Cation affinity numbers of Lewis bases

Christoph Lindner, Raman Tandon, Boris Maryasin, Evgeny Larionov and Hendrik Zipse
Beilstein J. Org. Chem. 2012, 8, 1406–1442. https://doi.org/10.3762/bjoc.8.163

Supporting Information

Supporting Information File 1: File Typ: PDF.
Energies, enthalpies and geometries for all Lewis bases and their respective adducts with various electrophiles.
Format: PDF Size: 21.4 MB Download

Cite the Following Article

Cation affinity numbers of Lewis bases
Christoph Lindner, Raman Tandon, Boris Maryasin, Evgeny Larionov and Hendrik Zipse
Beilstein J. Org. Chem. 2012, 8, 1406–1442. https://doi.org/10.3762/bjoc.8.163

How to Cite

Lindner, C.; Tandon, R.; Maryasin, B.; Larionov, E.; Zipse, H. Beilstein J. Org. Chem. 2012, 8, 1406–1442. doi:10.3762/bjoc.8.163

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Kluga, R.; Kinens, A.; Suna, E. Chiral 4-MeO-Pyridine (MOPY) Catalyst for Enantioselective Cyclopropanation: Attenuation of Lewis Basicity Leads to Improved Catalytic Efficiency. Chemistry (Weinheim an der Bergstrasse, Germany) 2024, 30, e202301136. doi:10.1002/chem.202301136
  • Antala, J.; Schulz, J.; Císařová, I.; Štěpnička, P. Synthesis, reactivity and coordination behaviour of a ferrocene phosphinostibine and intramolecular interactions in its P(v) and Sb(v) derivatives. New Journal of Chemistry 2024. doi:10.1039/d4nj00349g
  • Osenga, V. A.; Sykes, N. C.; Pa, S.; Bambha, M. K.; Schley, N. D.; Johnson, M. W. Comparative Analysis of the Donor Properties of Isomeric Pyrrolyl Phosphine Ligands. Organometallics 2023, 43, 14–20. doi:10.1021/acs.organomet.3c00467
  • Schulz, J.; Antala, J.; Rezazgui, D.; Císařová, I.; Štěpnička, P. Synthesis, Structure, Reactivity, and Intramolecular Donor-Acceptor Interactions in a Phosphinoferrocene Stibine and Its Corresponding Phosphine Chalcogenides and Stiboranes. Inorganic chemistry 2023, 62, 14028–14043. doi:10.1021/acs.inorgchem.3c02075
  • Werra, J. A.; Wurst, K.; Wilm, L. B.; Löwe, P.; Röthel, M. B.; Dielmann, F. 1,2,5-Trimethylpyrrolyl Phosphines: A Class of Strongly Donating Arylphosphines. Organometallics 2023, 42, 597–605. doi:10.1021/acs.organomet.3c00016
  • Santos, H.; Zeoly, L. A.; Rodrigues, M. T.; Fernandes, F. S.; Gomes, R. C.; Almeida, W. P.; Coelho, F. Recent Advances in Catalytic Systems for the Mechanistically Complex Morita–Baylis–Hillman Reaction. ACS Catalysis 2023, 13, 3864–3895. doi:10.1021/acscatal.2c06420
  • Yuan, Y.-C.; Mellah, M.; Schulz, E.; David, O. R. P. Making Chiral Salen Complexes Work with Organocatalysts. Chemical reviews 2022, 122, 8841–8883. doi:10.1021/acs.chemrev.1c00912
  • Mayr, S.; Zipse, H. Annelated Pyridine Bases for the Selective Acylation of 1,2‐Diols. European Journal of Organic Chemistry 2022, 2022. doi:10.1002/ejoc.202101521
  • Natongchai, W.; Posada-Pérez, S.; Phungpanya, C.; Luque-Urrutia, J. A.; Solà, M.; D'Elia, V.; Poater, A. Enhancing the Catalytic Performance of Group I, II Metal Halides in the Cycloaddition of CO2 to Epoxides under Atmospheric Conditions by Cooperation with Homogeneous and Heterogeneous Highly Nucleophilic Aminopyridines: Experimental and Theoretical Study. The Journal of organic chemistry 2022, 87, 2873–2886. doi:10.1021/acs.joc.1c02770
  • Fischer, S. M.; Renner, S.; Boese, A. D.; Slugovc, C. Electron-rich triarylphosphines as nucleophilic catalysts for oxa-Michael reactions. Beilstein journal of organic chemistry 2021, 17, 1689–1697. doi:10.3762/bjoc.17.117
  • Edinger, D.; Weber, H.; Žagar, E.; Pahovnik, D.; Slugovc, C. Melt Polymerization of Acrylamide Initiated by Nucleophiles: A Route toward Highly Branched and Amorphous Polyamide 3. ACS Applied Polymer Materials 2021, 3, 2018–2026. doi:10.1021/acsapm.1c00084
  • Kadish, D.; Mood, A. D.; Tavakoli, M.; Gutman, E. S.; Baldi, P.; Van Vranken, D. L. Methyl Cation Affinities of Canonical Organic Functional Groups. The Journal of organic chemistry 2021, 86, 3721–3729. doi:10.1021/acs.joc.0c02327
  • Natongchai, W.; Luque-Urrutia, J. A.; Phungpanya, C.; Solà, M.; D'Elia, V.; Poater, A.; Zipse, H. Cycloaddition of CO2 to epoxides by highly nucleophilic 4-aminopyridines: establishing a relationship between carbon basicity and catalytic performance by experimental and DFT investigations. Organic Chemistry Frontiers 2021, 8, 613–627. doi:10.1039/d0qo01327g
  • Kodolitsch, K.; Gobec, F.; Slugovc, C. Solvent‐ and Catalyst‐Free Aza‐Michael Addition of Imidazoles and Related Heterocycles. European Journal of Organic Chemistry 2020, 2020, 2973–2978. doi:10.1002/ejoc.202000309
  • Mood, A.; Tavakoli, M.; Gutman, E. S.; Kadish, D.; Baldi, P.; Van Vranken, D. L. Methyl Anion Affinities of the Canonical Organic Functional Groups. The Journal of organic chemistry 2020, 85, 4096–4102. doi:10.1021/acs.joc.9b03187
  • Qaraah, F. A.; Mahyoub, S. A.; Hafez, M. E.; Xiu, G. Facile route for C–N/Nb2O5 nanonet synthesis based on 2-methylimidazole for visible-light driven photocatalytic degradation of Rhodamine B. RSC advances 2019, 9, 39561–39571. doi:10.1039/c9ra07505d
  • De Vylder, A.; Lauwaert, J.; Sabbe, M.; Reyniers, M.-F.; De Clercq, J.; Van Der Voort, P.; Thybaut, J. W. Rational design of nucleophilic amine sites via computational probing of steric and electronic effects. Catalysis Today 2019, 334, 96–103. doi:10.1016/j.cattod.2019.01.026
  • Kleoff, M.; Suhr, S.; Sarkar, B.; Zimmer, R.; Reissig, H.-U.; Marin-Luna, M.; Zipse, H. Efficient Syntheses of New Super Lewis Basic Tris(dialkylamino)-Substituted Terpyridines and Comparison of Their Methyl Cation Affinities. Chemistry (Weinheim an der Bergstrasse, Germany) 2019, 25, 7526–7533. doi:10.1002/chem.201900450
  • Timofeeva, D. S.; Mayer, R. J.; Mayer, P.; Ofial, A. R.; Mayr, H. Which Factors Control the Nucleophilic Reactivities of Enamines. Chemistry (Weinheim an der Bergstrasse, Germany) 2018, 24, 5901–5910. doi:10.1002/chem.201705962
  • Follet, E.; Mayer, P.; Stephenson, D. S.; Ofial, A. R.; Berionni, G. Reactivity-Tuning in Frustrated Lewis Pairs: Nucleophilicity and Lewis Basicity of Sterically Hindered Phosphines. Chemistry (Weinheim an der Bergstrasse, Germany) 2017, 23, 7422–7427. doi:10.1002/chem.201701080
Other Beilstein-Institut Open Science Activities