][25][26]. However, to the best of our knowledge, no studies have addressed the reactivity of bends or the transport through hydrogenated ripples, or discussed the possibility of stabilising nonplanar structures
PDF
Album
Full Research Paper
Published 15 Feb 2013

Pure hydrogen low-temperature plasma exposure of HOPG and graphene: Graphane formation?

  • Baran Eren,
  • Dorothée Hug,
  • Laurent Marot,
  • Rémy Pawlak,
  • Marcin Kisiel,
  • Roland Steiner,
  • Dominik M. Zumbühl and
  • Ernst Meyer

Beilstein J. Nanotechnol. 2012, 3, 852–859, doi:10.3762/bjnano.3.96

Graphical Abstract
  • surface still consists of a hexagonal pattern but on a highly corrugated plane (Figure 4a). Soft annealing leads to a flatter surface; however, it still has a corrugation in the form of ripples and valleys at certain points (Figure 4b). This surface corrugation matches well with the theoretical
  • calculation of a suspended graphane layer, where it is estimated that this layer should be corrugated in the form of ripples with an amplitude of a few hundred picometers [27]. The hexagonal ring patterns in Figure 5 appear in different distorted forms. Our STM images are similar to those obtained locally
PDF
Album
Full Research Paper
Published 13 Dec 2012

Graphite, graphene on SiC, and graphene nanoribbons: Calculated images with a numerical FM-AFM

  • Fabien Castanié,
  • Laurent Nony,
  • Sébastien Gauthier and
  • Xavier Bouju

Beilstein J. Nanotechnol. 2012, 3, 301–311, doi:10.3762/bjnano.3.34

Graphical Abstract
  • an approach above an atom in the surface plane. This shift can occur due to the local relaxation of the carbon atom network, as is the case for the graphene ripples. To go further, one needs to estimate the actual influence of the tip and of the temperature at T = 4.9 K in the free-atoms mode. By
  • ripples of a graphene sheet relaxed on a silicon carbide substrate, and (iii) a corrugated transition of a graphene nanoribbon supported by a SiC surface. Improvements remain to be made for the prospective study of single molecule imaging and/or manipulation processes and related physical problems, such
PDF
Album
Full Research Paper
Published 02 Apr 2012

A collisional model for AFM manipulation of rigid nanoparticles

  • Enrico Gnecco

Beilstein J. Nanotechnol. 2010, 1, 158–162, doi:10.3762/bjnano.1.19

Graphical Abstract
  • scratches the polymer surface while scanning [11]. Linear and ‘travelling’ circular ripples were formed using a raster or a circular scan path, respectively. In the same way, a desired configuration of nanoparticles could be obtained by a proper choice of the scan pattern. Conclusion In conclusion, we have
PDF
Album
Full Research Paper
Published 22 Dec 2010
Other Beilstein-Institut Open Science Activities