NMR reaction monitoring in flow synthesis

M. Victoria Gomez and Antonio de la Hoz
Beilstein J. Org. Chem. 2017, 13, 285–300. https://doi.org/10.3762/bjoc.13.31

Cite the Following Article

NMR reaction monitoring in flow synthesis
M. Victoria Gomez and Antonio de la Hoz
Beilstein J. Org. Chem. 2017, 13, 285–300. https://doi.org/10.3762/bjoc.13.31

How to Cite

Gomez, M. V.; de la Hoz, A. Beilstein J. Org. Chem. 2017, 13, 285–300. doi:10.3762/bjoc.13.31

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 393.4 KB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Herold, D.; Brauser, M.; Kind, J.; Thiele, C. M. Evolution of a Combined UV/Vis and NMR Setup with Fixed Pathlengths for Mass-limited Samples. Chemistry (Weinheim an der Bergstrasse, Germany) 2024, e202304016. doi:10.1002/chem.202304016
  • Rávai, B.; Orosz, M. J.; Péterfi, O.; Galata, D. L.; Bálint, E. Flow chemical laboratory practice for undergraduate students: synthesis of paracetamol. Journal of Flow Chemistry 2023. doi:10.1007/s41981-023-00303-y
  • Schrecker, L.; Dickhaut, J.; Holtze, C.; Staehle, P.; Wieja, A.; Hellgardt, K.; Hii, K. K. (Mimi). An efficient multiparameter method for the collection of chemical reaction data via 'one-pot' transient flow. Reaction Chemistry & Engineering 2023, 8, 3196–3202. doi:10.1039/d3re00439b
  • Lhoste, C.; Bazzoni, M.; Bonnet, J.; Bernard, A.; Felpin, F.-X.; Giraudeau, P.; Dumez, J.-N. Broadband ultrafast 2D NMR spectroscopy for online monitoring in continuous flow. The Analyst 2023, 148, 5255–5261. doi:10.1039/d3an01165h
  • Dunlap, J. H.; Ethier, J. G.; Putnam-Neeb, A. A.; Iyer, S.; Luo, S.-X. L.; Feng, H.; Garrido Torres, J. A.; Doyle, A. G.; Swager, T. M.; Vaia, R. A.; Mirau, P.; Crouse, C. A.; Baldwin, L. A. Continuous flow synthesis of pyridinium salts accelerated by multi-objective Bayesian optimization with active learning. Chemical science 2023, 14, 8061–8069. doi:10.1039/d3sc01303k
  • Gomez, M. V.; Baas, S.; Velders, A. H. Multinuclear 1D and 2D NMR with 19F-Photo-CIDNP hyperpolarization in a microfluidic chip with untuned microcoil. Nature communications 2023, 14, 3885. doi:10.1038/s41467-023-39537-8
  • Bazzoni, M.; Lorandel, B.; Lhoste, C.; Giraudeau, P.; Dumez, J.-N. Fast 2D NMR for Reaction and Process Monitoring. Fast 2D Solution-state NMR; The Royal Society of Chemistry, 2023; pp 251–283. doi:10.1039/bk9781839168062-00251
  • Hosseinzadehtaher, M.; D'silva, S.; Baker, M.; Kumar, R.; Hein, N. T.; Shadmand, M. B.; Jagadish, S. K.; Ghanbarian, B. On Design Challenges of Portable Nuclear Magnetic Resonance System. Journal of Nuclear Engineering 2023, 4, 323–337. doi:10.3390/jne4020025
  • Madani, A.; Pieber, B. In situ Reaction Monitoring in Photocatalytic Organic Synthesis. ChemCatChem 2023, 15. doi:10.1002/cctc.202201583
  • Chen, R.; Singh, P.; Su, S.; Kocalar, S.; Wang, X.; Mandava, N.; Venkatesan, S.; Ferguson, A.; Rao, A.; Le, E.; Rojas, C.; Njoo, E. Benchtop 19F Nuclear Magnetic Resonance (NMR) Spectroscopy Provides Mechanistic Insight into the Biginelli Condensation toward the Chemical Synthesis of Novel Trifluorinated Dihydro- and Tetrahydropyrimidinones as Antiproliferative Agents. ACS omega 2023, 8, 10545–10554. doi:10.1021/acsomega.3c00290
  • Bazzoni, M.; Lhoste, C.; Bonnet, J.; Konan, K. E.; Bernard, A.; Giraudeau, P.; Felpin, F.-X.; Dumez, J.-N. In-line Multidimensional NMR Monitoring of Photochemical Flow Reactions. Chemistry (Weinheim an der Bergstrasse, Germany) 2023, 29, e202203240. doi:10.1002/chem.202203240
  • Sumpter, B. G.; Hong, K.; Vasudevan, R. K.; Ivanov, I.; Advincula, R. Autonomous continuous flow reactor synthesis for scalable atom-precision. Carbon Trends 2023, 10, 100234. doi:10.1016/j.cartre.2022.100234
  • Salgado, A. Recent advances in nuclear magnetic resonance spectroscopy detection compatible with on-flow operational regimes: New uses of NMR detectors hyphenated to LCs and other separation techniques and in reaction monitoring. Liquid Chromatography; Elsevier, 2023; pp 743–794. doi:10.1016/b978-0-323-99968-7.00027-8
  • Wouters, B.; Miggiels, P.; Bezemer, R.; van der Cruijsen, E. A. W.; van Leeuwen, E.; Gauvin, J.; Houben, K.; Babu Sai Sankar Gupta, K.; Zuijdwijk, P.; Harms, A.; Carvalho de Souza, A.; Hankemeier, T. Automated Segmented-Flow Analysis - NMR with a Novel Fluoropolymer Flow Cell for High-Throughput Screening. Analytical chemistry 2022, 94, 15350–15358. doi:10.1021/acs.analchem.2c03038
  • Rincón, J. A.; Nieves‐Remacha, M. J.; Mateos, C. doi:10.1002/9783527824595.ch2
  • Berthault and, P.; Huber, G. doi:10.1002/9783527827244.ch6
  • Davy, M.; Dickson, C. L.; Wei, R.; Uhrín, D.; Butts, C. P. Monitoring off-resonance signals with SHARPER NMR - the MR-SHARPER experiment. The Analyst 2022, 147, 1702–1708. doi:10.1039/d2an00134a
  • Liu, J.; Sato, Y.; Yang, F.; Kukor, A. J.; Hein, J. E. An Adaptive Auto‐Synthesizer using Online PAT Feedback to Flexibly Perform a Multistep Reaction. Chemistry–Methods 2022, 2. doi:10.1002/cmtd.202200009
  • Foster, S. W.; Xie, X.; Hellmig, J. M.; Moura-Letts, G.; West, W. R.; Lee, M. L.; Grinias, J. P. Online Monitoring of Small Volume Reactions Using Compact Liquid Chromatography Instrumentation. Separation science plus 2022, 5, 213–219. doi:10.1002/sscp.202200012
  • Ben-Tal, Y.; Boaler, P. J.; Dale, H. J. A.; Dooley, R. E.; Fohn, N. A.; Gao, Y.; García-Domínguez, A.; Grant, K. M.; Hall, A. M. R.; Hayes, H. L. D.; Kucharski, M. M.; Wei, R.; Lloyd-Jones, G. C. Mechanistic analysis by NMR spectroscopy: A users guide. Progress in nuclear magnetic resonance spectroscopy 2022, 129, 28–106. doi:10.1016/j.pnmrs.2022.01.001
Other Beilstein-Institut Open Science Activities