Comparative kinematical analyses of Venus flytrap (Dionaea muscipula) snap traps

Simon Poppinga, Tim Kampowski, Amélie Metzger, Olga Speck and Thomas Speck
Beilstein J. Nanotechnol. 2016, 7, 664–674. https://doi.org/10.3762/bjnano.7.59

Supporting Information

Supporting Information File 1: MS Excel file with raw data.
Format: XLSX Size: 26.9 KB Download
Supporting Information File 2: Statistical analyses for the comparative air/under water snapping experiment.
Format: PDF Size: 532.3 KB Download
Supporting Information File 3: Statistical analysis: Venus flytrap seedlings.
Format: PDF Size: 453.6 KB Download
Supporting Information File 4: Movie file (.mov, MPEG-4 (Quick Time)) showing synchronous lobe movement (recording speed 100 fps, playback 20 fps).
Format: MOV Size: 680.5 KB Download
Supporting Information File 5: Movie file (.mov, MPEG-4 (Quick Time)) showing progressive lobe movement (recording speed 100 fps, playback 20 fps).
Format: MOV Size: 514.6 KB Download
Supporting Information File 6: Movie file (.mov, MPEG-4 (Quick Time)) showing asynchronous lobe movement (triggered lobe moves first) (recording speed 100 fps, playback 20 fps).
Format: MOV Size: 841.5 KB Download
Supporting Information File 7: Movie file (.mov, MPEG-4 (Quick Time)) showing asynchronous lobe movement (non-triggered lobe moves first) (recording speed 100 fps, playback 20 fps).
Format: MOV Size: 376.2 KB Download
Supporting Information File 8: Movie file (.mov, MPEG-4 (Quick Time)) showing trap closure under water. The ink drop inside the trap and the ink filament are visible (recording speed 100 fps, playback 20 fps).
Format: MOV Size: 795.9 KB Download
Supporting Information File 9: Movie file (.mov, MPEG-4 (Quick Time)) showing closure of a seedling trap (recording speed 100 fps, playback 20 fps).
Format: MOV Size: 1.0 MB Download
Supporting Information File 10: Movie file (.mov, MPEG-4 (Quick Time)) showing the opening of a seedling trap (recording speed 1 frame per 10 min, playback 20 fps).
Format: MOV Size: 1.4 MB Download
Supporting Information File 11: Movie file (.mov, MPEG-4 (Quick Time)) showing the opening of an adult trap (recording speed 1 frame per 15 min, playback 20 fps).
Format: MOV Size: 352.4 KB Download

Cite the Following Article

Comparative kinematical analyses of Venus flytrap (Dionaea muscipula) snap traps
Simon Poppinga, Tim Kampowski, Amélie Metzger, Olga Speck and Thomas Speck
Beilstein J. Nanotechnol. 2016, 7, 664–674. https://doi.org/10.3762/bjnano.7.59

How to Cite

Poppinga, S.; Kampowski, T.; Metzger, A.; Speck, O.; Speck, T. Beilstein J. Nanotechnol. 2016, 7, 664–674. doi:10.3762/bjnano.7.59

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 1.3 MB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Mylo, M. D.; Poppinga, S. Digital image correlation techniques for motion analysis and biomechanical characterization of plants. Frontiers in plant science 2024, 14, 1335445. doi:10.3389/fpls.2023.1335445
  • Tauber, F. J.; Scheckenbach, F.; Walter, M.; Pretsch, T.; Speck, T. A 3D-Printed Thermoresponsive Artificial Venus Flytrap Lobe Based on a Multilayer of Shape Memory Polymers. Biomimetic and Biohybrid Systems; Springer Nature Switzerland, 2023; pp 91–108. doi:10.1007/978-3-031-38857-6_7
  • Li, Q.; Jiao, Y. Ultrafast Photothermal Actuators with a Large Helical Curvature Based on Ultrathin GO and Biaxially Oriented PE Films. ACS applied materials & interfaces 2022, 14, 55828–55838. doi:10.1021/acsami.2c18478
  • Tauber, F. J.; Riechert, L.; Teichmann, J.; Poovathody, N.; Jonas, U.; Schiller, S.; Speck, T. Unit Cell Based Artificial Venus Flytrap. Biomimetic and Biohybrid Systems; Springer International Publishing, 2022; pp 1–12. doi:10.1007/978-3-031-20470-8_1
  • Li, J.; Tian, A.; Sun, Y.; Feng, B.; Wang, H.; Zhang, X. The Development of a Venus Flytrap Inspired Soft Robot Driven by IPMC. Journal of Bionic Engineering 2022, 20, 406–415. doi:10.1007/s42235-022-00250-9
  • Durak, G. M.; Speck, T.; Poppinga, S. Shapeshifting in the Venus flytrap (Dionaea muscipula): Morphological and biomechanical adaptations and the potential costs of a failed hunting cycle. Frontiers in plant science 2022, 13, 970320. doi:10.3389/fpls.2022.970320
  • Tauber, F. J.; Auth, P.; Teichmann, J.; Scherag, F. D.; Speck, T. Novel Motion Sequences in Plant-Inspired Robotics: Combining Inspirations from Snap-Trapping in Two Plant Species into an Artificial Venus Flytrap Demonstrator. Biomimetics (Basel, Switzerland) 2022, 7, 99. doi:10.3390/biomimetics7030099
  • Durak, G. M.; Thierer, R.; Sachse, R.; Bischoff, M.; Speck, T.; Poppinga, S. Smooth or with a Snap! Biomechanics of Trap Reopening in the Venus Flytrap (Dionaea muscipula). Advanced science (Weinheim, Baden-Wurttemberg, Germany) 2022, 9, e2201362. doi:10.1002/advs.202201362
  • Speck, T.; Poppinga, S.; Speck, O.; Tauber, F. J. Bio-inspired life-like motile materials systems: Changing the boundaries between living and technical systems in the Anthropocene:. The Anthropocene Review 2021, 9, 205301962110392–256. doi:10.1177/20530196211039275
  • Bauer, U.; Müller, U. K.; Poppinga, S. Complexity and diversity of motion amplification and control strategies in motile carnivorous plant traps. Proceedings. Biological sciences 2021, 288, 20210771. doi:10.1098/rspb.2021.0771
  • Esser, F. J.; Auth, P.; Speck, T. Artificial Venus Flytraps: A Research Review and Outlook on Their Importance for Novel Bioinspired Materials Systems. Frontiers in robotics and AI 2020, 7, 75. doi:10.3389/frobt.2020.00075
  • Sachse, R.; Westermeier, A. S.; Mylo, M. D.; Nadasdi, J.; Bischoff, M.; Speck, T.; Poppinga, S. Snapping mechanics of the Venus flytrap (Dionaea muscipula). Proceedings of the National Academy of Sciences of the United States of America 2020, 117, 16035–16042. doi:10.1073/pnas.2002707117
  • Esser, F. J.; Scherag, F. D.; Poppinga, S.; Westermeier, A. S.; Mylo, M. D.; Kampowski, T.; Bold, G.; Rühe, J.; Speck, T. Living Machines - Adaptive Biomimetic Actuator Systems Reacting to Various Stimuli by and Combining Two Biological Snap-Trap Mechanics.. Biomimetic and Biohybrid Systems; Springer International Publishing, 2019; pp 114–121. doi:10.1007/978-3-030-24741-6_10
  • Hesse, L.; Leupold, J.; Poppinga, S.; Wick, M.; Strobel, K.; Masselter, T.; Speck, T. Resolving Form-Structure-Function Relationships in Plants with MRI for Biomimetic Transfer. Integrative and comparative biology 2019, 59, 1713–1726. doi:10.1093/icb/icz051
  • Horstmann, M.; Heier, L.; Kruppert, S.; Weiss, L. C.; Tollrian, R.; Adamec, L.; Westermeier, A. S.; Speck, T.; Poppinga, S. Comparative Prey Spectra Analyses on the Endangered Aquatic Carnivorous Waterwheel Plant (Aldrovanda vesiculosa, Droseraceae) at Several Naturalized Microsites in the Czech Republic and Germany. Integrative organismal biology (Oxford, England) 2019, 1, oby012. doi:10.1093/iob/oby012
  • Westermeier, A. S.; Sachse, R.; Poppinga, S.; Vögele, P.; Adamec, L.; Speck, T.; Bischoff, M. How the carnivorous waterwheel plant (Aldrovanda vesiculosa) snaps. Proceedings. Biological sciences 2018, 285, 20180012. doi:10.1098/rspb.2018.0012
  • Gorb, S. N.; Speck, T. Biological and biomimetic materials and surfaces. Beilstein journal of nanotechnology 2017, 8, 403–407. doi:10.3762/bjnano.8.42
  • Poppinga, S.; Körner, A.; Sachse, R.; Born, L.; Westermeier, A. S.; Hesse, L.; Knippers, J.; Bischoff, M.; Gresser, G. T.; Speck, T. Compliant Mechanisms in Plants and Architecture. Biomimetic Research for Architecture and Building Construction; Springer International Publishing, 2016; pp 169–193. doi:10.1007/978-3-319-46374-2_9
Other Beilstein-Institut Open Science Activities