Chemical–biological characterization of a cruzain inhibitor reveals a second target and a mammalian off-target

Jonathan W. Choy, Clifford Bryant, Claudia M. Calvet, Patricia S. Doyle, Shamila S. Gunatilleke, Siegfried S. F. Leung, Kenny K. H. Ang, Steven Chen, Jiri Gut, Juan A. Oses-Prieto, Jonathan B. Johnston, Michelle R. Arkin, Alma L. Burlingame, Jack Taunton, Matthew P. Jacobson, James M. McKerrow, Larissa M. Podust and Adam R. Renslo
Beilstein J. Org. Chem. 2013, 9, 15–25. https://doi.org/10.3762/bjoc.9.3

Supporting Information

The Supporting Information features a table with experimentally determined and computationally predicted binding affinities, additional GC/MS spectra from lipid-analysis studies, time courses for reaction of compounds 1 and 6 with glutathione in vitro, and synthetic schemes for analogues 4, 9, 11, 12, and 13, as well as experimental procedures.

Supporting Information File 1: Figures, schemes, and experimental procedures.
Format: PDF Size: 421.4 KB Download

Cite the Following Article

Chemical–biological characterization of a cruzain inhibitor reveals a second target and a mammalian off-target
Jonathan W. Choy, Clifford Bryant, Claudia M. Calvet, Patricia S. Doyle, Shamila S. Gunatilleke, Siegfried S. F. Leung, Kenny K. H. Ang, Steven Chen, Jiri Gut, Juan A. Oses-Prieto, Jonathan B. Johnston, Michelle R. Arkin, Alma L. Burlingame, Jack Taunton, Matthew P. Jacobson, James M. McKerrow, Larissa M. Podust and Adam R. Renslo
Beilstein J. Org. Chem. 2013, 9, 15–25. https://doi.org/10.3762/bjoc.9.3

How to Cite

Choy, J. W.; Bryant, C.; Calvet, C. M.; Doyle, P. S.; Gunatilleke, S. S.; Leung, S. S. F.; Ang, K. K. H.; Chen, S.; Gut, J.; Oses-Prieto, J. A.; Johnston, J. B.; Arkin, M. R.; Burlingame, A. L.; Taunton, J.; Jacobson, M. P.; McKerrow, J. M.; Podust, L. M.; Renslo, A. R. Beilstein J. Org. Chem. 2013, 9, 15–25. doi:10.3762/bjoc.9.3

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Araujo, S. C.; de Angelo, R. M.; Barbosa, H.; Costa-Silva, T. A.; Tempone, A. G.; Lago, J. H. G.; Honorio, K. M. Identification of inhibitors as drug candidates against Chagas disease. European journal of medicinal chemistry 2022, 248, 115074. doi:10.1016/j.ejmech.2022.115074
  • Lemke, C.; Jílková, A.; Ferber, D.; Braune, A.; On, A.; Johe, P.; Zíková, A.; Schirmeister, T.; Mareš, M.; Horn, M.; Gütschow, M. Two Tags in One Probe: Combining Fluorescence- and Biotin-based Detection of the Trypanosomal Cysteine Protease Rhodesain. Chemistry (Weinheim an der Bergstrasse, Germany) 2022, 28, e202201636. doi:10.1002/chem.202201636
  • Hansen, A. H.; Christensen, H. B.; Pandey, S. K.; Sergeev, E.; Valentini, A.; Dunlop, J.; Dedeo, D.; Fratta, S.; Hudson, B. D.; Milligan, G.; Ulven, T.; Ulven, E. R. Structure-Activity Relationship Explorations and Discovery of a Potent Antagonist for the Free Fatty Acid Receptor 2. ChemMedChem 2021, 16, 3326–3341. doi:10.1002/cmdc.202100356
  • Kourbeli, V.; Chontzopoulou, E.; Moschovou, K.; Pavlos, D.; Mavromoustakos, T.; Papanastasiou, I. An Overview on Target-Based Drug Design against Kinetoplastid Protozoan Infections: Human African Trypanosomiasis, Chagas Disease and Leishmaniases. Molecules (Basel, Switzerland) 2021, 26, 4629. doi:10.3390/molecules26154629
  • Doherty, W.; Adler, N.; Butler, T. J.; Knox, A. J. S.; Evans, P. Synthesis and optimisation of P3 substituted vinyl sulfone-based inhibitors as anti-trypanosomal agents. Bioorganic & medicinal chemistry 2020, 28, 115774. doi:10.1016/j.bmc.2020.115774
  • Cannalire, R.; Stefanelli, I.; Cerchia, C.; Beccari, A. R.; Pelliccia, S.; Summa, V. SARS-CoV-2 Entry Inhibitors: Small Molecules and Peptides Targeting Virus or Host Cells. International journal of molecular sciences 2020, 21, 5707. doi:10.3390/ijms21165707
  • da Silva Santos, S.; de Araujo, R. V.; Giarolla, J.; Seoud, O. A. E.; Ferreira, E. I. Searching for drugs for Chagas disease, leishmaniasis and schistosomiasis: a review. International journal of antimicrobial agents 2020, 55, 105906. doi:10.1016/j.ijantimicag.2020.105906
  • Dehghanpoor, S.; Sadeghi, B.; Mosslemin, M. H. Green Nano-Silica Sulfuric Acid-Catalyzed Synthesis of New 6-Amino-8-aryl-7-(benzenesulfonyl)-2-(hydroxymethyl)-pyrano[3,2-b]pyran-4(8H)-one Derivatives. Russian Journal of Organic Chemistry 2019, 55, 1957–1960. doi:10.1134/s107042801912025x
  • Villalta, F.; Rachakonda, G. Advances in preclinical approaches to Chagas disease drug discovery. Expert opinion on drug discovery 2019, 14, 1161–1174. doi:10.1080/17460441.2019.1652593
  • Abyar, E.; Sadeghi, B.; Mosslemin, M. H. Synthesis of Novel 2-Amino-7-Methyl-4-Aryl-3-(Phenylsulfonyl)Pyrano[4,3-b]Pyran-5(4H)-One Derivatives in the Presence TiCl4 Supported on Kaolin as a Nano Catalyst. Polycyclic Aromatic Compounds 2019, 41, 920–928. doi:10.1080/10406638.2019.1628784
  • Sadeghi, B. Synthesis of novel 6-amino-2-(hydroxymethyl)-8-aryl-7-(phenylsulfonyl)pyrano[3,2-b]pyran-4(8H)-one derivatives catalyzed by nano-cellulose-OSO3H. Research on Chemical Intermediates 2019, 45, 4897–4906. doi:10.1007/s11164-019-03870-9
  • Field, M. C.; Horn, D.; Fairlamb, A. H.; Ferguson, M. A. J.; Gray, D. W.; Read, K. D.; De Rycker, M.; Torrie, L. S.; Wyatt, P. G.; Wyllie, S.; Gilbert, I. H. Anti-trypanosomatid drug discovery: an ongoing challenge and a continuing need. Nature reviews. Microbiology 2017, 15, 217–231. doi:10.1038/nrmicro.2016.193
  • Apt, W. Treatment of Chagas' disease. American Trypanosomiasis Chagas Disease 2017, 113, 751–771. doi:10.1016/b978-0-12-801029-7.00032-0
  • Hallenbeck, K.; David, T.; Renslo, A. R.; Arkin, M. R. Targeting Non-Catalytic Cysteine Residues Through Structure-Guided Drug Discovery. Current topics in medicinal chemistry 2016, 17, 4–15. doi:10.2174/1568026616666160719163839
  • Goupil, L.; Ivry, S. L.; Hsieh, I.; Suzuki, B. M.; Craik, C. S.; O’Donoghue, A. J.; McKerrow, J. H. Cysteine and Aspartyl Proteases Contribute to Protein Digestion in the Gut of Freshwater Planaria. PLoS neglected tropical diseases 2016, 10, e0004893. doi:10.1371/journal.pntd.0004893
  • Begolo, D.; Clayton, C. Comprehensive Analysis of Parasite Biology: From Metabolism to Drug Discovery; Wiley, 2016; pp 1–39. doi:10.1002/9783527694082.ch1
  • Janovy, J. J.; Esch, G. W. doi:10.1002/9781118884799.ch15
  • Bermúdez, J. M.; Davies, C.; Simonazzi, A.; Real, J. P.; Palma, S. D. Current drug therapy and pharmaceutical challenges for Chagas disease. Acta tropica 2015, 156, 1–16. doi:10.1016/j.actatropica.2015.12.017
  • McShan, D.; Kathman, S. G.; Lowe, B.; Xu, Z.; Zhan, J.; Statsyuk, A. V.; Ogungbe, I. V. Identification of non-peptidic cysteine reactive fragments as inhibitors of cysteine protease rhodesain. Bioorganic & medicinal chemistry letters 2015, 25, 4509–4512. doi:10.1016/j.bmcl.2015.08.074
  • Khare, S.; Roach, S. L.; Barnes, S. W.; Hoepfner, D.; Walker, J. R.; Chatterjee, A. K.; Neitz, R. J.; Arkin, M. R.; McNamara, C. W.; Ballard, J.; Lai, Y.; Fu, Y.; Molteni, V.; Yeh, V.; McKerrow, J. H.; Glynne, R.; Supek, F. Utilizing Chemical Genomics to Identify Cytochrome b as a Novel Drug Target for Chagas Disease. PLoS pathogens 2015, 11, e1005058. doi:10.1371/journal.ppat.1005058
Other Beilstein-Institut Open Science Activities