Nanostructures for sensors, electronics, energy and environment

  1. editorImage
  1. Editor: Prof. Nunzio Motta
    Queensland University of Technology

Nanoscale science is growing evermore important on a global scale and is widely seen as playing an integral part in the growth of future world economies. The daunting energy crisis we are facing could be solved not only by new and improved ways of getting energy directly from the sun, but also by saving power thanks to advancements in electronics and sensors. Cheap sensors based on nanomaterials can make a fundamental contribution to the reduction of greenhouse gas emissions, allowing the creation of large sensor networks to monitor countries and cities, improving our quality of life. Nanowires and nano-platelets of metal oxides are at the forefront of the research to improve sensitivity and reduce the power consumption in gas sensors. Nanoelectronics is the next step in the electronic roadmap, with many devices currently in production already containing components smaller than 100 nm.

See also the Thematic Series:
Nanostructures for sensors, electronics, energy and environment III

Nanostructures for sensors, electronics, energy and environment II
Functional materials for environmental sensors and energy systems

  • Editorial
  • Published 02 May 2012

Beilstein J. Nanotechnol. 2012, 3, 351–352, doi:10.3762/bjnano.3.40

  • Letter
  • Published 02 May 2012

  • PDF

Beilstein J. Nanotechnol. 2012, 3, 353–359, doi:10.3762/bjnano.3.41

Structural, electronic and photovoltaic characterization of multiwalled carbon nanotubes grown directly on stainless steel

  1. Luca Camilli,
  2. Manuela Scarselli,
  3. Silvano Del Gobbo,
  4. Paola Castrucci,
  5. Eric Gautron and
  6. Maurizio De Crescenzi
  • Full Research Paper
  • Published 02 May 2012

  • PDF

Beilstein J. Nanotechnol. 2012, 3, 360–367, doi:10.3762/bjnano.3.42

Functionalised zinc oxide nanowire gas sensors: Enhanced NO2 gas sensor response by chemical modification of nanowire surfaces

  1. Eric R. Waclawik,
  2. Jin Chang,
  3. Andrea Ponzoni,
  4. Isabella Concina,
  5. Dario Zappa,
  6. Elisabetta Comini,
  7. Nunzio Motta,
  8. Guido Faglia and
  9. Giorgio Sberveglieri
  • Full Research Paper
  • Published 02 May 2012

  • PDF

Beilstein J. Nanotechnol. 2012, 3, 368–377, doi:10.3762/bjnano.3.43

  • Full Research Paper
  • Published 07 May 2012

  • PDF

Beilstein J. Nanotechnol. 2012, 3, 378–387, doi:10.3762/bjnano.3.44

  • Full Research Paper
  • Published 10 May 2012

  • PDF

Beilstein J. Nanotechnol. 2012, 3, 388–396, doi:10.3762/bjnano.3.45

Conducting composite materials from the biopolymer kappa-carrageenan and carbon nanotubes

  1. Ali Aldalbahi,
  2. Jin Chu,
  3. Peter Feng and
  4. Marc in het Panhuis
  • Full Research Paper
  • Published 23 May 2012

  • PDF

Beilstein J. Nanotechnol. 2012, 3, 415–427, doi:10.3762/bjnano.3.48

FTIR nanobiosensors for Escherichia coli detection

  1. Stefania Mura,
  2. Gianfranco Greppi,
  3. Maria Laura Marongiu,
  4. Pier Paolo Roggero,
  5. Sandeep P. Ravindranath,
  6. Lisa J. Mauer,
  7. Nicoletta Schibeci,
  8. Francesco Perria,
  9. Massimo Piccinini,
  10. Plinio Innocenzi and
  11. Joseph Irudayaraj
  • Full Research Paper
  • Published 03 Jul 2012

  • PDF

Beilstein J. Nanotechnol. 2012, 3, 485–492, doi:10.3762/bjnano.3.55

Low-temperature synthesis of carbon nanotubes on indium tin oxide electrodes for organic solar cells

  1. Andrea Capasso,
  2. Luigi Salamandra,
  3. Aldo Di Carlo,
  4. John M. Bell and
  5. Nunzio Motta
  • Full Research Paper
  • Published 19 Jul 2012

  • PDF

Beilstein J. Nanotechnol. 2012, 3, 524–532, doi:10.3762/bjnano.3.60

A highly pH-sensitive nanowire field-effect transistor based on silicon on insulator

  1. Denis E. Presnov,
  2. Sergey V. Amitonov,
  3. Pavel A. Krutitskii,
  4. Valentina V. Kolybasova,
  5. Igor A. Devyatov,
  6. Vladimir A. Krupenin and
  7. Igor I. Soloviev
  • Full Research Paper
  • Published 28 May 2013

  • PDF

Beilstein J. Nanotechnol. 2013, 4, 330–335, doi:10.3762/bjnano.4.38

Template based precursor route for the synthesis of CuInSe2 nanorod arrays for potential solar cell applications

  1. Mikhail Pashchanka,
  2. Jonas Bang,
  3. Niklas S. A. Gora,
  4. Ildiko Balog,
  5. Rudolf C. Hoffmann and
  6. Jörg J. Schneider
  • Full Research Paper
  • Published 10 Dec 2013

  • PDF

Beilstein J. Nanotechnol. 2013, 4, 868–874, doi:10.3762/bjnano.4.98

Keep Informed

RSS Feed

Subscribe to our Latest Articles RSS Feed.

Subscribe

Follow the Beilstein-Institut

LinkedIn

Twitter: @BeilsteinInst