Design and synthesis of a photoswitchable guanidine catalyst

Philipp Viehmann and Stefan Hecht
Beilstein J. Org. Chem. 2012, 8, 1825–1830. https://doi.org/10.3762/bjoc.8.209

Supporting Information

The crystal structure has been deposited at the Cambridge Crystallographic Data Centre and allocated the deposition number CCDC 891016.

Supporting Information File 1: Experimental details and spectra.
Format: PDF Size: 667.1 KB Download

Cite the Following Article

Design and synthesis of a photoswitchable guanidine catalyst
Philipp Viehmann and Stefan Hecht
Beilstein J. Org. Chem. 2012, 8, 1825–1830. https://doi.org/10.3762/bjoc.8.209

How to Cite

Viehmann, P.; Hecht, S. Beilstein J. Org. Chem. 2012, 8, 1825–1830. doi:10.3762/bjoc.8.209

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Glasovac, Z.; Barešić, L.; Margetić, D. Role of the amide group in the design of the superbases constructed upon bicyclo[2.2.2]octane framework. Intra- vs. intermolecular hydrogen bonding. Computational and Theoretical Chemistry 2023, 1229, 114342. doi:10.1016/j.comptc.2023.114342
  • Valle, M.; Ximenis, M.; Lopez de Pariza, X.; Chan, J. M. W.; Sardon, H. Spotting Trends in Organocatalyzed and Other Organomediated (De)polymerizations and Polymer Functionalizations. Angewandte Chemie (International ed. in English) 2022, 61, e202203043. doi:10.1002/anie.202203043
  • Valle, M.; Ximenis, M.; Lopez de Pariza, X.; Chan, J. M. W.; Sardon, H. Spotting Trends in Organocatalyzed and Other Organomediated (De)polymerizations and Polymer Functionalizations. Angewandte Chemie 2022, 134. doi:10.1002/ange.202203043
  • Qiao, Z.; Fu, W.; Huang, Q.; Li, Z.; Zhao, C.; Shao, X. Optical Regulation of GABA Receptor by Visible Light via Azobenzene-Phenylpyrazole. Journal of agricultural and food chemistry 2022, 70, 5541–5550. doi:10.1021/acs.jafc.2c01463
  • Léonard, E.; Fayeulle, A. Azo-Dyes-Grafted Oligosaccharides-From Synthesis to Applications. Molecules (Basel, Switzerland) 2021, 26, 3063. doi:10.3390/molecules26113063
  • Banaszak-Léonard, E.; Fayeulle, A.; Franche, A.; Sagadevan, S.; Billamboz, M. Antimicrobial azo molecules: a review. Journal of the Iranian Chemical Society 2021, 18, 2829–2851. doi:10.1007/s13738-021-02238-4
  • Jablonkai, I.; Kunfi, A.; Qu, D.-H.; London, G. A new color in green chemistry: Photochromic molecular switches as components of multifunctional catalytic systems. Nontraditional Activation Methods in Green and Sustainable Applications; Elsevier, 2021; pp 241–282. doi:10.1016/b978-0-12-819009-8.00006-2
  • Berry, J.; Despras, G.; Lindhorst, T. K. A compatibility study on the glycosylation of 4,4′-dihydroxyazobenzene. RSC advances 2020, 10, 17432–17437. doi:10.1039/d0ra02435j
  • Tecilla, P.; Bonifazi, D. Configurational Selection in Azobenzene‐Based Supramolecular Systems Through Dual‐Stimuli Processes. ChemistryOpen 2020, 9, 538–553. doi:10.1002/open.202000045
  • Lai, H.; Zhang, J.; Xing, F.; Xiao, P. Recent advances in light-regulated non-radical polymerisations. Chemical Society reviews 2020, 49, 1867–1886. doi:10.1039/c9cs00731h
  • Devi, S.; Saraswat, M.; Grewal, S.; Venkataramani, S. Evaluation of Substituent Effect in Z-Isomer Stability of Arylazo-1H-3,5-dimethylpyrazoles: Interplay of Steric, Electronic Effects and Hydrogen Bonding. The Journal of organic chemistry 2018, 83, 4307–4322. doi:10.1021/acs.joc.7b02604
  • Mazur, T.; Lach, S.; Grzybowski, B. A. Heterogeneous Catalysis “On Demand”: Mechanically Controlled Catalytic Activity of a Metal Surface. ACS applied materials & interfaces 2017, 9, 44264–44269. doi:10.1021/acsami.7b15253
  • Wangngae, S.; Pattarawarapan, M.; Phakhodee, W. Ph3P/I2-Mediated Synthesis of N,N′,N″-Substituted Guanidines and 2-Iminoimidazolin-4-ones from Aryl Isothiocyanates. The Journal of organic chemistry 2017, 82, 10331–10340. doi:10.1021/acs.joc.7b01794
  • Cvrtila, I.; Fanlo-Virgós, H.; Schaeffer, G.; Santiago, G. M.; Otto, S. Redox Control over Acyl Hydrazone Photoswitches. Journal of the American Chemical Society 2017, 139, 12459–12465. doi:10.1021/jacs.7b03724
  • Eichstaedt, K.; Jaramillo-Garcia, J.; Leigh, D. A.; Marcos, V.; Pisano, S.; Singleton, T. A. Switching between Anion-Binding Catalysis and Aminocatalysis with a Rotaxane Dual-Function Catalyst. Journal of the American Chemical Society 2017, 139, 9376–9381. doi:10.1021/jacs.7b04955
  • Metz, A.; Plothe, R.; Glowacki, B.; Koszalkowski, A.; Scheckenbach, M.; Beringer, A.; Rösener, T.; de Vasconcellos, J. M.; Haase, R.; Flörke, U.; Hoffmann, A.; Herres-Pawlis, S. Zinc chloride complexes with aliphatic and aromatic guanidine hybrid ligands and their activity in the ring‐opening polymerisation of D,L‐lactide. European Journal of Inorganic Chemistry 2016, 2016, 4974–4987. doi:10.1002/ejic.201600870
  • Vlatković, M.; Collins, B. S. L.; Feringa, B. L. Dynamic Responsive Systems for Catalytic Function. Chemistry (Weinheim an der Bergstrasse, Germany) 2016, 22, 17080–17111. doi:10.1002/chem.201602453
  • Liu, J.; Cui, S.; Li, Z.; Xu, S.; Xu, J.; Xianfu, P.; Yaya, L.; Dong, H.; Sun, H.; Guo, K. Polymerization of trimethylene carbonates using organic phosphoric acids. Polymer Chemistry 2016, 7, 5526–5535. doi:10.1039/c6py01210h
  • Léonard, E.; Mangin, F.; Villette, C.; Billamboz, M.; Len, C. Azobenzenes and catalysis. Catalysis Science & Technology 2016, 6, 379–398. doi:10.1039/c4cy01597e
  • Eisenreich, F.; Viehmann, P.; Müller, F.; Hecht, S. Electronic Activity Tuning of Acyclic Guanidines for Lactide Polymerization. Macromolecules 2015, 48, 8729–8732. doi:10.1021/acs.macromol.5b02137
Other Beilstein-Institut Open Science Activities