Effect of channel length on the electrical response of carbon nanotube field-effect transistors to deoxyribonucleic acid hybridization

Hari Krishna Salila Vijayalal Mohan, Jianing An, Yani Zhang, Chee How Wong and Lianxi Zheng
Beilstein J. Nanotechnol. 2014, 5, 2081–2091. https://doi.org/10.3762/bjnano.5.217

Supporting Information

The Supporting Information contains 1) IDVDS and IDVG plots of different functionalization steps, 2) IDVG plots comparing the response to cDNA and ncDNA in channel-exposed FETs, 3) the variation in the conductance response of channel and junction exposed devices with L and 4) plots of Δφ and K variation with L in the linear and near-threshold regimes for the reverse sweep.

Supporting Information File 1: Additional experimental data.
Format: PDF Size: 299.6 KB Download

Cite the Following Article

Effect of channel length on the electrical response of carbon nanotube field-effect transistors to deoxyribonucleic acid hybridization
Hari Krishna Salila Vijayalal Mohan, Jianing An, Yani Zhang, Chee How Wong and Lianxi Zheng
Beilstein J. Nanotechnol. 2014, 5, 2081–2091. https://doi.org/10.3762/bjnano.5.217

How to Cite

Salila Vijayalal Mohan, H. K.; An, J.; Zhang, Y.; Wong, C. H.; Zheng, L. Beilstein J. Nanotechnol. 2014, 5, 2081–2091. doi:10.3762/bjnano.5.217

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Pereira, A. F. G.; Antunes, J.; Fernandes, J. V.; Sakharova, N. Mechanical Characterisation of Single-Walled Carbon Nanotube Heterojunctions: Numerical Simulation Study. Materials (Basel, Switzerland) 2020, 13, 5100. doi:10.3390/ma13225100
  • An, J.; Le, T.-S. D.; Lim, C. H. J.; Tran, V.-T.; Zhan, Z.; Gao, Y.; Zheng, L.; Sun, G.; Kim, Y.-J. Single-Step Selective Laser Writing of Flexible Photodetectors for Wearable Optoelectronics. Advanced science (Weinheim, Baden-Wurttemberg, Germany) 2018, 5, 1800496. doi:10.1002/advs.201800496
  • Manoharan, A. K.; Chinnathambi, S.; Jayavel, R.; Hanagata, N. Simplified detection of the hybridized DNA using a graphene field effect transistor. Science and technology of advanced materials 2017, 18, 43–50. doi:10.1080/14686996.2016.1253408
  • An, J.; Zhan, Z.; Zheng, L. Controllable Synthesis of Carbon Nanotubes. Industrial Applications of Carbon Nanotubes; Elsevier, 2017; pp 1–45. doi:10.1016/b978-0-323-41481-4.00001-0
  • An, J.; Zhan, Z.; Sun, G.; Mohan, H. K. S. V.; Zhou, J.; Kim, Y.-J.; Zheng, L. Direct Preparation of Carbon Nanotube Intramolecular Junctions on Structured Substrates. Scientific reports 2016, 6, 38032. doi:10.1038/srep38032
  • Hou, G.; Zhang, L.; Ng, V.; Wu, Z.; Schulz, M. J. Review of Recent Advances in Carbon Nanotube Biosensors Based on Field-Effect Transistors. Nano LIFE 2016, 06, 1642006. doi:10.1142/s179398441642006x
  • Mohan, H. K. S. V.; Varghese, R. H.; Wong, C. H.; Zheng, L.; Yang, J. Epigallocatechin gallate decorated carbon nanotube chemiresistors for ultrasensitive glucose detection. Organic Electronics 2016, 28, 210–216. doi:10.1016/j.orgel.2015.10.032

Patents

  • GUNDERSON KEVIN L; BAI JINGWEI; CHEN CHENG-YAO; MANDELL JEFFREY G; PEISAJOVICH SERGIO; COLLINS PHILIP G; WEISS GREGORY A; BOYANOV BOYAN. Field-effect apparatus and methods for sequencing nucleic acids. US 10787704 B2, Sept 29, 2020.
  • ISOGAI KAZUKI; MURASE SEIICHIRO; NAGAO KAZUMASA. SEMICONDUCTOR ELEMENT, METHOD FOR MANUFACTURING SAME, WIRELESS COMMUNICATION DEVICE, AND SENSOR. EP 3447813 A4, Nov 13, 2019.
Other Beilstein-Institut Open Science Activities