NO gas sensing at room temperature using single titanium oxide nanodot sensors created by atomic force microscopy nanolithography

Li-Yang Hong and Heh-Nan Lin
Beilstein J. Nanotechnol. 2016, 7, 1044–1051. https://doi.org/10.3762/bjnano.7.97

Supporting Information

Supporting Information features the current–voltage curves of sensors A and B before NO sensing, the resistances of sensors A and B before and after NO adsorption obtained from the current responses at a bias of 10 V as shown in the Figures, a finer time scale current response of sensor A at 10 V in the UV-recovery mode, the current response of sensor B at 5 V in the UV-activation mode, and the current response of sensor B at 10 V due to the injection of 500 ppm NO and subsequent high-pressure N2.

Supporting Information File 1: Additional experimental data.
Format: PDF Size: 273.9 KB Download

Cite the Following Article

NO gas sensing at room temperature using single titanium oxide nanodot sensors created by atomic force microscopy nanolithography
Li-Yang Hong and Heh-Nan Lin
Beilstein J. Nanotechnol. 2016, 7, 1044–1051. https://doi.org/10.3762/bjnano.7.97

How to Cite

Hong, L.-Y.; Lin, H.-N. Beilstein J. Nanotechnol. 2016, 7, 1044–1051. doi:10.3762/bjnano.7.97

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 596.9 KB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Liu, X.; Li, Q.; Cui, Y.; Lin, J.; Ding, L. Synthesis of porous spherical ZnO nanomaterials and the selective detection of NO at room temperature. Sensors and Actuators B: Chemical 2023, 378, 133155. doi:10.1016/j.snb.2022.133155
  • Yeh, Y.-M.; Chang, S.-J.; Wang, P.-H.; Hsueh, T.-J. A TSV-Structured Room Temperature p-Type TiO2 Nitric Oxide Gas Sensor. Applied Sciences 2022, 12, 9946. doi:10.3390/app12199946
  • Nasriddinov, A.; Tokarev, S.; Platonov, V.; Botezzatu, A.; Fedorova, O.; Rumyantseva, M.; Fedorov, Y. Heterobimetallic Ru(II)/M (M = Ag+, Cu2+, Pb2+) Complexes as Photosensitizers for Room-Temperature Gas Sensing. Molecules (Basel, Switzerland) 2022, 27, 5058. doi:10.3390/molecules27165058
  • Chang, S.; Yang, M.; Pang, R.; Ye, L.; Wang, X.; Cao, A.; Shang, Y. Intrinsically flexible CNT-TiO2-Interlaced film for NO sensing at room temperature. Applied Surface Science 2022, 579, 152172. doi:10.1016/j.apsusc.2021.152172
  • Tyagi, S.; Chaudhary, M.; Ambedkar, A. K.; Sharma, K.; Gautam, Y. K.; Singh, B. P. Metal oxide nanomaterial-based sensors for monitoring environmental NO2and its impact on the plant ecosystem: a review. Sensors & Diagnostics 2022, 1, 106–129. doi:10.1039/d1sd00034a
  • Dong, Z.; Geng, Y.; Peng, G.; Fang, Z.; Yan, Y. Processing defect study and prevention in continuous stepped nanostructures fabricated by nanoskiving. Vacuum 2021, 193, 110497. doi:10.1016/j.vacuum.2021.110497
  • Wang, Y.; Wang, Z.; Lin, P.; Wu, D.; Shi, Z.; Chen, X.; Xu, T.; Wang, X.; Tian, Y.; Li, X. All-Inorganic CsPbBr3/Cs4PbBr6 Perovskite/ZnO for Detection of NO with Enhanced Response and Low-Work Temperature. ChemistrySelect 2021, 6, 9657–9662. doi:10.1002/slct.202102051
  • Khasim, S.; Pasha, A.; Hatem-Al-Aoh; Badi, N.; Imran, M.; Al-Ghamdi, S. A. Development of high-performance flexible and stretchable sensor based on secondary doped PEDOT–PSS:TiO2 nanocomposite for room-temperature detection of nitric oxide. Journal of Materials Science: Materials in Electronics 2021, 32, 7491–7508. doi:10.1007/s10854-021-05462-z
  • Jian, L.-Y.; Lee, C. T.; Lee, H. Y. Performance Improvement of NO₂ Gas Sensor Using Rod-Patterned Tantalum Pentoxide-Alloyed Indium Oxide Sensing Membranes. IEEE Sensors Journal 2021, 21, 2134–2139. doi:10.1109/jsen.2020.3018454
  • Bhat, P.; K, N. K. S.; Nagaraju, P. Fabrication of ultrasensitive hexagonal disc structured ZnO thin film sensor to trace nitric oxide. Journal of Asian Ceramic Societies 2020, 9, 96–105. doi:10.1080/21870764.2020.1848036
  • Korotcenkov, G. Current Trends in Nanomaterials for Metal Oxide-Based Conductometric Gas Sensors: Advantages and Limitations. Part 1: 1D and 2D Nanostructures. Nanomaterials (Basel, Switzerland) 2020, 10, 1392. doi:10.3390/nano10071392
  • Tshabalala, Z. P.; Oosthuizen, D. N.; Swart, H. C.; Motaung, D. E. Tools and techniques for characterization and evaluation of nanosensors. Nanosensors for Smart Cities; Elsevier, 2020; pp 85–110. doi:10.1016/b978-0-12-819870-4.00005-0
  • Comini, E.; Zappa, D. One- and two-dimensional metal oxide nanostructures for chemical sensing. Semiconductor Gas Sensors; Elsevier, 2020; pp 161–184. doi:10.1016/b978-0-08-102559-8.00005-7
  • Naderi, H.; Hajati, S.; Ghaedi, M.; Espinós, J. P. Highly selective few-ppm NO gas-sensing based on necklace-like nanofibers of ZnO/CdO n-n type I heterojunction. Sensors and Actuators B: Chemical 2019, 297, 126774. doi:10.1016/j.snb.2019.126774
  • Li, Z.; Li, H.; Wu, Z.; Wang, M.; Luo, J.; Torun, H.; Hu, P.; Yang, C.; Grundmann, M.; Liu, X.; Fu, Y. Q. Advances in designs and mechanisms of semiconducting metal oxide nanostructures for high-precision gas sensors operated at room temperature. Materials Horizons 2019, 6, 470–506. doi:10.1039/c8mh01365a
  • Skryshevsky, V. A.; Kostiukcvych, O.; Ivanov, I. ITO-Nano-Titania Gas Sensors at Adsorption of Ethanol, Acetone and Water Molecules. In 2018 IEEE 38th International Conference on Electronics and Nanotechnology (ELNANO), IEEE, 2018; pp 41–45. doi:10.1109/elnano.2018.8477490
  • Jin, M. L.; Park, S.; Kim, J.-S.; Kwon, S. H.; Zhang, S.; Yoo, M. S.; Jang, S.; Koh, H.-J.; Cho, S.-Y.; Kim, S. Y.; Ahn, C. W.; Cho, K.; Lee, S. G.; Kim, H.; Jung, H. An Ultrastable Ionic Chemiresistor Skin with an Intrinsically Stretchable Polymer Electrolyte. Advanced materials (Deerfield Beach, Fla.) 2018, 30, 1706851. doi:10.1002/adma.201706851
  • Karmaoui, M.; Lajaunie, L.; Tobaldi, D. M.; Leonardi, G.; Benbayer, C.; Arenal, R.; Labrincha, J. A.; Neri, G. Modification of anatase using noble-metals (Au, Pt, Ag): Toward a nanoheterojunction exhibiting simultaneously photocatalytic activity and plasmonic gas sensing. Applied Catalysis B: Environmental 2017, 218, 370–384. doi:10.1016/j.apcatb.2017.06.010
Other Beilstein-Institut Open Science Activities