Magnetic-Fe/Fe3O4-nanoparticle-bound SN38 as carboxylesterase-cleavable prodrug for the delivery to tumors within monocytes/macrophages

Hongwang Wang, Tej B. Shrestha, Matthew T. Basel, Raj K. Dani, Gwi-Moon Seo, Sivasai Balivada, Marla M. Pyle, Heidy Prock, Olga B. Koper, Prem S. Thapa, David Moore, Ping Li, Viktor Chikan, Deryl L. Troyer and Stefan H. Bossmann
Beilstein J. Nanotechnol. 2012, 3, 444–455. https://doi.org/10.3762/bjnano.3.51

Supporting Information

Detailed experimental procedures, spectroscopic characterizations, DLS and zeta-potential measurements, as well as HPLC analysis are provided.

Supporting Information File 1: Detailed experimental data.
Format: PDF Size: 1.2 MB Download

Cite the Following Article

Magnetic-Fe/Fe3O4-nanoparticle-bound SN38 as carboxylesterase-cleavable prodrug for the delivery to tumors within monocytes/macrophages
Hongwang Wang, Tej B. Shrestha, Matthew T. Basel, Raj K. Dani, Gwi-Moon Seo, Sivasai Balivada, Marla M. Pyle, Heidy Prock, Olga B. Koper, Prem S. Thapa, David Moore, Ping Li, Viktor Chikan, Deryl L. Troyer and Stefan H. Bossmann
Beilstein J. Nanotechnol. 2012, 3, 444–455. https://doi.org/10.3762/bjnano.3.51

How to Cite

Wang, H.; Shrestha, T. B.; Basel, M. T.; Dani, R. K.; Seo, G.-M.; Balivada, S.; Pyle, M. M.; Prock, H.; Koper, O. B.; Thapa, P. S.; Moore, D.; Li, P.; Chikan, V.; Troyer, D. L.; Bossmann, S. H. Beilstein J. Nanotechnol. 2012, 3, 444–455. doi:10.3762/bjnano.3.51

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Qi, Q.-R.; Tian, H.; Yue, B.-S.; Zhai, B.-T.; Zhao, F. Research Progress of SN38 Drug Delivery System in Cancer Treatment. International journal of nanomedicine 2024, 19, 945–964. doi:10.2147/ijn.s435407
  • Zheng, J.; Jiang, J.; Pu, Y.; Xu, T.; Sun, J.; Zhang, Q.; He, L.; Liang, X. Tumor-associated macrophages in nanomaterial-based anti-tumor therapy: as target spots or delivery platforms. Frontiers in bioengineering and biotechnology 2023, 11, 1248421. doi:10.3389/fbioe.2023.1248421
  • Mullen, N.; Curneen, J.; Donlon, P. T.; Prakash, P.; Bancos, I.; Gurnell, M.; Dennedy, M. C. Treating Primary Aldosteronism-Induced Hypertension: Novel Approaches and Future Outlooks. Endocrine reviews 2023, 45, 125–170. doi:10.1210/endrev/bnad026
  • Aparajay, P.; Dev, A. Functionalized niosomes as a smart delivery device in cancer and fungal infection. European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences 2021, 168, 106052. doi:10.1016/j.ejps.2021.106052
  • Soliman, W.; Yamani, R. N.; Sabry, D.; Mostafa, A. Stainless steel quantum dots and its resonance fluorescence impact as new therapeutic agents for Laryngeal carcinoma treatment: In vitro study. Optics & Laser Technology 2021, 142, 107263. doi:10.1016/j.optlastec.2021.107263
  • Cheng, Y.; Song, S.; Wu, P.; Lyu, B.; Qin, M.; Sun, Y.; Sun, A.; Mu, L.; Xu, F.; Zhang, L.; Wang, J.; Zhang, Q. Tumor Associated Macrophages and TAMs-Based Anti-Tumor Nanomedicines. Advanced healthcare materials 2021, 10, 2100590. doi:10.1002/adhm.202100590
  • Sedighzadeh, S. S.; Khoshbin, A. P.; Razi, S.; Keshavarz-Fathi, M.; Rezaei, N. A narrative review of tumor-associated macrophages in lung cancer: regulation of macrophage polarization and therapeutic implications. Translational lung cancer research 2021, 10, 1889–1916. doi:10.21037/tlcr-20-1241
  • Wu, X.; Zhang, H. Therapeutic strategies of iron-based nanomaterials for cancer therapy. Biomedical materials (Bristol, England) 2021, 16, 032003. doi:10.1088/1748-605x/abd0c4
  • Salmanpour, M.; Yousefi, G.; Mohammadi-Samani, S.; Abedanzadeh, M.; Tamaddon, A. M. Hydrolytic stabilization of irinotecan active metabolite (SN38) against physiologic pH through self-assembly of conjugated poly (2-oxazoline) - poly (l-amino acid) block copolymer: A-synthesis and physicochemical characterization. Journal of Drug Delivery Science and Technology 2020, 60, 101933. doi:10.1016/j.jddst.2020.101933
  • Zhang, X.; Li, W.; Sun, J.; Yang, Z.; Guan, Q.; Wang, R.; Li, X.; Li, Y.; Feng, Y.; Wang, Y. How to use macrophages to realise the treatment of tumour. Journal of drug targeting 2020, 28, 1034–1045. doi:10.1080/1061186x.2020.1775236
  • Koo, C.; Hong, H.; Im, P. W.; Kim, H.; Lee, C.; Jin, X.; Yan, B.; Lee, W.; Im, H. J.; Paek, S. H.; Piao, Y. Magnetic and near-infrared derived heating characteristics of dimercaptosuccinic acid coated uniform Fe@Fe3O4 core-shell nanoparticles. Nano convergence 2020, 7, 20. doi:10.1186/s40580-020-00229-4
  • Xie, A.; Hanif, S.; Ouyang, J.; Tang, Z.; Kong, N.; Kim, N. Y.; Qi, B.; Patel, D. N.; Shi, B.; Tao, W. Stimuli-responsive prodrug-based cancer nanomedicine. EBioMedicine 2020, 56, 102821. doi:10.1016/j.ebiom.2020.102821
  • Kalubowilage, M.; Janik, K.; Bossmann, S. H. Magnetic Nanomaterials for Magnetically-Aided Drug Delivery and Hyperthermia. Applied Sciences 2019, 9, 2927. doi:10.3390/app9142927
  • Salmanpour, M.; Yousefi, G.; Samani, S. M.; Mohammadi, S.; Anbardar, M. H.; Tamaddon, A. M. Nanoparticulate delivery of irinotecan active metabolite (SN38) in murine colorectal carcinoma through conjugation to poly (2-ethyl 2-oxazoline)-b-poly (L-glutamic acid) double hydrophilic copolymer. European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences 2019, 136, 104941. doi:10.1016/j.ejps.2019.05.019
  • Kim, J.; Gwon, O.; Kwon, O.; Mahmood, J.; Kim, C.; Yang, Y.; Lee, H.; Lee, J. H.; Jeong, H. Y.; Baek, J.-B.; Kim, G. Synergistic Coupling Derived Cobalt Oxide with Nitrogenated Holey Two-Dimensional Matrix as an Efficient Bifunctional Catalyst for Metal-Air Batteries. ACS nano 2019, 13, 5502–5512. doi:10.1021/acsnano.9b00320
  • Madsen, S. J.; Hirschberg, H. Macrophages as delivery vehicles for anticancer agents. Therapeutic delivery 2019, 10, 189–201. doi:10.4155/tde-2019-0004
  • Zheng, Y.; Yan, X.; Wang, Y.; Duan, X.; Wang, X.; Chen, C.; Tian, D.; Luo, Z.; Zhang, Z.; Zeng, Y. Hydrophobized SN38 to redox-hypersensitive nanorods for cancer therapy. Journal of materials chemistry. B 2018, 7, 265–276. doi:10.1039/c8tb02319k
  • Castillo, P. M.; Jimenez-Ruiz, A.; Carnerero, J. M.; Prado-Gotor, R. Exploring Factors for the Design of Nanoparticles as Drug Delivery Vectors. Chemphyschem : a European journal of chemical physics and physical chemistry 2018, 19, 2810–2828. doi:10.1002/cphc.201800388
  • Liu, T.-I.; Yang, Y.-C.; Chiang, W.-H.; Hung, C. K.; Tsai, Y. C.; Chiang, C.-S.; Lo, C. L.; Chiu, H.-C. Radiotherapy-Controllable Chemotherapy from Reactive Oxygen Species-Responsive Polymeric Nanoparticles for Effective Local Dual Modality Treatment of Malignant Tumors. Biomacromolecules 2018, 19, 3825–3839. doi:10.1021/acs.biomac.8b00942
  • Kalubowilage, M.; Covarrubias-Zambrano, O.; Malalasekera, A. P.; Wendel, S. O.; Wang, H.; Yapa, A. S.; Chlebanowski, L.; Toledo, Y.; Ortega, R.; Janik, K.; Shrestha, T. B.; Culbertson, C. T.; Kasi, A.; Williamson, S. K.; Troyer, D. L.; Bossmann, S. H. Early detection of pancreatic cancers in liquid biopsies by ultrasensitive fluorescence nanobiosensors. Nanomedicine : nanotechnology, biology, and medicine 2018, 14, 1823–1832. doi:10.1016/j.nano.2018.04.020
Other Beilstein-Institut Open Science Activities