Characterization of non-heme iron aliphatic halogenase WelO5* from Hapalosiphon welwitschii IC-52-3: Identification of a minimal protein sequence motif that confers enzymatic chlorination specificity in the biosynthesis of welwitindolelinones

Qin Zhu and Xinyu Liu
Beilstein J. Org. Chem. 2017, 13, 1168–1173. https://doi.org/10.3762/bjoc.13.115

Supporting Information

Supporting Information File 1: Additional figures.
Format: PDF Size: 605.8 KB Download

Cite the Following Article

Characterization of non-heme iron aliphatic halogenase WelO5* from Hapalosiphon welwitschii IC-52-3: Identification of a minimal protein sequence motif that confers enzymatic chlorination specificity in the biosynthesis of welwitindolelinones
Qin Zhu and Xinyu Liu
Beilstein J. Org. Chem. 2017, 13, 1168–1173. https://doi.org/10.3762/bjoc.13.115

How to Cite

Zhu, Q.; Liu, X. Beilstein J. Org. Chem. 2017, 13, 1168–1173. doi:10.3762/bjoc.13.115

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 435.5 KB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Voss, M.; Hüppi, S.; Schaub, D.; Hayashi, T.; Ligibel, M.; Sager, E.; Schroer, K.; Snajdrova, R.; Buller, R. Enzyme Engineering Enables Inversion of Substrate Stereopreference of the Halogenase WelO5*. ChemCatChem 2022, 14. doi:10.1002/cctc.202201115
  • Papadopoulou, A.; Meyer, F.; Buller, R. M. Engineering Fe(II)/α-Ketoglutarate-Dependent Halogenases and Desaturases. Biochemistry 2022, 62, 229–240. doi:10.1021/acs.biochem.2c00115
  • Wojdyla, Z.; Borowski, T. Properties of the Reactants and Their Interactions within and with the Enzyme Binding Cavity Determine Reaction Selectivities. The Case of Fe(II)/2-Oxoglutarate Dependent Enzymes. Chemistry (Weinheim an der Bergstrasse, Germany) 2022, 28, e202104106. doi:10.1002/chem.202104106
  • Clayman, P.; Roiban, G.-D.; Fuerst, D. Biocatalytic Resolutions. Reference Module in Chemistry, Molecular Sciences and Chemical Engineering; Elsevier, 2022. doi:10.1016/b978-0-32-390644-9.00058-5
  • Harken, L.; Liu, J.; Kreuz, O.; Berger, R.; Li, S.-M. Biosynthesis of Guatrypmethine C Implies Two Different Oxidases for exo Double Bond Installation at the Diketopiperazine Ring. ACS Catalysis 2021, 12, 648–654. doi:10.1021/acscatal.1c04609
  • Hohlman, R. M.; Sherman, D. H. Recent advances in hapalindole-type cyanobacterial alkaloids: biosynthesis, synthesis, and biological activity. Natural product reports 2021, 38, 1567–1588. doi:10.1039/d1np00007a
  • Crowe, C.; Molyneux, S.; Sharma, S. V.; Zhang, Y.; Gkotsi, D. S.; Connaris, H.; Goss, R. J. M. Halogenases: a palette of emerging opportunities for synthetic biology–synthetic chemistry and C–H functionalisation. Chemical Society reviews 2021, 50, 9443–9481. doi:10.1039/d0cs01551b
  • Papadopoulou, A.; Meierhofer, J.; Meyer, F.; Hayashi, T.; Schneider, S.; Sager, E.; Buller, R. Re-programming and optimization of a L-proline cis-4-hydroxylase for the cis-3-halogenation of its native substrate. ChemCatChem 2021, 13, 3914–3919. doi:10.1002/cctc.202100591
  • Romero, E.; Jones, B. S.; Hogg, B. N.; Casamajo, A. R.; Hayes, M. A.; Flitsch, S. L.; Turner, N. J.; Schnepel, C. Enzymatic Late-Stage Modifications: Better Late Than Never. Angewandte Chemie (International ed. in English) 2021, 60, 16824–16855. doi:10.1002/anie.202014931
  • Romero, E.; Jones, B. S.; Hogg, B. N.; Casamajo, A. R.; Hayes, M. A.; Flitsch, S. L.; Turner, N. J.; Schnepel, C. Enzymkatalysierte späte Modifizierungen: Besser spät als nie. Angewandte Chemie 2021, 133, 16962–16993. doi:10.1002/ange.202014931
  • Menon, B. R. K.; Richmond, D.; Menon, N. Halogenases for biosynthetic pathway engineering: Toward new routes to naturals and non-naturals. Catalysis Reviews 2020, 64, 533–591. doi:10.1080/01614940.2020.1823788
  • Menon, B. R. K.; Richmond, D.; Menon, N.
  • Minges, H.; Sewald, N. Recent Advances in Synthetic Application and Engineering of Halogenases. ChemCatChem 2020, 12, 4450–4470. doi:10.1002/cctc.202000531
  • Zhang, X.; Wang, Z.; Gao, J.; Liu, W. Chlorination versus hydroxylation selectivity mediated by the non-heme iron halogenase WelO5. Physical chemistry chemical physics : PCCP 2020, 22, 8699–8712. doi:10.1039/d0cp00791a
  • Voss, M.; Malca, S. H.; Buller, R. Exploring the biocatalytic potential of Fe/α‐ketoglutarate dependent halogenases. Chemistry (Weinheim an der Bergstrasse, Germany) 2020, 26, 7336–7345. doi:10.1002/chem.201905752
  • Duewel, S.; Schmermund, L.; Faber, T. M.; Harms, K.; Srinivasan, V.; Meggers, E.; Hoebenreich, S. Directed Evolution of an FeII-Dependent Halogenase for Asymmetric C(sp3)–H Chlorination. ACS Catalysis 2019, 10, 1272–1277. doi:10.1021/acscatal.9b04691
  • Hayashi, T.; Ligibel, M.; Sager, E.; Voss, M.; Hunziker, J.; Schroer, K.; Snajdrova, R.; Buller, R. Evolvierte aliphatische Halogenasen ermöglichen die regiokomplementäre C‐H‐Funktionalisierung einer hochwertigen Chemikalie. Angewandte Chemie 2019, 131, 18706–18711. doi:10.1002/ange.201907245
  • Hayashi, T.; Ligibel, M.; Sager, E.; Voss, M.; Hunziker, J.; Schroer, K.; Snajdrova, R.; Buller, R. Evolved Aliphatic Halogenases Enable Regiocomplementary C-H Functionalization of a Pharmaceutically Relevant Compound. Angewandte Chemie (International ed. in English) 2019, 58, 18535–18539. doi:10.1002/anie.201907245
  • Fejzagić, A. V.; Gebauer, J.; Huwa, N.; Classen, T. Halogenating Enzymes for Active Agent Synthesis: First Steps Are Done and Many Have to Follow. Molecules (Basel, Switzerland) 2019, 24, 4008. doi:10.3390/molecules24214008
  • Zeng, J.; Zhan, J. Chlorinated Natural Products and Related Halogenases. Israel Journal of Chemistry 2019, 59, 387–402. doi:10.1002/ijch.201800175
Other Beilstein-Institut Open Science Activities