Continuous flow enantioselective arylation of aldehydes with ArZnEt using triarylboroxins as the ultimate source of aryl groups

Julien Rolland, Xacobe C. Cambeiro, Carles Rodríguez-Escrich and Miquel A. Pericàs
Beilstein J. Org. Chem. 2009, 5, No. 56. https://doi.org/10.3762/bjoc.5.56

Supporting Information

Supporting information contains GC and HPLC conditions for the analysis of the diarylmethanol products.

Supporting Information File 1: Conditions for the analysis of the diarylmethanols by GC and HPLC.
Format: PDF Size: 29.6 KB Download

Cite the Following Article

Continuous flow enantioselective arylation of aldehydes with ArZnEt using triarylboroxins as the ultimate source of aryl groups
Julien Rolland, Xacobe C. Cambeiro, Carles Rodríguez-Escrich and Miquel A. Pericàs
Beilstein J. Org. Chem. 2009, 5, No. 56. https://doi.org/10.3762/bjoc.5.56

How to Cite

Rolland, J.; Cambeiro, X. C.; Rodríguez-Escrich, C.; Pericàs, M. A. Beilstein J. Org. Chem. 2009, 5, No. 56. doi:10.3762/bjoc.5.56

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Bauer, T. Organozinc. Reference Module in Chemistry, Molecular Sciences and Chemical Engineering; Elsevier, 2024. doi:10.1016/b978-0-323-96025-0.00034-x
  • Szelwicka, A.; Zawadzki, P.; Sitko, M.; Boncel, S.; Czardybon, W.; Chrobok, A. Continuous Flow Chemo-Enzymatic Baeyer–Villiger Oxidation with Superactive and Extra-Stable Enzyme/Carbon Nanotube Catalyst: An Efficient Upgrade from Batch to Flow. Organic Process Research & Development 2019, 23, 1386–1395. doi:10.1021/acs.oprd.9b00132
  • Rodríguez-Escrich, C.; Pericàs, M. A. Catalytic Enantioselective Flow Processes with Solid-Supported Chiral Catalysts. Chemical record (New York, N.Y.) 2018, 19, 1872–1890. doi:10.1002/tcr.201800097
  • Forni, J. A.; Novaes, L. F. T.; Galaverna, R.; Pastre, J. C. Novel polystyrene-immobilized chiral amino alcohols as heterogeneous ligands for the enantioselective arylation of aldehydes in batch and continuous flow regime. Catalysis Today 2018, 308, 86–93. doi:10.1016/j.cattod.2017.08.055
  • Watanabe, S.; Nakaya, N.; Akai, J.; Kanaori, K.; Harada, T. Silica-Supported Catalyst for Enantioselective Arylation of Aldehydes under Batch and Continuous-Flow Conditions. Organic letters 2018, 20, 2737–2740. doi:10.1021/acs.orglett.8b00945
  • Akai, J.; Watanabe, S.; Michikawa, K.; Harada, T. Application of a Heterogeneous Chiral Titanium Catalyst Derived from Silica-Supported 3-Aryl H8-BINOL to Enantioselective Alkylation and Arylation of Aldehydes. Organic letters 2017, 19, 3632–3635. doi:10.1021/acs.orglett.7b01625
  • Plutschack, M. B.; Pieber, B.; Gilmore, K.; Seeberger, P. H. The Hitchhiker's Guide to Flow Chemistry. Chemical reviews 2017, 117, 11796–11893. doi:10.1021/acs.chemrev.7b00183
  • Wang, Y.; Zong, H.; Huang, H.; Song, L. Chiral thiophosphoramide catalyzed asymmetric aryl transfer reactions for the synthesis of functional diarylmethanols. Tetrahedron: Asymmetry 2017, 28, 90–97. doi:10.1016/j.tetasy.2016.11.011
  • Jadhav, A. S.; Anand, R. V. 1,6-Conjugate addition of zinc alkyls to para-quinone methides in a continuous-flow microreactor. Organic & biomolecular chemistry 2016, 15, 56–60. doi:10.1039/c6ob02277d
  • Movsisyan, M.; Delbeke, E.; Berton, J.; Battilocchio, C.; Ley, S. V.; Stevens, C. V. Taming hazardous chemistry by continuous flow technology. Chemical Society reviews 2016, 45, 4892–4928. doi:10.1039/c5cs00902b
  • Ishitani, H.; Saito, Y.; Kobayashi, S. Enantioselective Organometallic Catalysis in Flow. Organometallic Flow Chemistry; Springer International Publishing, 2016; pp 213–248. doi:10.1007/3418_2016_167
  • Bauer, T. Enantioselective dialkylzinc-mediated alkynylation, arylation and alkenylation of carbonyl groups. Coordination Chemistry Reviews 2015, 299, 83–150. doi:10.1016/j.ccr.2015.03.025
  • Boros, Z.; Hornyánszky, G.; Nagy, J.; Poppe, L. Cascade Biocatalysis; Wiley, 2014; pp 199–230. doi:10.1002/9783527682492.ch9
  • Fernandes, A. E.; Jonas, A. M.; Riant, O. Application of CuAAC for the covalent immobilization of homogeneous catalysts. Tetrahedron 2014, 70, 1709–1731. doi:10.1016/j.tet.2013.12.034
  • Ling-lin, W.; Li-fei, Z.; Xiao-bo, H.; Yi-xiang, C. SYNTHESIS OF A NEW LINEAR CHIRAL POLYMER BASED ON POLYBINAPHTHOLS AND ITS APPLICATION IN ENANTIOSELECTIVE ADDITION OF Et 2 Zn TO ALDEHYDES: SYNTHESIS OF A NEW LINEAR CHIRAL POLYMER BASED ON POLYBINAPHTHOLS AND ITS APPLICATION IN ENANTIOSELECTIVE ADDITION OF Et 2 Zn TO ALDEHYDES. Acta Polymerica Sinica 2013, 013, 802–810. doi:10.3724/sp.j.1105.2013.13052
  • Tsubogo, T.; Ishiwata, T.; Kobayashi, S. Asymmetric carbon-carbon bond formation under continuous-flow conditions with chiral heterogeneous catalysts. Angewandte Chemie (International ed. in English) 2013, 52, 6590–6604. doi:10.1002/anie.201210066
  • Tsubogo, T.; Ishiwata, T.; Kobayashi, S. Asymmetrische Kohlenstoff‐Kohlenstoff‐Kupplungen unter kontinuierlichen Durchflussbedingungen mit chiralen Heterogenkatalysatoren. Angewandte Chemie 2013, 125, 6722–6737. doi:10.1002/ange.201210066
  • Zhao, D.; Ding, K. Recent Advances in Asymmetric Catalysis in Flow. ACS Catalysis 2013, 3, 928–944. doi:10.1021/cs300830x
  • Takasu, K. doi:10.1002/9783527659722.ch7
  • Puglisi, A.; Benaglia, M.; Chiroli, V. Stereoselective organic reactions promoted by immobilized chiral catalysts in continuous flow systems. Green Chemistry 2013, 15, 1790–1813. doi:10.1039/c3gc40195b
Other Beilstein-Institut Open Science Activities