Phosphated cyclodextrins as water-soluble chiral NMR solvating agents for cationic compounds

Cira Mollings Puentes and Thomas J. Wenzel
Beilstein J. Org. Chem. 2017, 13, 43–53. https://doi.org/10.3762/bjoc.13.6

Supporting Information

Supporting Information File 1: Complete 1H NMR spectra are provided for the samples in Figures 3 and 4. Additional regions of the spectra of Figure 5 are provided.
Format: PDF Size: 774.1 KB Download

Cite the Following Article

Phosphated cyclodextrins as water-soluble chiral NMR solvating agents for cationic compounds
Cira Mollings Puentes and Thomas J. Wenzel
Beilstein J. Org. Chem. 2017, 13, 43–53. https://doi.org/10.3762/bjoc.13.6

How to Cite

Puentes, C. M.; Wenzel, T. J. Beilstein J. Org. Chem. 2017, 13, 43–53. doi:10.3762/bjoc.13.6

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 102.7 KB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Essien, N. B.; Galvácsi, A.; Kállay, C.; Al-Hilaly, Y.; González-Méndez, R.; Akien, G. R.; Tizzard, G. J.; Coles, S. J.; Besora, M.; Kostakis, G. E. Fluorine-based Zn salan complexes. Dalton transactions (Cambridge, England : 2003) 2023, 52, 4044–4057. doi:10.1039/d2dt04082d
  • Audsley, G.; Carpenter, H.; Essien, N. B.; Lai-Morrice, J.; Al-Hilaly, Y.; Serpell, L. C.; Akien, G. R.; Tizzard, G. J.; Coles, S. J.; Ulldemolins, C. P.; Kostakis, G. E. Chiral Co3Y Propeller-Shaped Chemosensory Platforms Based on 19F-NMR. Inorganic chemistry 2023, 62, 2680–2693. doi:10.1021/acs.inorgchem.2c03737
  • Uccello Barretta, G.; Wenzel, T. J.; Balzano, F. Spectroscopic Analysis: NMR and Shift Reagents. Reference Module in Chemistry, Molecular Sciences and Chemical Engineering; Elsevier, 2022. doi:10.1016/b978-0-32-390644-9.00012-3
  • Pow, R.; Sinclair, Z. L.; Bell, N. L.; Watfa, N.; Abul-Haija, Y. M.; Long, D.-L.; Cronin, L. Enantioselective Recognition of Racemic Amino Alcohols in Aqueous Solution by Chiral Metal-Oxide Keplerate {Mo132 } Cluster Capsules. Chemistry (Weinheim an der Bergstrasse, Germany) 2021, 27, 12327–12334. doi:10.1002/chem.202100899
  • Iarocz, L. E. B.; Silva, M. S. Nuclear magnetic resonance chiral discrimination of fipronil and malathion agrochemicals: A case study. Chirality 2021, 33, 528–534. doi:10.1002/chir.23336
  • Guo, C.; Xiao, Y. Negatively charged cyclodextrins: Synthesis and applications in chiral analysis-A review. Carbohydrate polymers 2020, 256, 117517. doi:10.1016/j.carbpol.2020.117517
  • Wang, S.-Y.; Li, L.; Xiao, Y.; Wang, Y. Recent advances in cyclodextrins-based chiral-recognizing platforms. TrAC Trends in Analytical Chemistry 2019, 121, 115691. doi:10.1016/j.trac.2019.115691
  • doi:10.1002/9781119324782.refs
  • Balzano, F.; Aiello, F.; Uccello-Barretta, G. Chiral Analysis by NMR Spectroscopy: Chiral Solvating Agents. Chiral Analysis; Elsevier, 2018; pp 367–427. doi:10.1016/b978-0-444-64027-7.00009-4
  • Borowiecki, P.; Justyniak, I.; Ochal, Z. Lipase-catalyzed kinetic resolution approach toward enantiomerically enriched 1-(β-hydroxypropyl)indoles. Tetrahedron: Asymmetry 2017, 28, 1717–1732. doi:10.1016/j.tetasy.2017.10.010
  • Dalvano, B. E.; Wenzel, T. J. Sulfated cyclodextrins as water-soluble chiral NMR solvating agents for cationic compounds. Tetrahedron: Asymmetry 2017, 28, 1061–1069. doi:10.1016/j.tetasy.2017.07.003
Other Beilstein-Institut Open Science Activities