Functionalized branched EDOT-terthiophene copolymer films by electropolymerization and post-polymerization “click”-reactions

Miriam Goll, Adrian Ruff, Erna Muks, Felix Goerigk, Beatrice Omiecienski, Ines Ruff, Rafael C. González-Cano, Juan T. Lopez Navarrete, M. Carmen Ruiz Delgado and Sabine Ludwigs
Beilstein J. Org. Chem. 2015, 11, 335–347. https://doi.org/10.3762/bjoc.11.39

Supporting Information

Supporting Information File 1: Additional Raman data of PEDOT, P3T, copolymers and blends; 1H NMR and IR spectra of EDOT-ClickSO3Na; contact angles of P3T; PEDOT-N3, PEDOT-clickHex and PEDOT-clickSO3Na.
Format: PDF Size: 589.8 KB Download

Cite the Following Article

Functionalized branched EDOT-terthiophene copolymer films by electropolymerization and post-polymerization “click”-reactions
Miriam Goll, Adrian Ruff, Erna Muks, Felix Goerigk, Beatrice Omiecienski, Ines Ruff, Rafael C. González-Cano, Juan T. Lopez Navarrete, M. Carmen Ruiz Delgado and Sabine Ludwigs
Beilstein J. Org. Chem. 2015, 11, 335–347. https://doi.org/10.3762/bjoc.11.39

How to Cite

Goll, M.; Ruff, A.; Muks, E.; Goerigk, F.; Omiecienski, B.; Ruff, I.; González-Cano, R. C.; Lopez Navarrete, J. T.; Ruiz Delgado, M. C.; Ludwigs, S. Beilstein J. Org. Chem. 2015, 11, 335–347. doi:10.3762/bjoc.11.39

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Farshadinia, A.; Kolahdoozan, M.; Mirmohammadi, M. A novel, rapidly-constructed synergistic copolymer-metallocene electrode with drug-detection capabilities. Microchemical Journal 2024, 197, 109858. doi:10.1016/j.microc.2023.109858
  • Wang, F.; Xie, Y.; Zhu, W.; Wei, T. Recent Advances in Functionalization Strategies for Biosensor Interfaces, Especially the Emerging Electro-Click: A Review. Chemosensors 2023, 11, 481. doi:10.3390/chemosensors11090481
  • Chandran, A.; Kumar, K. G. Novel Copolymer-based Electrochemical Sensor for the Facile Determination of Biomarkers of Diabetes and Hepatocellular Carcinoma. Journal of The Electrochemical Society 2023, 170, 77504–077504. doi:10.1149/1945-7111/ace337
  • Gibalova, A.; Arndt, N. B.; Burg, L.; Ravoo, B. J. Light-Responsive Conductive Surface Coatings on the Basis of Azidomethyl-PEDOT Electropolymer Films. ACS applied materials & interfaces 2023, 15, 12363–12371. doi:10.1021/acsami.2c21995
  • Abel, S. B.; Frontera, E.; Acevedo, D.; Barbero, C. A. Functionalization of Conductive Polymers through Covalent Postmodification. Polymers 2022, 15, 205. doi:10.3390/polym15010205
  • Kuhlmann, J. E.; Liu, S. S. Y.; Dirnberger, K.; Zharnikov, M.; Ludwigs, S. Electrochemical Characterization of Redox Probes Confined in 3D Conducting Polymer Networks. Chemistry (Weinheim an der Bergstrasse, Germany) 2021, 27, 17255–17263. doi:10.1002/chem.202103257
  • Yusupov, J. R.; Sabirov, K.; Matrasulov, D. Dirac particles on periodic quantum graphs. Physical review. E 2021, 104, 014219. doi:10.1103/physreve.104.014219
  • Yusupov, J. R.; Matyokubov, K.; Sabirov, K.; Matrasulov, D. Exciton dynamics in branched conducting polymers: Quantum graphs based approach. Chemical Physics 2020, 537, 110861. doi:10.1016/j.chemphys.2020.110861
  • Azadmehr, F.; Zarei, K. Fabrication of an imprinted electrochemical sensor from l-tyrosine, 3-methyl-4-nitrophenol and gold nanoparticles for quinine determination. Bioelectrochemistry (Amsterdam, Netherlands) 2019, 127, 59–67. doi:10.1016/j.bioelechem.2019.01.001
  • Babajanov, D.; Matyoqubov, H.; Matrasulov, D. Charged solitons in branched conducting polymers. The Journal of chemical physics 2018, 149, 164908. doi:10.1063/1.5052044
  • Zhang, Q.; Dong, H.; Hu, W. Electrochemical polymerization for two-dimensional conjugated polymers. Journal of Materials Chemistry C 2018, 6, 10672–10686. doi:10.1039/c8tc04149k
  • DarmaninThierry; GodeauGuilhem; GuittardFrédéric. Superhydrophobic, superoleophobic and underwater superoleophobic conducting polymer films. Surface Innovations 2018, 6, 181–204. doi:10.1680/jsuin.18.00006
  • Mantione, D.; del Agua, I.; Sanchez-Sanchez, A.; Mecerreyes, D. Poly(3,4-ethylenedioxythiophene) (PEDOT) Derivatives: Innovative Conductive Polymers for Bioelectronics. Polymers 2017, 9, 354.
  • Mantione, D.; del Agua, I.; Sanchez-Sanchez, A.; Mecerreyes, D. Poly(3,4-ethylenedioxythiophene) (PEDOT) Derivatives: Innovative Conductive Polymers for Bioelectronics. Polymers 2017, 9, 354. doi:10.3390/polym9080354
  • Guven, N.; Camurlu, P.; Desde, M.; Yucel, B. Post Polymerization Functionalization of a Soluble Poly(2,5-dithienylpyrrole) Derivative via Click Chemistry. Journal of The Electrochemical Society 2017, 164, H430–H436. doi:10.1149/2.0301707jes
  • Czichy, M.; Wagner, P.; Łapkowski, M.; Officer, D. L. Effect of π-conjugation on electrochemical properties of poly(terthiophene)s 3′-substituted with fullerene C60. Journal of Electroanalytical Chemistry 2016, 772, 103–109. doi:10.1016/j.jelechem.2016.04.009
Other Beilstein-Institut Open Science Activities