The gut wall provides an effective barrier against nanoparticle uptake

Heike Sinnecker, Thorsten Krause, Sabine Koelling, Ingmar Lautenschläger and Andreas Frey
Beilstein J. Nanotechnol. 2014, 5, 2092–2101. https://doi.org/10.3762/bjnano.5.218

Supporting Information

Supporting Information features video recordings of the gut mobility. For the offline video analysis of the intestinal peristalsis, a standard digital miniature camera mounted on the lid of the explant chamber continuously filmed the gut. Overall motility was monitored in all sections of the isolated organ. The luminal pressure fluctuations correlated well with the visual observation of peristalsis.

Supporting Information File 1: Video recording of high intestinal peristalsis after 120 min perfusion and luminal administration of 200 nm NPs.
Format: MOV Size: 23.3 MB Download
Supporting Information File 2: Video recording of low intestinal peristalsis, due to constant supply of noradrenaline, after 270 min perfusion and luminal administration of 200 nm NPs.
Format: MP4 Size: 28.2 MB Download

Cite the Following Article

The gut wall provides an effective barrier against nanoparticle uptake
Heike Sinnecker, Thorsten Krause, Sabine Koelling, Ingmar Lautenschläger and Andreas Frey
Beilstein J. Nanotechnol. 2014, 5, 2092–2101. https://doi.org/10.3762/bjnano.5.218

How to Cite

Sinnecker, H.; Krause, T.; Koelling, S.; Lautenschläger, I.; Frey, A. Beilstein J. Nanotechnol. 2014, 5, 2092–2101. doi:10.3762/bjnano.5.218

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Hart, L. B.; Dziobak, M.; Wells, R. S.; Berens McCabe, E.; Conger, E.; Curtin, T.; Knight, M.; Weinstein, J. Plastic, It's What's for Dinner: A Preliminary Comparison of Ingested Particles in Bottlenose Dolphins and Their Prey. Oceans 2023, 4, 409–422. doi:10.3390/oceans4040028
  • Cary, C.; Stapleton, P. Determinants and mechanisms of inorganic nanoparticle translocation across mammalian biological barriers. Archives of toxicology 2023, 97, 2111–2131. doi:10.1007/s00204-023-03528-x
  • Shapiro, R. L.; DeLong, K.; Zulfiqar, F.; Carter, D.; Better, M.; Ensign, L. M. In vitro and ex vivo models for evaluating vaginal drug delivery systems. Advanced drug delivery reviews 2022, 191, 114543. doi:10.1016/j.addr.2022.114543
  • Lundquist, P.; Khodus, G.; Niu, Z.; Thwala, L. N.; McCartney, F.; Simoff, I.; Andersson, E.; Beloqui, A.; Mabondzo, A.; Robla, S.; Webb, D.-L.; Hellström, P. M.; Keita, Å. V.; Sima, E.; Csaba, N.; Sundbom, M.; Preat, V.; Brayden, D. J.; Alonso, M. J.; Artursson, P. Barriers to the Intestinal Absorption of Four Insulin-Loaded Arginine-Rich Nanoparticles in Human and Rat. ACS nano 2022, 16, 14210–14229. doi:10.1021/acsnano.2c04330
  • Ju, S.-N.; Shi, H.-H.; Yang, J.-Y.; Zhao, Y.-C.; Xue, C.-H.; Wang, Y.-M.; Huang, Q.-R.; Zhang, T.-T. Characterization, stability, digestion and absorption of a nobiletin nanoemulsion using DHA-enriched phosphatidylcholine as an emulsifier in vivo and in vitro. Food chemistry 2022, 397, 133787. doi:10.1016/j.foodchem.2022.133787
  • Martins, B.; Vieira, M.; Delerue-Matos, C.; Grosso, C.; Soares, C. Biological Potential, Gastrointestinal Digestion, Absorption, and Bioavailability of Algae-Derived Compounds with Neuroprotective Activity: A Comprehensive Review. Marine drugs 2022, 20, 362. doi:10.3390/md20060362
  • Doak, S. H.; Clift, M. J. D.; Costa, A.; Delmaar, C.; Gosens, I.; Halappanavar, S.; Kelly, S.; Pejinenburg, W. J. G. M.; Rothen-Rutishauser, B.; Schins, R. P. F.; Stone, V.; Tran, L.; Vijver, M. G.; Vogel, U.; Wohlleben, W.; Cassee, F. R. The Road to Achieving the European Commission's Chemicals Strategy for Nanomaterial Sustainability-A PATROLS Perspective on New Approach Methodologies. Small (Weinheim an der Bergstrasse, Germany) 2022, 18, e2200231. doi:10.1002/smll.202200231
  • Donkers, J. M.; Höppener, E. M.; Grigoriev, I.; Will, L.; Melgert, B. N.; van der Zaan, B.; van de Steeg, E.; Kooter, I. M. Advanced epithelial lung and gut barrier models demonstrate passage of microplastic particles. Microplastics and Nanoplastics 2022, 2. doi:10.1186/s43591-021-00024-w
  • Hao, W.; Cha, R.; Wang, M.; Zhang, P.; Jiang, X. Impact of nanomaterials on the intestinal mucosal barrier and its application in treating intestinal diseases. Nanoscale horizons 2021, 7, 6–30. doi:10.1039/d1nh00315a
  • Banerjee, A.; Shelver, W. L. Micro- and Nanoplastic-Mediated Pathophysiological Changes in Rodents, Rabbits, and Chickens: A Review. Journal of food protection 2021, 84, 1480–1495. doi:10.4315/jfp-21-117
  • Gao, G.; Zhou, J.; Jin, Y.; Wang, H.; Ding, Y.; Zhou, J.; Ke, L.; Rao, P.; Chong, P. H.; Wang, Q.; Zhang, L. Nanoparticles derived from porcine bone soup attenuate oxidative stress-induced intestinal barrier injury in Caco-2 cell monolayer model. Journal of Functional Foods 2021, 83, 104573. doi:10.1016/j.jff.2021.104573
  • Cui, X.; Bao, L.; Wang, X.; Chen, C. The Nano-Intestine Interaction: Understanding the Location-Oriented Effects of Engineered Nanomaterials in the Intestine. Small (Weinheim an der Bergstrasse, Germany) 2020, 16, 1907665. doi:10.1002/smll.201907665
  • Limage, R.; Tako, E.; Kolba, N.; Guo, Z.; García-Rodríguez, A.; Marques, C. N. H.; Mahler, G. J. TiO2 Nanoparticles and Commensal Bacteria Alter Mucus Layer Thickness and Composition in a Gastrointestinal Tract Model. Small (Weinheim an der Bergstrasse, Germany) 2020, 16, 2000601. doi:10.1002/smll.202000601
  • Garcia-Fernandez, J.; Turiel, D.; Bettmer, J.; Jakubowski, N.; Panne, U.; García, L. R.; Llopis, J.; González, C. S.; Montes-Bayón, M. In vitro and in situ experiments to evaluate the biodistribution and cellular toxicity of ultrasmall iron oxide nanoparticles potentially used as oral iron supplements. Nanotoxicology 2020, 14, 388–403. doi:10.1080/17435390.2019.1710613
  • Cai, J.; Zang, X.; Wu, Z.; Liu, J.; Wang, D. Translocation of transition metal oxide nanoparticles to breast milk and offspring: The necessity of bridging mother-offspring-integration toxicological assessments. Environment international 2019, 133, 105153. doi:10.1016/j.envint.2019.105153
  • de Souza, A. B.; Chaud, M. V.; Santana, M. H. A. Hyaluronic acid behavior in oral administration and perspectives for nanotechnology-based formulations: A review. Carbohydrate polymers 2019, 222, 115001. doi:10.1016/j.carbpol.2019.115001
  • Stock, V.; Böhmert, L.; Lisicki, E.; Block, R.; Cara-Carmona, J.; Pack, L. K.; Selb, R.; Lichtenstein, D.; Voss, L.; Henderson, C. J.; Zabinsky, E.; Sieg, H.; Braeuning, A.; Lampen, A. Uptake and effects of orally ingested polystyrene microplastic particles in vitro and in vivo. Archives of toxicology 2019, 93, 1817–1833. doi:10.1007/s00204-019-02478-7
  • Frey, A.; Ramaker, K.; Röckendorf, N.; Wollenberg, B.; Lautenschläger, I.; Gébel, G.; Giemsa, A.; Heine, M.; Bargheer, D.; Nielsen, P. Fate and Translocation of (Nano)Particulate Matter in the Gastrointestinal Tract. Biological Responses to Nanoscale Particles; Springer International Publishing, 2019; pp 281–327. doi:10.1007/978-3-030-12461-8_12
  • Epple, M. Review of potential health risks associated with nanoscopic calcium phosphate. Acta biomaterialia 2018, 77, 1–14. doi:10.1016/j.actbio.2018.07.036
  • Nizet, S.; Muñoz, E.; Fiebich, B. L.; Abuja, P. M.; Kashofer, K.; Zatloukal, K.; Tangermann, S.; Kenner, L.; Tschegg, C.; Nagl, D.; Scheichl, L.; Meisslitzer-Ruppitsch, C.; Freissmuth, M.; Berger, T. Clinoptilolite in Dextran Sulphate Sodium-Induced Murine Colitis: Efficacy and Safety of a Microparticulate Preparation. Inflammatory bowel diseases 2017, 24, 54–66. doi:10.1093/ibd/izx042
Other Beilstein-Institut Open Science Activities