Simulation tool for assessing the release and environmental distribution of nanomaterials

Haoyang Haven Liu, Muhammad Bilal, Anastasiya Lazareva, Arturo Keller and Yoram Cohen
Beilstein J. Nanotechnol. 2015, 6, 938–951. https://doi.org/10.3762/bjnano.6.97

Supporting Information

Supporting Information File 1: Additional equations and results regarding the model equations, intermedia transport factors, use cases, and parameters used for simulations carried out in the study.
Format: PDF Size: 1.3 MB Download

Cite the Following Article

Simulation tool for assessing the release and environmental distribution of nanomaterials
Haoyang Haven Liu, Muhammad Bilal, Anastasiya Lazareva, Arturo Keller and Yoram Cohen
Beilstein J. Nanotechnol. 2015, 6, 938–951. https://doi.org/10.3762/bjnano.6.97

How to Cite

Liu, H. H.; Bilal, M.; Lazareva, A.; Keller, A.; Cohen, Y. Beilstein J. Nanotechnol. 2015, 6, 938–951. doi:10.3762/bjnano.6.97

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Maniotis, N. Multiphysics Simulation on Nanoparticle Environmental Paths and Recovery. Nanoparticles as Sustainable Environmental Remediation Agents; Royal Society of Chemistry, 2023; pp 238–263. doi:10.1039/bk9781837670215-00238
  • MacLeod, M.; Domercq, P.; Harrison, S.; Praetorius, A. Computational models to confront the complex pollution footprint of plastic in the environment. Nature computational science 2023, 3, 486–494. doi:10.1038/s43588-023-00445-y
  • Quik, J. T. K.; Meesters, J. A. J.; Koelmans, A. A. A multimedia model to estimate the environmental fate of microplastic particles. The Science of the total environment 2023, 882, 163437. doi:10.1016/j.scitotenv.2023.163437
  • Pan, B.; Li, S.; Peng, H.; Ao, C.; Wei, Z.; Xing, B. Advances in understanding the processes and cycling of nanoparticles in the terrestrial environment. Advances in Agronomy; Elsevier, 2023; pp 1–79. doi:10.1016/bs.agron.2023.06.001
  • Pandey, G.; Chauhan, R.; Yadav, A. S.; Bajpai, S. doi:10.1002/9783527834143.ch22
  • Tsalidis, G. A.; Soeteman-Hernández, L. G.; Noorlander, C. W.; Saedy, S.; van Ommen, J. R.; Vijver, M. G.; Korevaar, G. Safe-and-Sustainable-by-Design Framework Based on a Prospective Life Cycle Assessment: Lessons Learned from a Nano-Titanium Dioxide Case Study. International journal of environmental research and public health 2022, 19, 4241. doi:10.3390/ijerph19074241
  • Egbedina, A. O.; Bolade, O. P.; Ewuzie, U.; Lima, E. C. Emerging trends in the application of carbon-based materials: A review. Journal of Environmental Chemical Engineering 2022, 10, 107260. doi:10.1016/j.jece.2022.107260
  • García-Quintero, A.; Palencia, M. A critical analysis of environmental sustainability metrics applied to green synthesis of nanomaterials and the assessment of environmental risks associated with the nanotechnology. The Science of the total environment 2021, 793, 148524. doi:10.1016/j.scitotenv.2021.148524
  • Bai, Q.; Yin, Y.; Liu, Y.; Jiang, H.; Wu, M.; Wang, W.; Tan, Z.; Liu, J.; Moon, M. H.; Xing, B. Flow field-flow fractionation hyphenated with inductively coupled plasma mass spectrometry: a robust technique for characterization of engineered elemental metal nanoparticles in the environment. Applied Spectroscopy Reviews 2021, 1–22.
  • Bai, Q.; Yin, Y.; Liu, Y.; Jiang, H.; Wu, M.; Wang, W.; Tan, Z.; Liu, J.; Moon, M. H.; Xing, B. Flow field-flow fractionation hyphenated with inductively coupled plasma mass spectrometry: a robust technique for characterization of engineered elemental metal nanoparticles in the environment. Applied Spectroscopy Reviews 2021, 58, 110–131. doi:10.1080/05704928.2021.1935272
  • Wigger, H.; Kägi, R.; Wiesner, M. R.; Nowack, B. Exposure and Possible Risks of Engineered Nanomaterials in the Environment—Current Knowledge and Directions for the Future. Reviews of Geophysics 2020, 58. doi:10.1029/2020rg000710
  • Suhendra, E.; Chang, C. H.; Hou, W. C.; Hsieh, Y. C. A Review on the Environmental Fate Models for Predicting the Distribution of Engineered Nanomaterials in Surface Waters. International journal of molecular sciences 2020, 21, 4554. doi:10.3390/ijms21124554
  • Meesters, J. A.; Peijnenburg, W. J.; Hendriks, A.; van de Meent, D.; Quik, J. T. A model sensitivity analysis to determine the most important physicochemical properties driving environmental fate and exposure of engineered nanoparticles. Environmental Science: Nano 2019, 6, 2049–2060. doi:10.1039/c9en00117d
  • Isigonis, P.; Hristozov, D.; Benighaus, C.; Giubilato, E.; Grieger, K.; Pizzol, L.; Semenzin, E.; Linkov, I.; Zabeo, A.; Marcomini, A. Risk Governance of Nanomaterials: Review of Criteria and Tools for Risk Communication, Evaluation, and Mitigation. Nanomaterials (Basel, Switzerland) 2019, 9, 696–721. doi:10.3390/nano9050696
  • Sørensen, S. N.; Baun, A.; Burkard, M.; Dal Maso, M.; Hansen, S. F.; Harrison, S.; Hjorth, R.; Lofts, S.; Matzke, M.; Nowack, B.; Peijnenburg, W. J.; Poikkimäki, M.; Quik, J. T.; Schirmer, K.; Aj, V.; Wigger, H.; Spurgeon, D. J. Evaluating environmental risk assessment models for nanomaterials according to requirements along the product innovation Stage-Gate process. Environmental Science: Nano 2019, 6, 505–518. doi:10.1039/c8en00933c
  • Williams, R. J.; Harrison, S.; Keller, V.; Kuenen, J.; Lofts, S.; Praetorius, A.; Svendsen, C.; Vermeulen, L. C.; van Wijnen, J. Models for assessing engineered nanomaterial fate and behaviour in the aquatic environment. Current Opinion in Environmental Sustainability 2019, 36, 105–115. doi:10.1016/j.cosust.2018.11.002
  • Lamon, L.; Asturiol, D.; Vilchez, A.; Ruperez-Illescas, R.; Cabellos, J.; Richarz, A.-N.; Worth, A. Computational models for the assessment of manufactured nanomaterials: development of model reporting standards and mapping of the model landscape. Computational toxicology (Amsterdam, Netherlands) 2019, 9, 143–151. doi:10.1016/j.comtox.2018.12.002
  • Mortimer, M.; Holden, P. A. Fate of engineered nanomaterials in natural environments and impacts on ecosystems. Exposure to Engineered Nanomaterials in the Environment; Elsevier, 2019; pp 61–103. doi:10.1016/b978-0-12-814835-8.00003-0
  • Romero-Franco, M.; Bilal, M.; Godwin, H. A.; Cohen, Y. Assessment of information availability for environmental impact assessment of engineered nanomaterials. Journal of Nanoparticle Research 2018, 20, 1–24. doi:10.1007/s11051-018-4402-4
  • Jensen, C. D.; Lewinski, N. Nanoparticle synthesis to green informatics frameworks. Current Opinion in Green and Sustainable Chemistry 2018, 12, 117–126. doi:10.1016/j.cogsc.2018.08.005
Other Beilstein-Institut Open Science Activities