Continuous flow photocyclization of stilbenes – scalable synthesis of functionalized phenanthrenes and helicenes

Quentin Lefebvre, Marc Jentsch and Magnus Rueping
Beilstein J. Org. Chem. 2013, 9, 1883–1890. https://doi.org/10.3762/bjoc.9.221

Supporting Information

Supporting Information File 1: Experimental part.
Format: PDF Size: 1.7 MB Download

Cite the Following Article

Continuous flow photocyclization of stilbenes – scalable synthesis of functionalized phenanthrenes and helicenes
Quentin Lefebvre, Marc Jentsch and Magnus Rueping
Beilstein J. Org. Chem. 2013, 9, 1883–1890. https://doi.org/10.3762/bjoc.9.221

How to Cite

Lefebvre, Q.; Jentsch, M.; Rueping, M. Beilstein J. Org. Chem. 2013, 9, 1883–1890. doi:10.3762/bjoc.9.221

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Cho, S.; Usuba, J.; Chakraborty, S.; Li, X.; Han, G. G. Solid-state photon energy storage via reversible [2+2] cycloaddition of donor-acceptor styrylpyrylium system. Chem 2023, 9, 3159–3171. doi:10.1016/j.chempr.2023.06.007
  • Ljubić, A.; Šalić, A.; Škorić, I. Synthesis of Hydroxylated Stilbenes in a Batch and Flow Reactor: An Overview. ChemistrySelect 2023, 8. doi:10.1002/slct.202303375
  • Li, X.; Cho, S.; Wan, J.; Han, G. G. Photoswitches and photochemical reactions for optically controlled phase transition and energy storage. Chem 2023, 9, 2378–2389. doi:10.1016/j.chempr.2023.05.029
  • Storch, J.; Žádný, J.; Církva, V.; Jakubec, M.; Hrbáč, J.; Vacek, J. doi:10.1002/9783527829415.ch1
  • Nishida, J.; Matsuno, K.; Kawase, T. Synthesis, Photophysical and Electrochemical Study of 1,3,6,8‐Tetraarylsubstituted X‐Shaped Phenanthrene Derivatives. Asian Journal of Organic Chemistry 2022, 11. doi:10.1002/ajoc.202100789
  • Yadykov, A. V.; Lvov, A. G.; Krayushkin, M. M.; Zakharov, A. V.; Shirinian, V. Z. Photocyclization of Diarylethenes: The Effect of Electron and Proton Acceptors as Additives. The Journal of organic chemistry 2021, 86, 10023–10031. doi:10.1021/acs.joc.1c00723
  • Seylar, J.; Stasiouk, D.; Simone, D. L.; Varshney, V.; Heckler, J. E.; McKenzie, R. Breaking the bottleneck: stilbene as a model compound for optimizing 6π e− photocyclization efficiency. RSC advances 2021, 11, 6504–6508. doi:10.1039/d0ra10619d
  • Kos, M.; Žádný, J.; Storch, J.; Církva, V.; Cuřínová, P.; Sýkora, J.; Císařová, I.; Kuriakose, F.; Alabugin, I. V. Oxidative Photocyclization of Aromatic Schiff Bases in Synthesis of Phenanthridines and Other Aza-PAHs. International journal of molecular sciences 2020, 21, 5868. doi:10.3390/ijms21165868
  • Mizuno, K.; Kakiuchi, K. Chapter 4:Perspectives on the Use of Flow Systems to Carry Out Organic Photochemical Reactions. Flow Chemistry; The Royal Society of Chemistry, 2019; pp 129–152. doi:10.1039/9781788016094-00129
  • Murase, T. Synthesis of the Longest Carbohelicene by Multiple Oxidative Photocyclizations of Arylene–Vinylene Oligomers. Designed Molecular Space in Material Science and Catalysis; Springer Singapore, 2018; pp 69–90. doi:10.1007/978-981-13-1256-4_4
  • Hafedh, N.; Aloui, F.; Raouafi, S.; Dorcet, V.; Hassine, B. B. New [4]helicene derivatives: Synthesis, characterization and photophysical properties. Journal of Molecular Liquids 2018, 262, 310–316. doi:10.1016/j.molliq.2018.04.083
  • Ravat; Hinkelmann, R.; Steinebrunner, D.; Prescimone, A.; Bodoky, I.; Juríček, M. Configurational Stability of [5]Helicenes. Organic letters 2017, 19, 3707–3710. doi:10.1021/acs.orglett.7b01461
  • Murase, T.; Suto, T.; Suzuki, H. Azahelicenes from the Oxidative Photocyclization of Boron Hydroxamate Complexes. Chemistry, an Asian journal 2017, 12, 726–729. doi:10.1002/asia.201700096
  • Chen, M.; Zhao, X.; Yang, C.; Wang, Y.; Xia, W. Further insight into the photochemical behavior of 3-aryl-N-(arylsulfonyl)propiolamides: tunable synthetic route to phenanthrenes. RSC Advances 2017, 7, 12022–12026. doi:10.1039/c7ra00193b
  • Mizuno, K.; Nishiyama, Y.; Ogaki, T.; Terao, K.; Ikeda, H.; Kakiuchi, K. Utilization of microflow reactors to carry out synthetically useful organic photochemical reactions. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2016, 29, 107–147. doi:10.1016/j.jphotochemrev.2016.10.002
  • Chen, C.-F.; Shen, Y. Oxidative Photocyclization. Helicene Chemistry; Springer Berlin Heidelberg, 2016; pp 43–70. doi:10.1007/978-3-662-53168-6_3
  • Millet, A.; Lefebvre, Q.; Rueping, M. Visible-Light Photoredox-Catalyzed Giese Reaction: Decarboxylative Addition of Amino Acid Derived α-Amino Radicals to Electron-Deficient Olefins. Chemistry (Weinheim an der Bergstrasse, Germany) 2016, 22, 13464–13468. doi:10.1002/chem.201602257
  • Yamamoto, A.; Matsui, Y.; Asada, T.; Kumeda, M.; Takagi, K.; Suenaga, Y.; Nagae, K.; Ohta, E.; Sato, H.; Koseki, S.; Naito, H.; Ikeda, H. Amorphous Solid Simulation and Trial Fabrication of the Organic Field-Effect Transistor of Tetrathienonaphthalenes Prepared by Using Microflow Photochemical Reactions: A Theoretical Calculation-Inspired Investigation. The Journal of organic chemistry 2016, 81, 3168–3176. doi:10.1021/acs.joc.6b00117
  • Cambié, D.; Bottecchia, C.; Straathof, N. J. W.; Hessel, V.; Noël, T. Applications of Continuous-Flow Photochemistry in Organic Synthesis, Material Science, and Water Treatment. Chemical reviews 2016, 116, 10276–10341. doi:10.1021/acs.chemrev.5b00707
  • Lefebvre, Q.; Hoffmann, N.; Rueping, M. Photoorganocatalysed and visible light photoredox catalysed trifluoromethylation of olefins and (hetero)aromatics in batch and continuous flow. Chemical communications (Cambridge, England) 2016, 52, 2493–2496. doi:10.1039/c5cc09881e
Other Beilstein-Institut Open Science Activities