Efficient CO2 capture by tertiary amine-functionalized ionic liquids through Li+-stabilized zwitterionic adduct formation

Zhen-Zhen Yang and Liang-Nian He
Beilstein J. Org. Chem. 2014, 10, 1959–1966. https://doi.org/10.3762/bjoc.10.204

Supporting Information

Supporting Information File 1: General experimental methods, synthesis and characterization of the neutral ligands, lithium salts and the corresponding chelated ionic liquids.
Format: PDF Size: 3.6 MB Download

Cite the Following Article

Efficient CO2 capture by tertiary amine-functionalized ionic liquids through Li+-stabilized zwitterionic adduct formation
Zhen-Zhen Yang and Liang-Nian He
Beilstein J. Org. Chem. 2014, 10, 1959–1966. https://doi.org/10.3762/bjoc.10.204

How to Cite

Yang, Z.-Z.; He, L.-N. Beilstein J. Org. Chem. 2014, 10, 1959–1966. doi:10.3762/bjoc.10.204

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Tian, G. Carbon dioxide capture and utilization in ionic liquids. Green Sustainable Process for Chemical and Environmental Engineering and Science; Elsevier, 2023; pp 345–426. doi:10.1016/b978-0-323-99429-3.00019-9
  • Zhang, R.; Ke, Q.; Zhang, Z.; Zhou, B.; Cui, G.; Lu, H. Tuning Functionalized Ionic Liquids for CO2 Capture. International journal of molecular sciences 2022, 23, 11401. doi:10.3390/ijms231911401
  • Chatterjee, R.; Bhukta, S.; Dandela, R. Super Base Derived Ionic Liquids: A Useful Tool in Organic Synthesis. Current Organic Chemistry 2022, 26, 1237–1263. doi:10.2174/1385272826666220418183249
  • Zhang, Z.; Kummeth, A. L.; Yang, J. Y.; Alexandrova, A. N. Inverse molecular design of alkoxides and phenoxides for aqueous direct air capture of CO2. Proceedings of the National Academy of Sciences of the United States of America 2022, 119, e2123496119. doi:10.1073/pnas.2123496119
  • Shama, V. M.; Swami, A. R.; Aniruddha, R.; Sreedhar, I.; Reddy, B. M. Process and engineering aspects of carbon capture by ionic liquids. Journal of CO2 Utilization 2021, 48, 101507. doi:10.1016/j.jcou.2021.101507
  • Tian, G. Applications of green solvents in toxic gases removal. Green Sustainable Process for Chemical and Environmental Engineering and Science; Elsevier, 2021; pp 149–201. doi:10.1016/b978-0-12-821884-6.00008-5
  • Pan, M.; Wang, C. Materials for Carbon Capture; Wiley, 2019; pp 297–315. doi:10.1002/9781119091219.ch11
  • Yao, J. G.; Fennell, P. S.; Hallett, J. P. Chapter 4:Ionic Liquids. Carbon Capture and Storage; The Royal Society of Chemistry, 2019; pp 69–105. doi:10.1039/9781788012744-00069
  • Fu, H. C.; You, F.; Li, H. R.; He, L. N. CO2 Capture and In Situ Catalytic Transformation. Frontiers in chemistry 2019, 7, 525. doi:10.3389/fchem.2019.00525
  • Hu, Y.; Steinbauer, J.; Stefanow, V.; Spannenberg, A.; Werner, T. Polyethers as Complexing Agents in Calcium-CatalyzedCyclic Carbonate Synthesis. ACS Sustainable Chemistry & Engineering 2019, 7, 13257–13269. doi:10.1021/acssuschemeng.9b02502
  • Gope, S.; Malunavar, S.; Bhattacharyya, A. J. Li–Ion‐Conducting Pillar‐Like Graphitic Carbon Nitrides as Novel Anodes for Li–Ion Batteries. ChemistrySelect 2018, 3, 5364–5376. doi:10.1002/slct.201800052
  • Li, C.; Lu, D.; Wu, C. The role of cations in the interactions between anionic N-heterocycles and SO2. Scientific reports 2018, 8, 7284. doi:10.1038/s41598-018-25432-6
  • Bui, M.; Adjiman, C. S.; Bardow, A.; Anthony, E. J.; Boston, A.; Brown, S.; Fennell, P. S.; Fuss, S.; Galindo, A.; Hackett, L. A.; Hallett, J. P.; Herzog, H. J.; Jackson, G.; Kemper, J.; Krevor, S.; Maitland, G. C.; Matuszewski, M.; Metcalfe, I. S.; Petit, C.; Puxty, G.; Reimer, J. A.; Reiner, D.; Rubin, E. S.; Scott, S. A.; Shah, N.; Smit, B.; Trusler, J. P. M.; Webley, P. A.; Wilcox, J.; Mac Dowell, N. Carbon capture and storage (CCS): the way forward. Energy & Environmental Science 2018, 11, 1062–1176. doi:10.1039/c7ee02342a
  • Berton, M.; Mello, R.; Williard, P. G.; González-Núñez, M. E. Reactivity of Lithium β-Ketocarboxylates: The Role of Lithium Salts. Journal of the American Chemical Society 2017, 139, 17414–17420. doi:10.1021/jacs.7b08450
  • Steinbauer, J.; Werner, T. Poly(ethylene glycol)s as Ligands in Calcium-Catalyzed Cyclic Carbonate Synthesis. ChemSusChem 2017, 10, 3025–3029. doi:10.1002/cssc.201700788
  • Qian, W.; Xu, Y.; Xie, B.; Ge, Y.; Shu, H. Alkanolamine-based dual functional ionic liquids with multidentate cation coordination and pyrazolide anion for highly efficient CO2 capture at relatively high temperature. International Journal of Greenhouse Gas Control 2017, 56, 194–201. doi:10.1016/j.ijggc.2016.11.032
  • Zhang, X.; Feng, X.; Li, H.; Peng, J.; Wu, Y.; Hu, X. Cyano-Containing Protic Ionic Liquids for Highly Selective Absorption of SO2 from CO2: Experimental Study and Theoretical Analysis. Industrial & Engineering Chemistry Research 2016, 55, 11012–11021. doi:10.1021/acs.iecr.6b02588
  • Cui, G.; Wang, J.; Zhang, S. Active chemisorption sites in functionalized ionic liquids for carbon capture. Chemical Society reviews 2016, 45, 4307–4339. doi:10.1039/c5cs00462d
  • Lv, B.; Xia, Y.; Shi, Y.; Liu, N.; Li, W.; Li, S. A novel hydrophilic amino acid ionic liquid [C2OHmim][Gly] as aqueous sorbent for CO2 capture. International Journal of Greenhouse Gas Control 2016, 46, 1–6. doi:10.1016/j.ijggc.2015.12.029
  • Nowicki, J.; Muszyński, M.; Mikkola, J.-P. Ionic liquids derived from organosuperbases: en route to superionic liquids. RSC Advances 2016, 6, 9194–9208. doi:10.1039/c5ra23616a
Other Beilstein-Institut Open Science Activities