Enhanced photocatalytic hydrogen evolution by combining water soluble graphene with cobalt salts

Jing Wang, Ke Feng, Hui-Hui Zhang, Bin Chen, Zhi-Jun Li, Qing-Yuan Meng, Li-Ping Zhang, Chen-Ho Tung and Li-Zhu Wu
Beilstein J. Nanotechnol. 2014, 5, 1167–1174. https://doi.org/10.3762/bjnano.5.128

Supporting Information

Supporting Information File 1: Experimental part.
Format: PDF Size: 596.7 KB Download

Cite the Following Article

Enhanced photocatalytic hydrogen evolution by combining water soluble graphene with cobalt salts
Jing Wang, Ke Feng, Hui-Hui Zhang, Bin Chen, Zhi-Jun Li, Qing-Yuan Meng, Li-Ping Zhang, Chen-Ho Tung and Li-Zhu Wu
Beilstein J. Nanotechnol. 2014, 5, 1167–1174. https://doi.org/10.3762/bjnano.5.128

How to Cite

Wang, J.; Feng, K.; Zhang, H.-H.; Chen, B.; Li, Z.-J.; Meng, Q.-Y.; Zhang, L.-P.; Tung, C.-H.; Wu, L.-Z. Beilstein J. Nanotechnol. 2014, 5, 1167–1174. doi:10.3762/bjnano.5.128

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Gacka, E.; Majchrzycki, Ł.; Marciniak, B.; Lewandowska-Andralojc, A. Effect of graphene oxide flakes size and number of layers on photocatalytic hydrogen production. Scientific reports 2021, 11, 15969. doi:10.1038/s41598-021-95464-y
  • Mirheidari, M.; Safaei-Ghomi, J. Design, synthesis, and catalytic performance of modified graphene oxide based on a cobalt complex as a heterogenous catalyst for the preparation of aminonaphthoquinone derivatives. RSC advances 2021, 11, 17108–17115. doi:10.1039/d1ra01790j
  • Lewandowska-Andralojc, A.; Małolepszy, A.; Stritt, A.; Grohmann, A. Modification of eosin Y and cobalt molecular catalyst system with reduced graphene oxide for enhanced photocatalytic hydrogen production. Catalysis Science & Technology 2020, 10, 4693–4702. doi:10.1039/d0cy00937g
  • Lewandowska-Andralojc, A.; Larowska, D.; Gacka, E.; Pedzinski, T.; Marciniak, B. How Eosin Y/Graphene Oxide-Based Materials Can Improve Efficiency of Light-Driven Hydrogen Generation: Mechanistic Aspects. The Journal of Physical Chemistry C 2020, 124, 2747–2755. doi:10.1021/acs.jpcc.9b09573
  • Bavya, M. C.; George, L.; Srivastava, R.; Rohan K, V. Natural and Synthetic Materials in Regenerative Medicine: Progress Over the Past Five Years. Encyclopedia of Smart Materials; Elsevier, 2019; pp 113–144. doi:10.1016/b978-0-12-803581-8.11361-x
  • Tang, Y.; Dong, L.; Mao, S.; Gu, H.; Malkoske, T.; Chen, B. Enhanced Photocatalytic Removal of Tetrabromobisphenol A by Magnetic CoO@graphene Nanocomposites under Visible-Light Irradiation. ACS Applied Energy Materials 2018, 1, 2698–2708. doi:10.1021/acsaem.8b00379
  • Aslan, E.; Gonce, M. K.; Yigit, M. Z.; Sarilmaz, A.; Stathatos, E.; Ozel, F.; Can, M.; Patir, I. H. Photocatalytic H2 evolution with a Cu2WS4 catalyst on a metal free D-π-A organic dye-sensitized TiO2. Applied Catalysis B: Environmental 2017, 210, 320–327. doi:10.1016/j.apcatb.2017.03.073
  • Wang, J.-J.; Wang, J.; Feng, K.; Zhang, H.-H.; Li, Z.; Liu, B.; Tung, C.-H.; Wu, L.-Z. Enhanced visible-light-driven hydrogen generation by in situ formed photocatalyst RGO–CdS–NixS from metal salts and RGO–CdS composites. Journal of Materials Chemistry A 2017, 5, 9537–9543. doi:10.1039/c7ta00336f
  • Wang, J.; Feng, K.; Chen, B.; Li, Z.; Meng, Q.-Y.; Zhang, L.-P.; Tung, C.-H.; Wu, L.-Z. Polymer-modified hydrophilic graphene: A promotor to photocatalytic hydrogen evolution for in situ formation of core@shell cobalt nanocomposites. Journal of Photochemistry and Photobiology A: Chemistry 2016, 331, 247–254. doi:10.1016/j.jphotochem.2015.11.022
  • Wang, J.; Feng, K.; Xie, N.; Li, Z.; Meng, Q.-Y.; Chen, B.; Tung, C.-H.; Wu, L.-Z. Solution-processable graphenes by covalent functionalization of graphene oxide with polymeric monoamines. Science China Chemistry 2016, 59, 1018–1024. doi:10.1007/s11426-015-5523-6
  • Jadhav, S. T.; Rajoba, S. J.; Patil, S. A.; Han, S. H.; Jadhav, L. Temperature-Dependent Photoluminescence of Graphene Oxide. Journal of Electronic Materials 2015, 45, 379–385. doi:10.1007/s11664-015-4096-7
  • Seifvand, N.; Kowsari, E. Novel TiO2/graphene oxide functionalized with a cobalt complex for significant degradation of NOx and CO. RSC Advances 2015, 5, 93706–93716. doi:10.1039/c5ra13620b
Other Beilstein-Institut Open Science Activities