Thickness-modulated tungsten–carbon superconducting nanostructures grown by focused ion beam induced deposition for vortex pinning up to high magnetic fields

Ismael García Serrano, Javier Sesé, Isabel Guillamón, Hermann Suderow, Sebastián Vieira, Manuel Ricardo Ibarra and José María De Teresa
Beilstein J. Nanotechnol. 2016, 7, 1698–1708. https://doi.org/10.3762/bjnano.7.162

Supporting Information

Supporting Information File 1: Current–voltage (I vs V) behavior.
Assignment of the minima to the matching modes and fits of the resistance–magnetic field curves to thermal-activated behaviour (Equation 4 in the main manuscript).
Format: PDF Size: 264.3 KB Download

Cite the Following Article

Thickness-modulated tungsten–carbon superconducting nanostructures grown by focused ion beam induced deposition for vortex pinning up to high magnetic fields
Ismael García Serrano, Javier Sesé, Isabel Guillamón, Hermann Suderow, Sebastián Vieira, Manuel Ricardo Ibarra and José María De Teresa
Beilstein J. Nanotechnol. 2016, 7, 1698–1708. https://doi.org/10.3762/bjnano.7.162

How to Cite

Serrano, I. G.; Sesé, J.; Guillamón, I.; Suderow, H.; Vieira, S.; Ibarra, M. R.; De Teresa, J. M. Beilstein J. Nanotechnol. 2016, 7, 1698–1708. doi:10.3762/bjnano.7.162

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 1.1 MB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • De Teresa, J. M. Nanoscale direct-write fabrication of superconducting devices for application in quantum technologies. Materials for Quantum Technology 2023, 3, 13001–013001. doi:10.1088/2633-4356/acbefb
  • Porrati, F.; Jungwirth, F.; Barth, S.; Gazzadi, G. C.; Frabboni, S.; Dobrovolskiy, O. V.; Huth, M. Highly‐Packed Proximity‐Coupled DC‐Josephson Junction Arrays by a Direct‐Write Approach. Advanced Functional Materials 2022, 32. doi:10.1002/adfm.202203889
  • Orús, P.; Sigloch, F.; Sangiao, S.; De Teresa, J. M. Superconducting Materials and Devices Grown by Focused Ion and Electron Beam Induced Deposition. Nanomaterials (Basel, Switzerland) 2022, 12, 1367. doi:10.3390/nano12081367
  • Sang, L.; Li, Z.; Yang, G.; Yue, Z.; Liu, J.; Cai, C.; Wu, T.; Dou, S. X.; Ma, Y.; Wang, X. Pressure effects on iron-based superconductor families: Superconductivity, flux pinning and vortex dynamics. Materials Today Physics 2021, 19, 100414. doi:10.1016/j.mtphys.2021.100414
  • Llorens, J. B.; Guillamón, I.; Serrano, I. G.; Córdoba, R.; Sesé, J.; de Teresa, J. M.; Ibarra, M. R.; Vieira, S.; Ortuño, M.; Suderow, H. Disordered hyperuniformity in superconducting vortex lattices. Physical Review Research 2020, 2, 033133. doi:10.1103/physrevresearch.2.033133
  • Córdoba, R.; Orús, P.; Jelić, Ž. L.; Sesé, J.; Ibarra, M. R.; Guillamón, I.; Vieira, S.; Palacios, J. J.; Suderow, H.; Milošević, M. V.; de Teresa, J. M. Long-range vortex transfer in superconducting nanowires. Scientific reports 2019, 9, 12386. doi:10.1038/s41598-019-48887-7
  • Dobrovolskiy, O. V.; Sachser, R.; Bevz, V. M.; Lara, A.; Aliev, F. G.; Shklovskij, V. A.; Bezuglyj, A. I.; Vovk, R. V.; Huth, M. Reduction of Microwave Loss by Mobile Fluxons in Grooved Nb Films. physica status solidi (RRL) – Rapid Research Letters 2018, 13, 1800223. doi:10.1002/pssr.201800223
Other Beilstein-Institut Open Science Activities