Focused electron beam induced deposition: A perspective

Michael Huth, Fabrizio Porrati, Christian Schwalb, Marcel Winhold, Roland Sachser, Maja Dukic, Jonathan Adams and Georg Fantner
Beilstein J. Nanotechnol. 2012, 3, 597–619. https://doi.org/10.3762/bjnano.3.70

Cite the Following Article

Focused electron beam induced deposition: A perspective
Michael Huth, Fabrizio Porrati, Christian Schwalb, Marcel Winhold, Roland Sachser, Maja Dukic, Jonathan Adams and Georg Fantner
Beilstein J. Nanotechnol. 2012, 3, 597–619. https://doi.org/10.3762/bjnano.3.70

How to Cite

Huth, M.; Porrati, F.; Schwalb, C.; Winhold, M.; Sachser, R.; Dukic, M.; Adams, J.; Fantner, G. Beilstein J. Nanotechnol. 2012, 3, 597–619. doi:10.3762/bjnano.3.70

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Mészáros, D.; Matejčík, Š.; Papp, P. Formation of negative ions from cobalt tricarbonyl nitrosyl Co(CO)3NO clusters. Physical chemistry chemical physics : PCCP 2024, 26, 7522–7533. doi:10.1039/d3cp05601e
  • Žaper, L.; Rickhaus, P.; Wyss, M.; Gross, B.; Wagner, K.; Poggio, M.; Braakman, F. Scanning Nitrogen-Vacancy Magnetometry of Focused-Electron-Beam-Deposited Cobalt Nanomagnets. ACS applied nano materials 2024, 7, 3854–3860. doi:10.1021/acsanm.3c05470
  • Pandey, M.; Antony, B. Calculations of electron scattering cross sections from tungsten precursors used in FEBID. Journal of Electron Spectroscopy and Related Phenomena 2024, 271, 147430. doi:10.1016/j.elspec.2024.147430
  • Piasecki, T.; Kwoka, K.; Gacka, E.; Kunicki, P.; Gotszalk, T. Electrical, thermal and noise properties of platinum-carbon free-standing nanowires designed as nanoscale resistive thermal devices. Nanotechnology 2023, 35, 115502. doi:10.1088/1361-6528/ad13c0
  • Bilgilisoy, E.; Kamali, A.; Gentner, T. X.; Ballmann, G.; Harder, S.; Steinrück, H.-P.; Marbach, H.; Ingólfsson, O. A combined gas-phase dissociative ionization, dissociative electron attachment and deposition study on the potential FEBID precursor [Au(CH3)2Cl]2. Beilstein journal of nanotechnology 2023, 14, 1178–1199. doi:10.3762/bjnano.14.98
  • Reisecker, V.; Kuhness, D.; Haberfehlner, G.; Brugger‐Hatzl, M.; Winkler, R.; Weitzer, A.; Loibner, D.; Dienstleder, M.; Kothleitner, G.; Plank, H. Spectral Tuning of Plasmonic Activity in 3D Nanostructures via High‐Precision Nano‐Printing. Advanced Functional Materials 2023, 34. doi:10.1002/adfm.202310110
  • Chaudhary, A.; Eckhert, P.; Fairbrother, D. H.; McElwee-White, L. Chemistry for the Focused Electron and Ion Beam-Induced Deposition of Metal Nanostructures. In 2023 IEEE Nanotechnology Materials and Devices Conference (NMDC), IEEE, 2023. doi:10.1109/nmdc57951.2023.10344187
  • Kamali, A.; Carden, W. G.; Johnson, J. V.; McElwee-White, L.; Ingólfsson, O. Dissociative electron attachment and dissociative ionization of CF3AuCNC(CH3)3, a potential FEBID precursor for gold deposition. The European Physical Journal D 2023, 77. doi:10.1140/epjd/s10053-023-00721-6
  • Mason, N. J.; Pintea, M.; Csarnovics, I.; Fodor, T.; Szikszai, Z.; Kertész, Z. Structural Analysis of Si(OEt)4 Deposits on Au(111)/SiO2 Substrates at the Nanometer Scale Using Focused Electron Beam-Induced Deposition. ACS omega 2023, 8, 24233–24246. doi:10.1021/acsomega.3c00793
  • Werner, W. S. M. Electron beams near surfaces: the concept of partial intensities for surface analysis and perspective on the low energy regime. Frontiers in Materials 2023, 10. doi:10.3389/fmats.2023.1202456
  • Porrati, F.; Barth, S.; Gazzadi, G. C.; Frabboni, S.; Volkov, O. M.; Makarov, D.; Huth, M. Site-Selective Chemical Vapor Deposition on Direct-Write 3D Nanoarchitectures. ACS nano 2023, 17, 4704–4715. doi:10.1021/acsnano.2c10968
  • Si, D.; Zhang, Z.; Wang, Z.; Chen, Y.; Gao, X.; Da, B.; Guo, H.; Sun, L. Nanostructured Poly(ethylene glycol) Diacrylate-Based Hydrogels Printed by Focused Electron Beam-Induced Deposition: Implications for Nanosensors. ACS Applied Nano Materials 2023, 6, 2366–2373. doi:10.1021/acsanm.2c04407
  • Seewald, L. M.; Sattelkow, J.; Brugger-Hatzl, M.; Kothleitner, G.; Frerichs, H.; Schwalb, C.; Hummel, S.; Plank, H. 3D Nanoprinting of All-Metal Nanoprobes for Electric AFM Modes. Nanomaterials (Basel, Switzerland) 2022, 12, 4477. doi:10.3390/nano12244477
  • Boeckers, H.; Swiderek, P.; Rohdenburg, M. Towards Improved Humidity Sensing Nanomaterials via Combined Electron and NH3 Treatment of Carbon-Rich FEBID Deposits. Nanomaterials (Basel, Switzerland) 2022, 12, 4455. doi:10.3390/nano12244455
  • Weitzer, A.; Winkler, R.; Kuhness, D.; Kothleitner, G.; Plank, H. Controlled Morphological Bending of 3D-FEBID Structures via Electron Beam Curing. Nanomaterials (Basel, Switzerland) 2022, 12, 4246. doi:10.3390/nano12234246
  • Baranowski, M.; Sachser, R.; Marinković, B. P.; Ivanović, S. D.; Huth, M. Charge Transport inside TiO2 Memristors Prepared via FEBID. Nanomaterials (Basel, Switzerland) 2022, 12, 4145. doi:10.3390/nano12234145
  • Richter, K.; Thiaville, A.; Fecova, L.; Varga, R.; McCord, J. Estimation of a surface magnetization direction of thin cylinders by magnetooptical Kerr effect. Journal of Magnetism and Magnetic Materials 2022, 562, 169752. doi:10.1016/j.jmmm.2022.169752
  • Makoveev, A.; Procházka, P.; Shahsavar, A.; Kormoš, L.; Krajňák, T.; Stará, V.; Čechal, J. Kinetic control of self-assembly using a low-energy electron beam. Applied Surface Science 2022, 600, 154106. doi:10.1016/j.apsusc.2022.154106
  • Pintea, M.; Mason, N.; Tudorovskaya, M. Dissociative Electron Attachment Cross Sections for Ni(CO)4, Co(CO)3NO, Cr(CO)6. Chemistry 2022, 4, 1060–1075. doi:10.3390/chemistry4030072
  • Kamali, A.; Bilgilisoy, E.; Wolfram, A.; Gentner, T. X.; Ballmann, G.; Harder, S.; Marbach, H.; Ingólfsson, O. On the Electron-Induced Reactions of (CH3)AuP(CH3)3: A Combined UHV Surface Science and Gas-Phase Study. Nanomaterials (Basel, Switzerland) 2022, 12, 2727. doi:10.3390/nano12152727

Patents

  • HILD KERSTIN; GRUNER TORALF; GOLDE DANIEL; STIEPAN HANS MICHAEL; SHKLOVER VITALIY. MIRROR, IN PARTICULAR FOR A MICROLITHOGRAPHIC PROJECTION EXPOSURE APPARATUS. WO 2021259633 A1, Dec 30, 2021.
  • HORN JAN; AWAD MOHAMMAD; HILD KERSTIN. MIRROR, IN PARTICULAR FOR MICROLITHOGRAPHY. WO 2021239355 A1, Dec 2, 2021.
  • LAM DAVID K; MONAHAN KEVIN M; SMAYLING MICHAEL C; PRESCOP THEODORE A. Precision substrate material multi-processing using miniature-column charged particle beam arrays. US 11037756 B1, June 15, 2021.
  • LAM DAVID K; MONAHAN KEVIN M; SMAYLING MICHAEL C; PRESCOP THEODORE A. Precision substrate material multi-processing using miniature-column charged particle beam arrays. US 10734192 B1, Aug 4, 2020.
  • LAM DAVID K; MONAHAN KEVIN M; SMAYLING MICHAEL C; PRESCOP THEODORE A. Precision substrate material multi-processing using miniature-column charged particle beam arrays. US 10658153 B1, May 19, 2020.
  • SHIH HSUN-CHUAN; CHIN SHENG-CHI; CHU YUAN-CHIH; LI YUEH-HSUN. Focused radiation beam induced deposition. US 10061193 B2, Aug 28, 2018.
  • SHIH HSUN-CHUAN; CHIN SHENG-CHI; CHU YUAN-CHIH; LI YUEH-HSUN. Focused radiation beam induced deposition. US 9915866 B2, March 13, 2018.
  • LAM DAVID K; MONAHAN KEVIN M; SMAYLING MICHAEL C; PRESCOP THEODORE A. Precision substrate material multi-processing using miniature-column charged particle beam arrays. US 9881817 B1, Jan 30, 2018.
Other Beilstein-Institut Open Science Activities