Flow photochemistry: Old light through new windows

Jonathan P. Knowles, Luke D. Elliott and Kevin I. Booker-Milburn
Beilstein J. Org. Chem. 2012, 8, 2025–2052. https://doi.org/10.3762/bjoc.8.229

Cite the Following Article

Flow photochemistry: Old light through new windows
Jonathan P. Knowles, Luke D. Elliott and Kevin I. Booker-Milburn
Beilstein J. Org. Chem. 2012, 8, 2025–2052. https://doi.org/10.3762/bjoc.8.229

How to Cite

Knowles, J. P.; Elliott, L. D.; Booker-Milburn, K. I. Beilstein J. Org. Chem. 2012, 8, 2025–2052. doi:10.3762/bjoc.8.229

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Benny, A.; Di Simo, L.; Guazzelli, L.; Scanlan, E. M. Radical Mediated Decarboxylation of Amino Acids via Photochemical Carbonyl Sulfide (COS) Elimination. Molecules 2024, 29, 1465. doi:10.3390/molecules29071465
  • Hoffmann, N. Photochemical Synthesis of Fine Chemicals. Reference Module in Chemistry, Molecular Sciences and Chemical Engineering; Elsevier, 2024. doi:10.1016/b978-0-443-15742-4.00013-2
  • Xu, Y.; Zhao, F.; Guo, X. Continuous microflow visible-light photocatalytic N-formylation of piperidine and its kinetic study. Chinese Chemical Letters 2024, 35, 108642. doi:10.1016/j.cclet.2023.108642
  • Ran, C.; Pu, K. Molecularly generated light and its biomedical applications. Angewandte Chemie 2023, 136. doi:10.1002/ange.202314468
  • Ran, C.; Pu, K. Molecularly generated light and its biomedical applications. Angewandte Chemie (International ed. in English) 2023, 63, e202314468. doi:10.1002/anie.202314468
  • Lebrun, G.; Schmitt, M.; Oelgemöller, M.; Vedrenne, M.; Blanco, J.-F.; Loubière, K. Investigating the photochemical reaction of an oxazolone derivative under continuous-flow conditions: from analytical monitoring to implementation in an advanced UVC-LED-driven microreactor. Journal of Flow Chemistry 2023, 13, 413–425. doi:10.1007/s41981-023-00284-y
  • Rigoglioso, V. P.; Boydston, A. J. Flow Optimization of Photoredox-Mediated Metal-Free Ring-Opening Metathesis Polymerization. ACS macro letters 2023, 12, 1479–1485. doi:10.1021/acsmacrolett.3c00545
  • Protti, S.; Ravelli, D.; Fagnoni, M. doi:10.1002/9781119855668.ch2
  • Drelinkiewicz, D.; Alston, S. T.; Durand, T.; Whitby, R. J. The switch-off method: rapid investigation of flow photochemical reactions. Reaction Chemistry & Engineering 2023, 8, 2134–2140. doi:10.1039/d3re00261f
  • Meir, G.; Adams, M.; Adriaenssens, P.; Enis Leblebici, M.; Kuhn, S.; Van Gerven, T. Design and evaluation of co-currently illuminated two-phase bubbly flow photochemical reactors. Chemical Engineering Journal 2023, 470, 144192. doi:10.1016/j.cej.2023.144192
  • Hogan, D. T.; Zhou, W.; Gelfand, B. S.; Sutherland, T. C. Rational assembly of benzenoid rings in benzo[ghi]perylene yields a diversity of edge features with site-selective reactivity. Organic Chemistry Frontiers 2023, 10, 3467–3478. doi:10.1039/d3qo00718a
  • O'Callaghan, K. S.; Lynch, D.; Baumann, M.; Collins, S. G.; Maguire, A. R. Flow photolysis of aryldiazoacetates leading to dihydrobenzofurans via intramolecular C-H insertion. Organic & biomolecular chemistry 2023, 21, 4770–4780. doi:10.1039/d3ob00541k
  • Di Filippo, M.; Baumann, M. Carbene-controlled regioselectivity in photochemical cascades. Organic & biomolecular chemistry 2023, 21, 2930–2934. doi:10.1039/d3ob00122a
  • Dolna, M.; Narodowiec, J.; Staszewska-Krajewska, O.; Szcześniak, P.; Furman, B. Remotely controlled flow photo-Fries-type rearrangement of N-vinylazetidinones: an efficient route to structurally diverse 2,3-dihydro-4-pyridones. Reaction Chemistry & Engineering 2023, 8, 784–789. doi:10.1039/d2re00438k
  • Cruise, A.; Baumann, M. TBADT‐Mediated C‐C Bond Formation Exploiting Aryl Aldehydes in a Photochemical Flow Reactor. ChemCatChem 2023, 15. doi:10.1002/cctc.202201328
  • Bian, K.-J.; Kao, S.-C.; Nemoto, D.; Chen, X.-W.; West, J. G. Photochemical diazidation of alkenes enabled by ligand-to-metal charge transfer and radical ligand transfer. Nature communications 2022, 13, 7881. doi:10.1038/s41467-022-35560-3
  • Brown, E. E. Minireview: recent efforts toward upgrading lignin-derived phenols in continuous flow. Journal of Flow Chemistry 2022, 13, 91–102. doi:10.1007/s41981-022-00248-8
  • Horáková, P.; Kočí, K. Continuous-Flow Chemistry and Photochemistry for Manufacturing of Active Pharmaceutical Ingredients. Molecules (Basel, Switzerland) 2022, 27, 8536. doi:10.3390/molecules27238536
  • Frogley, B. J.; Hill, A. F.; Onagi, H.; Watson, L. J. Organometallic flow chemistry: solvento complexes. Dalton transactions (Cambridge, England : 2003) 2022, 51, 17354–17360. doi:10.1039/d2dt02583c
  • Li, J.; Zhao, F.; Fan, W.; Chen, M.; Guo, X. Automatic measurement and analysis of kinetics for photocatalytic reactions in continuous microflow. Chemical Engineering Journal 2022, 447, 137546. doi:10.1016/j.cej.2022.137546

Patents

  • ARUMUGHAM RASAPPA; SCHABER CHRISTOPHER; RAUTER HOLGER; WERNER SILVIA. Systems and methods for producing synthetic hypericin. AU 2016396033 B2, July 8, 2021.
  • SUGIMOTO TAKENORI; TAKAHASHI TORU; SUGAWARA KAZUKI. Photochemical reaction device, photochemical reaction method using same, and lactam production method using said method. US 10414724 B2, Sept 17, 2019.
  • SUGIMOTO TAKENORI; TAKAHASHI TORU; SUGAWARA KAZUKI. PHOTOCHEMICAL REACTION DEVICE, PHOTOCHEMICAL REACTION METHOD USING SAME, AND LACTAM PRODUCTION METHOD USING SAID METHOD. US 20170298015 A1, Oct 19, 2017.
Other Beilstein-Institut Open Science Activities