Highly selective generation of vanillin by anodic degradation of lignin: a combined approach of electrochemistry and product isolation by adsorption

Dominik Schmitt, Carolin Regenbrecht, Marius Hartmer, Florian Stecker and Siegfried R. Waldvogel
Beilstein J. Org. Chem. 2015, 11, 473–480. https://doi.org/10.3762/bjoc.11.53

Supporting Information

Supporting Information File 1: Information about materials.
Format: PDF Size: 219.9 KB Download
Supporting Information File 2: Experimental information.
Format: PDF Size: 617.0 KB Download

Cite the Following Article

Highly selective generation of vanillin by anodic degradation of lignin: a combined approach of electrochemistry and product isolation by adsorption
Dominik Schmitt, Carolin Regenbrecht, Marius Hartmer, Florian Stecker and Siegfried R. Waldvogel
Beilstein J. Org. Chem. 2015, 11, 473–480. https://doi.org/10.3762/bjoc.11.53

How to Cite

Schmitt, D.; Regenbrecht, C.; Hartmer, M.; Stecker, F.; Waldvogel, S. R. Beilstein J. Org. Chem. 2015, 11, 473–480. doi:10.3762/bjoc.11.53

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Qi, Y.; Guo, H.; Li, J.; Ma, L.; Xu, Y.; Liu, H.; Wang, C.; Zhang, Z. Recent Advances in the Electrocatalytic Oxidative Upgrading of Lignocellulosic Biomass. ChemPhysMater 2024. doi:10.1016/j.chphma.2024.02.001
  • Dourado, A. H.; Santos, M.; Curvelo, A. A.; Varela, H. CuO as (electro)catalyst for lignin valorization. Applied Catalysis A: General 2024, 671, 119583. doi:10.1016/j.apcata.2024.119583
  • Gao, D.; Ouyang, D.; Zhao, X. Controllable oxidative depolymerization of lignin to produce aromatic aldehydes and generate electricity under mild conditions with direct biomass fuel cells as flexible reactors. Chemical Engineering Journal 2024, 479, 147874. doi:10.1016/j.cej.2023.147874
  • Brix, A. C.; Krysiak, O. A.; Cechanaviciutè, I. A.; Bjelovučić, G.; Banko, L.; Ludwig, A.; Schuhmann, W. Oxidative Depolymerisation of Kraft Lignin: From Fabrication of Multi‐Metal‐Modified Electrodes For Vanillin Electrogeneration via Pulse Electrolysis To High‐Throughput Screening of Multi‐Metal Composites. ChemElectroChem 2023, 11. doi:10.1002/celc.202300483
  • Carkner, A.; Tageldin, I.; Han, J.; Seifitokaldani, A.; Kopyscinski, J. Impact of Temperature an Order of Magnitude Larger Than Electrical Potential in Lignin Electrolysis with Nickel. ChemSusChem 2023, 17, e202300795. doi:10.1002/cssc.202300795
  • Hu, R.; Zhan, J.; Zhao, Y.; Xu, X.; Luo, G.; Fan, J.; Clark, J. H.; Zhang, S. Bio-based platform chemicals synthesized from lignin biorefinery. Green Chemistry 2023, 25, 8970–9000. doi:10.1039/d3gc02927a
  • Sharma, A.; Sahu, S.; Sharma, S.; Singh, G.; Arya, S. K. Valorization of agro-industrial wastes into vanillin: A sustainable and bio-economical step towards the indigenous production of flavors. Biocatalysis and Agricultural Biotechnology 2023, 54, 102904. doi:10.1016/j.bcab.2023.102904
  • doi:10.1002/9781394191666.ch3
  • Shen, L.; Xue, X.; Wang, M.; Fan, Y.; Gu, D.; Zhu, L.; Jiang, T.; Yuan, D.; Wu, H.; Wang, B. Review on Catalytic Cracking of Lignin for the Production of Fuels and High-Value-Added Chemicals: Advances, Challenges, Opportunities, and Outlook. Energy & Fuels 2023, 37, 15309–15347. doi:10.1021/acs.energyfuels.3c01878
  • Šachlevičiūtė, U.; Kleizienė, N.; Bieliauskas, A.; Šačkus, A.; Opatz, T. Total synthesis of lamellarin G trimethyl ether through enaminone cyclocondensation. Organic & biomolecular chemistry 2023, 21, 5997–6007. doi:10.1039/d3ob00870c
  • Tian, Q.; Xu, P.; Huang, D.; Wang, H.; Wang, Z.; Qin, H.; He, Y.; Li, R.; Yin, L.; Chen, S.; Zhao, Y. The driving force of biomass value-addition: Selective catalytic depolymerization of lignin to high-value chemicals. Journal of Environmental Chemical Engineering 2023, 11, 109719. doi:10.1016/j.jece.2023.109719
  • González-Cobos, J.; Prévot, M. S.; Vernoux, P. Electrolysis of lignin for production of chemicals and hydrogen. Current Opinion in Electrochemistry 2023, 39, 101255. doi:10.1016/j.coelec.2023.101255
  • Xu, X.; Li, P.; Zhong, Y.; Yu, J.; Miao, C.; Tong, G. Review on the oxidative catalysis methods of converting lignin into vanillin. International journal of biological macromolecules 2023, 243, 125203. doi:10.1016/j.ijbiomac.2023.125203
  • Sprang, F.; Klein, J.; Waldvogel, S. R. Direct Anodic Conversion of 4-Hydroxybenzaldehydes into Benzoquinones. ACS Sustainable Chemistry & Engineering 2023, 11, 7755–7764. doi:10.1021/acssuschemeng.3c00257
  • Klein, J.; Waldvogel, S. R. Selective Electrochemical Degradation of Lignosulfonate to Bio-Based Aldehydes. ChemSusChem 2023, 16, e202202300. doi:10.1002/cssc.202202300
  • Zirbes, M.; Graßl, T.; Neuber, R.; Waldvogel, S. R. Peroxodicarbonate as a Green Oxidizer for the Selective Degradation of Kraft Lignin into Vanillin. Angewandte Chemie (International ed. in English) 2023, 62, e202219217. doi:10.1002/anie.202219217
  • Zirbes, M.; Graßl, T.; Neuber, R.; Waldvogel, S. R. Peroxodicarbonat als grünes Oxidationsmittel für den selektiven Abbau von Kraft‐Lignin zu Vanillin. Angewandte Chemie 2023, 135. doi:10.1002/ange.202219217
  • Song, Y.; Lee, Y. G.; Ahn, Y. S.; Nguyen, D.-T.; Bae, H.-J. Utilization of bamboo as biorefinery feedstock: Co-production of xylo-oligosaccharide with succinic acid and lactic acid. Bioresource technology 2023, 372, 128694. doi:10.1016/j.biortech.2023.128694
  • Singh, S.; Ghatak, H. R.; Malyan, S. K. Electrochemical cyclic voltametric and kinetics of vanillin formation over TiMMO electrodes from agroresidue black liquor. Multifaceted Bio-sensing Technology; Elsevier, 2023; pp 135–150. doi:10.1016/b978-0-323-90807-8.00013-0
  • Klein, J.; Kupec, R.; Stöckl, M.; Waldvogel, S. R. Degradation of Lignosulfonate to Vanillic Acid Using Ferrate. Advanced Sustainable Systems 2022, 7. doi:10.1002/adsu.202200431

Patents

  • WEINELT FRANK; BAUMANN FRANZ-ERICH; WALDVOGEL SIEGFRIED R; RAUEN ANNA-LISA. METHOD FOR ELECTROCHEMICALLY PRODUCING ALKANE DICARBOXYLIC ACIDS BY MEANS OF A RING-OPENING OXIDATION USING A DOPED NI(O)OH FOAM ELECTRODE. WO 2021249775 A1, Dec 16, 2021.
  • WEINELT FRANK; BAUMANN FRANZ-ERICH; WALDVOGEL SIEGFRIED R; RAUEN ANNA-LISA. METHOD FOR THE ELECTROCHEMICAL PREPARATION OF ALKANEDICARBOXYLIC ACIDS BY RING-OPENING OXIDATION USING A DOPED NI(O)OH FOAM ELECTRODE. EP 3922758 A1, Dec 15, 2021.
  • STAHL SHANNON S; RAFIEE MOHAMMAD. Polycarboxylated compounds and compositions containing same. US 11028235 B2, June 8, 2021.
  • STAHL SHANNON S; RAFIEE MOHAMMAD. Polycarboxylated compounds and compositions containing same. US 10336868 B2, July 2, 2019.
  • STAHL SHANNON S; RAFIEE MOHAMMAD. Nitroxyl-mediated oxidation of lignin and polycarboxylated products. US 9903028 B2, Feb 27, 2018.
Other Beilstein-Institut Open Science Activities