Growth evolution and phase transition from chalcocite to digenite in nanocrystalline copper sulfide: Morphological, optical and electrical properties

Priscilla Vasthi Quintana-Ramirez, Ma. Concepción Arenas-Arrocena, José Santos-Cruz, Marina Vega-González, Omar Martínez-Alvarez, Víctor Manuel Castaño-Meneses, Laura Susana Acosta-Torres and Javier de la Fuente-Hernández
Beilstein J. Nanotechnol. 2014, 5, 1542–1552. https://doi.org/10.3762/bjnano.5.166

Supporting Information

Supporting Information File 1: Additional Figures.
Format: PDF Size: 526.6 KB Download

Cite the Following Article

Growth evolution and phase transition from chalcocite to digenite in nanocrystalline copper sulfide: Morphological, optical and electrical properties
Priscilla Vasthi Quintana-Ramirez, Ma. Concepción Arenas-Arrocena, José Santos-Cruz, Marina Vega-González, Omar Martínez-Alvarez, Víctor Manuel Castaño-Meneses, Laura Susana Acosta-Torres and Javier de la Fuente-Hernández
Beilstein J. Nanotechnol. 2014, 5, 1542–1552. https://doi.org/10.3762/bjnano.5.166

How to Cite

Quintana-Ramirez, P. V.; Arenas-Arrocena, M. C.; Santos-Cruz, J.; Vega-González, M.; Martínez-Alvarez, O.; Castaño-Meneses, V. M.; Acosta-Torres, L. S.; de la Fuente-Hernández, J. Beilstein J. Nanotechnol. 2014, 5, 1542–1552. doi:10.3762/bjnano.5.166

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Tachibana, T.; Yabuki, A. Synthesis of copper sulfide (Cu S) films by one-step thermal reduction of copper formate–amine–sulfur complex pastes with low sulfur ratios. Materials Science and Engineering: B 2024, 299, 117004. doi:10.1016/j.mseb.2023.117004
  • Chandran, N.; Jiji Ramachandran, V.; Janardhanan, P.; Deepak, N.; Pilankatta, R.; Nair, S. S. Plasmonic CuS 2D nanosheets through biologically and environmentally benign template free one-pot synthesis. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2023, 678, 132429. doi:10.1016/j.colsurfa.2023.132429
  • Oppong-Antwi, L.; Huang, B.; Hart, J. N. Electronic Properties of Transition and Alkaline Earth Metal Doped CuS: A DFT Study. Chemphyschem : a European journal of chemical physics and physical chemistry 2023, 24, e202300417. doi:10.1002/cphc.202300417
  • McKeever, H.; Patil, N. N.; Palabathuni, M.; Singh, S. Functional Alkali Metal-Based Ternary Chalcogenides: Design, Properties, and Opportunities. Chemistry of materials : a publication of the American Chemical Society 2023, 35, 9833–9846. doi:10.1021/acs.chemmater.3c01652
  • Gadore, V.; Mishra, S. R.; Ahmaruzzaman, M. Metal sulphides and their heterojunctions for photocatalytic degradation of organic dyes-A comprehensive review. Environmental science and pollution research international 2023, 30, 90410–90457. doi:10.1007/s11356-023-28753-w
  • M. Rose, M.; Christy, R. S.; Benitta, T. A.; Kumaran, J. T. T. Structural, Electrical and Optical Studies of ZnxCu1-xS (x = 0.8, 0.6, 0.4 and 0.2) Nanoparticles. East European Journal of Physics 2023, 228–235. doi:10.26565/2312-4334-2023-1-30
  • Karmakar, G.; Tyagi, A.; Halankar, K. K.; Nigam, S.; Mandal, B. P.; Wadawale, A. P.; Kedarnath, G.; Debnath, A. K. Molecular precursor-mediated facile synthesis of phase pure metal-rich digenite (Cu1.8S) nanocrystals: an efficient anode for lithium-ion batteries. Dalton transactions (Cambridge, England : 2003) 2023, 52, 1461–1475. doi:10.1039/d2dt03757b
  • Tachibana, T.; Yabuki, A. Synthesis of Cu1.8s Based Films by One-Step Thermal Reduction of Copper Formate–Amine–Sulfur Pastes at ≤ 200 °C and Their Optical Properties. Elsevier BV 2023. doi:10.2139/ssrn.4351168
  • Tachibana, T.; Yabuki, A. Synthesis of Copper Sulfide (Cu X S) Films by One-Step Thermal Reduction of Copper Formate–Amine–Sulfur Complex Pastes with Low Sulfur Ratios. Elsevier BV 2023. doi:10.2139/ssrn.4594566
  • Saona, L. A.; Campo-Giraldo, J. L.; Anziani-Ostuni, G.; Órdenes-Aenishanslins, N.; Venegas, F. A.; Giordana, M. F.; Díaz, C.; Isaacs, M.; Bravo, D.; Pérez-Donoso, J. M. Cysteine-Mediated Green Synthesis of Copper Sulphide Nanoparticles: Biocompatibility Studies and Characterization as Counter Electrodes. Nanomaterials (Basel, Switzerland) 2022, 12, 3194. doi:10.3390/nano12183194
  • Muhsen, M. M.; Al-Jawad, S. M. H.; Taha, A. A. Gum Arabic-modified Mn-doped CuS nanoprisms for cancer photothermal treatment. Chemical Papers 2022, 76, 6821–6838. doi:10.1007/s11696-022-02364-0
  • Hua, Y.; Liu, H.; Song, K.; Wang, J.; Zhou, Y.; Huang, T.; Li, S.; Peng, X.; Zhu, Q. Trace sulfur-induced embrittlement of ultrahigh-purity copper. Materials Science and Engineering: A 2022, 848, 143397. doi:10.1016/j.msea.2022.143397
  • Zaki, M. Y.; Sava, F.; Simandan, I. D.; Buruiana, A. T.; Mihai, C.; Velea, A.; Galca, A. C. Effect of the stacking order, annealing temperature and atmosphere on crystal phase and optical properties of Cu2SnS3. Scientific reports 2022, 12, 7958. doi:10.1038/s41598-022-12045-3
  • Mehta, S.; Samra, K. S. Metal-sulfide based nano-composites and their electrochemical performance: A Review. Journal of Physics: Conference Series 2022, 2267, 12004–012004. doi:10.1088/1742-6596/2267/1/012004
  • Syu, W.-J.; Hsu, R.-Y.; Lin, Y.-C. Growth and photovoltaic device using Cu3VS4 films prepared via co-sputtering from Cu–V and V targets. Materials Chemistry and Physics 2022, 277, 125547. doi:10.1016/j.matchemphys.2021.125547
  • Adil, M.; Abdelkareem, M. A.; Sayed, E. T.; Rodriguez, C.; Ramadan, M.; Olabi, A. G. Progress of metal chalcogenides in supercapacitors. Encyclopedia of Smart Materials; Elsevier, 2022; pp 424–433. doi:10.1016/b978-0-12-815732-9.00153-4
  • Anichini, C.; Czepa, W.; Aliprandi, A.; Consolaro, V. G.; Ersen, O.; Ciesielski, A.; Samorì, P. Synthesis and characterization of ultralong copper sulfide nanowires and their electrical properties. Journal of Materials Chemistry C 2021, 9, 12133–12140. doi:10.1039/d1tc03004c
  • Raghavendra, K. V. G.; Rao, K. M.; Kumar, N. U. Hydrothermal synthesis of CuS/CoS nano composite as an efficient electrode for the supercapattery applications. Journal of Energy Storage 2021, 40, 102749. doi:10.1016/j.est.2021.102749
  • Sun, Z.; Yi, C.; Hameiri, Z.; Bremner, S. Investigation of the selectivity-mechanism of copper (I) sulfide (Cu2S) as a dopant-free carrier selective contact for silicon solar cells. Applied Surface Science 2021, 555, 149727. doi:10.1016/j.apsusc.2021.149727
  • Rodríguez-Hernández, P. E.; Galván, J. Q.; Meléndez-Lira, M.; Santos-Cruz, J.; Contreras-Puente, G.; Guillén-Cervantes, A.; de Moure Flores, F. Amorphous copper sulfide films deposited by pulsed laser deposition using pellets as target. Journal of Non-Crystalline Solids 2021, 555, 120532. doi:10.1016/j.jnoncrysol.2020.120532

Patents

  • ROBINSON RICHARD D; HANRATH TOBIAS; WILLIAMSON CURTIS; NEVERS DOUGLAS. Dimensionally focused nanoparticle synthesis methodology. US 10118833 B2, Nov 6, 2018.
  • ROBINSON RICHARD D; HANRATH TOBIAS; WILLIAMSON CURTIS; NEVERS DOUGLAS. DIMENSIONALLY FOCUSED NANOPARTICLE SYNTHESIS METHODOLOGY. WO 2016054527 A1, April 7, 2016.
Other Beilstein-Institut Open Science Activities