Rhodium, iridium and nickel complexes with a 1,3,5-triphenylbenzene tris-MIC ligand. Study of the electronic properties and catalytic activities

Carmen Mejuto, Beatriz Royo, Gregorio Guisado-Barrios and Eduardo Peris
Beilstein J. Org. Chem. 2015, 11, 2584–2590. https://doi.org/10.3762/bjoc.11.278

Supporting Information

Supporting Information File 1: Experimental details and copies of spectra.
Format: PDF Size: 584.5 KB Download

Cite the Following Article

Rhodium, iridium and nickel complexes with a 1,3,5-triphenylbenzene tris-MIC ligand. Study of the electronic properties and catalytic activities
Carmen Mejuto, Beatriz Royo, Gregorio Guisado-Barrios and Eduardo Peris
Beilstein J. Org. Chem. 2015, 11, 2584–2590. https://doi.org/10.3762/bjoc.11.278

How to Cite

Mejuto, C.; Royo, B.; Guisado-Barrios, G.; Peris, E. Beilstein J. Org. Chem. 2015, 11, 2584–2590. doi:10.3762/bjoc.11.278

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Francescato, G.; Silva, S. M. d.; Leitão, M. I. P. S.; Gaspar‐Cordeiro, A.; Giannopoulos, N.; Gomes, C. S. B.; Pimentel, C.; Petronilho, A. Nickel N‐heterocyclic carbene complexes based on xanthines: Synthesis and antifungal activity on Candida sp. Applied Organometallic Chemistry 2022. doi:10.1002/aoc.6687
  • Matsubara, K.; Tomomatsu, K.; Tajiri, A.; Watanabe, A.; Koga, Y.; Ishikawa, R.; Yamada, Y. Pincer‐Type Mesoionic Carbene Nickel(II) Complexes: Synthesis, Properties, Reactions, and Catalytic Application to the Suzuki–Miyaura Coupling Reaction of Aryl Bromides. European Journal of Inorganic Chemistry 2022, 2022. doi:10.1002/ejic.202100870
  • Patricio-Rangel, E. B.; Salazar-Pereda, V.; Cortezano-Arellano, O.; Mendoza-Espinosa, D. Multinuclear mesoionic 1,2,3-triazolylidene complexes: design, synthesis, and applications. Dalton transactions (Cambridge, England : 2003) 2022, 51, 2641–2651. doi:10.1039/d1dt04221a
  • Włodzimierz, B. Cyclopentadienyl Nickel Complexes. Comprehensive Organometallic Chemistry IV; Elsevier, 2022; pp 357–426. doi:10.1016/b978-0-12-820206-7.00104-9
  • Maity, R.; Sarkar, B. Chemistry of Compounds Based on 1,2,3-Triazolylidene-Type Mesoionic Carbenes. JACS Au 2021, 2, 22–57. doi:10.1021/jacsau.1c00338
  • Stein, F.; Kirsch, M.; Beerhues, J.; Albold, U.; Sarkar, B. Mono- and Di-Mesoionic Carbene-Boranes: Synthesis, Structures and Utility as Reducing Agents. European Journal of Inorganic Chemistry 2021, 2021, 2417–2424. doi:10.1002/ejic.202100273
  • Friães, S.; Realista, S.; Gomes, C. S. B.; Martinho, P. N.; Veiros, L. F.; Albrecht, M.; Royo, B. Manganese complexes with chelating and bridging di-triazolylidene ligands: synthesis and reactivity. Dalton transactions (Cambridge, England : 2003) 2021, 50, 5911–5920. doi:10.1039/d1dt00444a
  • Ang, Z. Z.; Laxmi, S.; León, F.; Kooij, J. E. M.; García, F.; England, J. Mechanochemical Synthesis of Tripodal Tris[4-(1,2,3-triazol-5-ylidene)methyl]amine Mesoionic Carbene Ligands and Their Complexation with Silver(I). Inorganic chemistry 2021, 60, 3556–3564. doi:10.1021/acs.inorgchem.0c02429
  • Kraka, E.; Freindorf, M. Characterizing the Metal–Ligand Bond Strength via Vibrational Spectroscopy: The Metal–Ligand Electronic Parameter (MLEP). New Directions in the Modeling of Organometallic Reactions; Springer International Publishing, 2020; pp 227–269. doi:10.1007/3418_2020_48
  • Pretorius, R.; McDonald, A.; da Costa, L. R. B.; Müller-Bunz, H.; Albrecht, M. Palladium(II), Rhodium(I), and Iridium(I) Complexes Containing O-Functionalized 1,2,3-Triazol-5-ylidene Ligands. European Journal of Inorganic Chemistry 2019, 2019, 4263–4272. doi:10.1002/ejic.201900724
  • Banach, Ł.; Guńka, P. A.; Zachara, J.; Buchowicz, W. Half-sandwich Ni(II) complexes [Ni(Cp)(X)(NHC)]: From an underestimated discovery to a new chapter in organonickel chemistry. Coordination Chemistry Reviews 2019, 389, 19–58. doi:10.1016/j.ccr.2019.03.006
  • Tolley, L. C.; Strydom, I.; Louw, W. J.; Fernandes, M. A.; Bezuidenhout, D. I.; Guisado-Barrios, G. Diverse Coordination Modes of Bidentate COC and Tridentate CNC Ligands Comprising 1,2,3-Triazol-5-ylidenes. ACS Omega 2019, 4, 6360–6374. doi:10.1021/acsomega.9b00514
  • Vivancos, Á.; Segarra, C.; Albrecht, M. Mesoionic and Related Less Heteroatom-Stabilized N-Heterocyclic Carbene Complexes: Synthesis, Catalysis, and Other Applications. Chemical reviews 2018, 118, 9493–9586. doi:10.1021/acs.chemrev.8b00148
  • Ruiz-Botella, S.; Peris, E. Immobilization of Pyrene‐Adorned N‐Heterocyclic Carbene Complexes of Rhodium(I) on Reduced Graphene Oxide and Study of their Catalytic Activity. ChemCatChem 2017, 10, 1874–1881. doi:10.1002/cctc.201701277
  • Cremer, D.; Kraka, E. Generalization of the Tolman electronic parameter: the metal–ligand electronic parameter and the intrinsic strength of the metal–ligand bond. Dalton transactions (Cambridge, England : 2003) 2017, 46, 8323–8338. doi:10.1039/c7dt00178a
  • Hettmanczyk, L.; Spall, S. J. P.; Klenk, S.; van der Meer, M.; Hohloch, S.; Weinstein, J. A.; Sarkar, B. Structural, Electrochemical, and Photochemical Properties of Mono‐ and Digold(I) Complexes Containing Mesoionic Carbenes. European Journal of Inorganic Chemistry 2017, 2017, 2112–2121. doi:10.1002/ejic.201700056
  • Schweinfurth, D.; Hettmanczyk, L.; Suntrup, L.; Sarkar, B. Metal Complexes of Click‐Derived Triazoles and Mesoionic Carbenes: Electron Transfer, Photochemistry, Magnetic Bistability, and Catalysis. Zeitschrift für anorganische und allgemeine Chemie 2017, 643, 554–584. doi:10.1002/zaac.201700030
  • Gu, S.; Du, J.; Huang, J.; Xia, H.; Yang, L.; Xu, W.; Lu, C. Bi- and trinuclear copper(I) complexes of 1,2,3-triazole-tethered NHC ligands: synthesis, structure, and catalytic properties. Beilstein journal of organic chemistry 2016, 12, 863–873. doi:10.3762/bjoc.12.85
Other Beilstein-Institut Open Science Activities