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A family of a-aryl-a-aminophosphonates and a-aryl-a-aminophosphine oxides was synthesized by the microwave-assisted solvent-

free addition of dialkyl phosphites and diphenylphosphine oxide, respectively, to imines formed from benzaldehyde derivatives and

primary amines. After optimization, the reactivity was mapped, and the fine mechanism was evaluated by DFT calculations. Two

o-aminophosphonates were subjected to an X-ray study revealing a racemic dimer formation made through a N-H---O=P intermo-

lecular hydrogen bridges pair.

Introduction

a-Aminophosphonates and related derivatives, considered as the
structural analogues of a-amino acids, have significant impor-
tance, especially in medicinal [1-3] and agricultural chemistry
[4,5], due to their potential biological activity. The two major
synthetic routes towards a-aminophosphonate derivatives

embrace the Kabachnik—Fields (phospha-Mannich) three-com-

ponent condensation, where an amine, an aldehyde or ketone
and a >P(O)H reagent, such as a dialkyl phosphite or a
secondary phosphine oxide react in a one-pot manner [6-10],
and the Pudovik (aza-Pudovik) reaction, in which a >P(O)H
species is added on the double bond of imines [11-14]. In this
article, the latter pathway is utilized for the synthesis of a-aryl-
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a-aminophosphonates and o-aryl-a-aminophosphine oxides. In
most cases, the additions were carried out in the presence of a
catalyst and solvent. The use of many types of catalysts,
such as acids (HCOOH) [15] or bases (NaOH [16], 1,8-diazabi-
cyclo[5.4.0Jundec-7-ene (DBU) [17], tetramethylguanidine
(TMG) [18,19]), p-toluenesulfonyl chloride [20], metal salts
(MgS0y) [21], CdI, [22]), metal complexes (BF3-EtO; [23,24],
t-PcAICI [15]), and phase-transfer catalysts [25] were reported.
The enantioselective hydrophosphonylation of imines was also
described, where chiral catalysts were applied in various sol-
vents [26-32]. There are a few examples, where the reactions
were performed in a solvent in the absence of any catalyst [33-
38], while in a few cases the catalysts, i.e., PTSA [39], Na [40],
TEA [21] or MoO,Cl, [41], were used under solvent-free
conditions. As for the microwave (MW)-assisted additions, only
two cases were reported, but the catalytic variations were
carried out in kitchen MW ovens [32,42], and thus, do lack of
exact temperatures, these results cannot be reproduced. From a
’green chemical’ point of view, the solvent-free and catalyst-
free additions are of interest, however, in these reactions, rela-
tively long reaction times (1.5-10 h), and/or unreasonably large
excesses (50-150 equiv) of the dialkyl phosphite were applied
[43-52].

The synthesis of a-aryl-a-aminophosphine oxides by the addi-
tion of secondary phosphine oxides to imines is much less
studied. Only a few publications were found and the reported
reactions were performed in solvent (in DEE, THF or toluene)
[53-56], or in the presence of a chiral catalyst [57]. There is
only one solvent and catalyst-free example [58], but in this case
a long reaction time (9 h) was required. In the Pudovik synthe-
sis of a-aminophosphine oxides, the MW-assisted accomplish-
ment has not been utilized at all. In the current paper, we
wished to develop a facile catalyst and solvent-free
MW-assisted method for the synthesis of a-aryl-a-aminophos-
phonates and a-aryl-a-aminophosphine oxides by the addition
of dialkyl phosphites or diphenylphosphine oxide to the double

bond of imines, and aimed at the preparation of new derivatives.

Results and Discussion
Synthesis of a-aryl-a-aminophosphonates

and a-aminophosphine oxides

At first, the imine starting materials 1 were prepared by the con-
densation of benzaldehyde and its chloro-substituted deriva-
tives with primary amines, such as butyl-, cyclohexylamine or
aniline at room temperature under solvent-free conditions
(Scheme 1).

Then, the reaction of N-benzylidene(butyl)amine (1a) with four
different dialkyl phosphites and diphenylphosphine oxide was
investigated under MW-assisted solvent-free conditions
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Scheme 1: Synthesis of starting N-benzylideneamines 1.

searching for the optimum temperature and reaction time
(Table 1). The products were a-aminophosphonates 2a—d and
a-aminophosphine oxide 2e.

The addition of 1 equivalent of dimethyl phosphite (DMP) to
imine la at 80 °C was almost complete after 30 min, and
dimethyl ((butylamino)(phenyl)methyl)phosphonate (2a) could
be isolated in a yield of 73% (Table 1, entry 1). Under similar
conditions, the comparative thermal experiment led to a lower
conversion of 79% (Table 1, entry 2). A full conversion could
be achieved by heating at 100 °C under MW for 30 min al-
though 1.2 equivalent of DMP were required. The formation of
6% of the N-methylated by-product 3 {3, (CDCl3) 25.4,
[M + H]*found = 286.1582, C14H,5NO3P requires 286.1567}
was inevitable (Table 1, entries 3 and 4). Similar N-methyla-
tions have been observed also in other cases [59,60]. At 80 °C,
diethyl phosphite (DEP) was less reactive than DMP, as after an
irradiation time of 1 h, the conversion was only 76% (Table 1,
entry 5). At 100 °C/30 min, the reaction proceeded better
(Table 1, entry 6), but a complete conversion was experienced
only when using 1.2 equivalents of DEP (Table 1, entry 7). In
the latter case, aminophosphonate 2b was obtained in a yield
of 85%. The comparative thermal experiment led again to a
significantly lower conversion (Table 1, entry 8). Changing for
dibutyl phosphite (DBuP), and applying it in a 1.2-fold quantity
at 100 °C for 30 min, the addition was practically quantitative,
and aminophosphonate 2¢ was obtained in a yield of 90%
(Table 1, entry 9). Under similar conditions, the reaction of
dibenzyl phosphite (DBnP) was also clear-cut and afforded
dibenzyl ((butylamino)(phenyl)methyl)phosphonate (2d) in
69% yield (Table 1, entry 10). Finally, diphenylphosphine oxide
(DPPO) was added to imine 1a. After 10 min irradiation at
100 °C, complete conversion was observed and aminophos-
phine oxide 2e was obtained in a yield of 89% (Table 1, entry
11).

Next N-benzylidene(cyclohexyl)amine (1b) was tried in the
aza-Pudovik reaction (Table 2).
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Table 1: Addition of dialkyl phosphites and diphenylphosphine oxide to N-benzylidenebutylamine (1a).

Bu-N H MW or A
o, Y T, t
’ no solvent

||
Bu—NH-CH-PY,

1a 2
Y = OMe (a), OEt (b), OBu (c), OBn (d), Ph (e)

Entry Mode of >P(O)H >P(O)H T t Composition (%) Yield®

heating (equiv) (°C) (min) 1a 2 (%)

1 MW DMP 1 80 30 5 95 (2a) 73
2 A DMP 1 80 30 21 79 (2a) -
3 MW DMP 1 100 30 4 90° (2a) -
4 MW DMP 1.2 100 30 0 94°€ (2a) -
5 MW DEP 1 80 60 24 76 (2b) -
6 MW DEP 1 100 30 5 95 (2b) -
7 MW DEP 1.2 100 30 0 100 (2b) 85
8 A DEP 1.2 100 30 17 83 (2b) -
9 MW DBuUP 1.2 100 30 1 99 (2c) 90
10 MW DBnP 1.2 100 30 0 1009 (2d) 69
11¢ MW DPPO 1.2 100 10 0 1009 (2e) 89

a0n the basis of GC. PAfter column chromatography. ®In these experiments byproduct 3 was also formed in a proportion of 6% based on GC-MS:
Me I
Bu-N-CH—-P(OMe),

3 d0n the basis of HPLC. €Under N, atmosphere.

Table 2: Addition of >P(O)H reagents to N-benzylidene(cyclohexyl)amine (1b).

0O
Ny H MW or A I
Q o Y NH-CH-PY;

T, t
H Y no solvent

1b 4
Y = OMe (a), OEt (b), OBu (c), OBn (d), Ph (e)

Entry Mode of >P(O)H >P(O)H T t Composition (%) YieldP

heating (equiv) (°C) (min) 1b 4 (%)

1 MW DMP 1.2 80 30 11 89 (4a) -

2 MW DMP 1.2 100 30 7 93¢ (4a) -

3 MW DMP 1.5 100 30 1 99 (4a) 87

4 A DMP 1.5 100 30 9 91 (4a) -

5 MW DEP 1.2 100 30 0 100 (4b) 91

6 MW DBuUP 1.2 100 30 4 96° (4c) 93

7 MW DBnP 1.2 100 30 0 100¢ (4d) 68

8¢ MW DPPO 1.2 100 10 0 1009 (4e) 88

20n the basis of GC. PAfter column chromatography. °There was no change for further irradiation. 90n the basis of HPLC. €Under N, atmosphere.
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Its reaction with 1.2 equivalents of DMP at 80 °C for 30 min led
to aminophosphonate 4a at a conversion of 89% (Table 2, entry
1). Even at 100 °C, no quantitative conversion could be
achieved (Table 2, entry 2). There was need for 1.5 equivalents
of DMP to attain a conversion of 99%. In this case, dimethyl
((cyclohexylamino)(phenyl)methyl)phosphonate (4a) was iso-
lated in a yield of 87% (Table 2, entry 3). The comparative ther-
mal experiment led to a somewhat lower conversion (Table 2,
entry 4). The addition of DEP and DBuP at 100 °C on the C=N
moiety of imine 1b was quantitative or almost quantitative, re-
spectively. The corresponding aminophosphonates 4b and 4c¢
could be prepared in yields of approximately 92% (Table 2,
entries 5 and 6). The reaction of N-benzylidene(cyclo-
hexyl)amine (1b) with DBnP at 100 °C afforded the target com-
pound 4d in a conversion of 100% that could be isolated in a
yield of only 68% (Table 2, entry 7). The phosphinoylation of
imine 1b was carried out at 100 °C for 10 min. The yield of
((cyclohexylamino)(phenyl)methyl)diphenylphosphine oxide
(4e) was 88% (Table 2, entry 8). It can be noted that the
reactivity of N-benzylidene(butyl)amine (1a) and N-benzyl-
idene(cyclohexyl)amine (1b) is comparable.

N-Benzylideneaniline (1c¢) revealed a somewhat enhanced reac-
tivity in the reaction with the >P(O)H species (Table 3). The
electron-donating butyl and cyclohexyl groups decrease the
partial positive charge on the carbon atom of the >C=N- unit, as
compared to the phenyl substituent. Hence, complete additions
could be accomplished already at 80 °C within reaction
times of 10-30 min. The yields of aminophosphonates 5a—c

Table 3: MW-assisted addition of >P(O)H reagents to N-benzylide-
neaniline (1c).

0]
MW
@N H o, ¥ Tt @—NH-CH—I'IDYQ
+ P 5
H Y no solvent
(1.2 equiv)
1c 5
Y = OMe (a), OEt (b), OBu (c), OBn (d), Ph (e)

Entry >P(O)H T t Composition  Yield®
(°C)  (min) (%)? (%)
1c 5
1 OMe 80 10 1 99 (5a) 92
2 OEt 80 10 0 100 (5b) 93
3 OBu 80 20 0 100 (5¢) 97
4 OBn 80 30 0 100°(5d) 70

5d Ph 80 10 0 100°€ (5e) 89

a0n the basis of GC. PAfter column chromatography. °On the basis of
HPLC. 9Under Ny atmosphere.
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were in the range of 92-97%, while the benzyl ester (5d)
was obtained in a yield of 70% (Table 3, entries 1-4). The
aminophosphine oxide 5e was isolated in an 89% yield
(Table 3, entry 5).

Next, N-chlorobenzylidene(butyl)amines 1d—f were reacted
with dialkyl phosphites at 80—-100 °C to obtain the
corresponding a-aminophosphonates 6a—c, 7a—c and 8a—c.
The results are collected in Table 4. The dialkyl ((butyl-
amino)(chlorophenyl)methyl)phosphonates (6-8, a—c¢) were pre-
pared in yields of 72-94% (Table 4, entries 1-9). There were no
observable differences in the reactivities, as compared to the un-
substituted model compound 1a.

All together 24 compounds including 21 a-aryl-a-aminophos-
phonates and three a-aryl-a-aminophosphine oxides were ob-
tained by column chromatography and characterized. Among
the aminophosphonates, 16 are new, and five are known in the
literature, two out of the three aminophosphine oxides are new

compounds.

Study on the addition of diethyl phosphite to
N-benzylidene(butyl)amine by in situ FTIR
spectroscopy

Then, we wished to follow the addition reaction of DEP to
N-benzylidene(butyl)amine (1a) at 80 °C in acetonitrile
(Scheme 2) by in situ Fourier transform IR spectroscopy.
Initially the IR spectra of the reaction components were re-
corded: imine 1a, DEP and diethyl ((butylamino)(phenyl)-
methyl)phosphonate (2b) (Table 5 and Figure 1). The spectrum
of imine 1a has a strong absorption band at 1648 cm™! corre-
sponding to vc=y. At the same time, DEP may be identified by
the strong signals at 961, 1042 and 1251 cm™! assigned to the
vp_o_c and the vp—g vibrations, respectively. The similar
vp_o_c and vp—g absorptions of the product a-aminophos-
phonate 2b were somewhat shifted to 1026, 1057 and

1242 cm™!, respectively.

A segment of the time-dependent IR spectrum (3D diagram)
can be seen in Figure 2.

The obtained results from this study are shown in Figure 3 and
show the concentration profile of the starting components imine
1a and DEP and the product 2b. The diagram was constructed
by a so-called deconvolution on the basis of the decrease/
increase of the different absorptions on the reaction time scale.
This calculation (MCR-ALS, multivariate curve resolution —
alternating least squares) gives the concentration profiles of the
components and also the spectra of pure components. From
Figure 3, it can be seen that the addition reaction was complete
after 3.5 h.
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Table 4: MW-assisted addition of dialkyl phosphites to N-chlorobenzylidene(butyl)amines 1d—f.

Bu-N H I
MW Bu—HN-CH—-P(OR),
_ . O\\P,OR T, t _
“ | H “OR no solvent . |
N N
Cl Cl
2-Cl | 3-Cl | 4-CI 2-Cl | 3-Cl | 4-ClI
1id | 1e | 1f 6 7 8
R = Me (a), Et (b), Bu (c)
Entry Imine >P(O)H >P(O)H T t Composition (%)? YieldP
(equiv) (°C) (min) 1 Product (%)
1 1d DMP 1 80 30 1 99 (6a) 91
2 1d DEP 1.2 100 20 0 100(6b) 72
3 1d DBuP 1.2 100 30 0 100 (6¢) 74
4 1e DMP 1 80 30 12 88 (7a) 80
5 1e DEP 1.2 100 20 3 97 (7b) 94
6 1e DBuP 1.2 100 30 7 93 (7c) 73
7 1f DMP 1 80 30 12 88 (8a) 75
8 1f DEP 1.2 100 20 0 100 (8b) 80
9 1f DBuP 1.2 100 30 2 98 (8¢) 81
a0n the basis of GC. PAfter column chromatography.
o low temperatures. There seems to be a slight disorder, which
Bu—-N H A H T, OEt . . L. .. .
0. OEt 80°C 35h Bu—HN-C—P_ becomes evident in the ellipsoids of the aniline ring and one of
+ \\P< —_— OEt the methyl carbon atoms (Figure 4).
H “OEt acetonitrile
The crystal structure of compound 5b was published almost
1a 2b

Scheme 2: Addition of diethyl phosphite to N-benzylidene(butyl)amine
in acetonitrile.

Finally, the characteristic IR absorptions were taken from the
calculated IR spectra and compared with those obtained in
acetonitrile solutions (Table 6). As can be seen, the agreement

is rather good.

An X-ray crystallographic study on the

a-aminophosphonates 5b and 5d
Large crystals of 5b are composed of very thin plates and one of
these plates was dissected and used for X-ray measurement at

Table 5: Characteristic IR absorptions of the reaction components.

CgHsCH=NBuU (1a) (EtO),P(O)H
976 cm™" VesN 961 cm™!
1648 cm™! VeeN 1042 cm™!
1251 cm™!

40 years ago [61], and a subsequent NMR and theoretical study
was also done for comparative purposes [62]. This latter work
claims SS and RR dimers, which is obviously wrong, as the
centrosymmetric dimers formed must be RS due to symmetry.
The crystal structure of 5b does not undergo a phase transition
at —100 °C, hence, it must be similar to the sample studied in the
earlier work at room temperature [62]. Apart from the forma-
tion of the centrosymmetric dimer through a strong N-H---O=P
hydrogen bridge (cf. Table 7), there is a C—H O short contact
to an ester oxygen atom of a next, translated and inverted Sb
molecule, as well. In this way, sheets of symmetry center
related dimers fused into endless sheets are formed in the
crystal (cf. Supporting Information File 1, Figure S1).

(EtO)2P(O)CH(Ph)NHBuU (2b)
Vp_0O-C 1026 cm™! Vp_o-C
VpP_O-C 1057 cm™! Vp_o-C
Vp=0 1242 cm™! Vp=0
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Figure 1: IR spectra of the reaction components in acetonitrile solution.
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Figure 2: A segment of the time-dependent IR spectrum for the addition of diethyl phosphite to N-benzylidene(butyl)amine (1a) in acetonitrile under
formation of diethyl ((butylamino)(phenyl)methyl)phosphonate (2b).
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Figure 3: Concentration profiles of the reaction components in the addition reaction at 80 °C in acetonitrile.
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Table 6: IR absorptions measured and obtained from the 3D diagram after deconvolution (in cm™1).

CgH5CH=NBuU (1a) (EtO),P(O)H
Measured Obtained Measured Obtained
1648 1648 1251 1262
976 976 1073 1073
1042 1046
961 980

Figure 4: Atomic numbering with anisotropic displacements plot of 5b
at =100 °C.

In the crystal structure of 5d (Figure 5), the formation of
hydrogen-bonded dimers occurs through the same N-H---O=P
hydrogen bonds in the solid state (Table 7 and Supporting Infor-
mation File 1, Figure S2), too.

A short intramolecular H(1)---H(10) distance in Sb appears
to be nearly by —0.3 A shorter than the sum of vdW radii
(2.11(2) << 2.40), and is somewhat similar to those observed in
other aminophosphonates [63]. No such short distance is seen in
compound 5d, where all H--H contacts appear around or longer
than the respective sums of van der Waals radii, and the only
short attractive contact is in the H-bridge promoted dimer.

Theoretical study on the addition of the

>P(O)H species to N-benzylideneamines

The calculations were carried out by the B3LYP/6-31G (d,p)
method. In the solvent-free reaction, the dielectric constant of
the P reagent was estimated as 78.3553. This value was taken
into account as an implicit solvent effect. First, the tautomeric
equilibria of dialkyl phosphites and diphenylphosphine oxide
were studied (Table 8). It was not surprising to find that the

(EtO),P(O)CH(Ph)NHBuU (2b)

Measured Obtained
1242 1246
1057 1053
1026 1026
961 961
'y "f c20 2™ “
c26 i 7
c25 9 D 1
- :
c24 ClU 7
c23
¢
c4
) \
¢ Ccs cé

¢

Figure 5: Atomic numbering with anisotropic displacements plot of 5d
at =100 °C.

Table 7: Hydrogen bond dimensions (A, Deg) for compounds 5b and
5d.2

5b
D-H--A D-H(A) H-A(A) D-—A(A) D-H-A (°)
N1-H1A-O1° 0.88(4) 2.09(4) 2.957(3) 167(4)
C7-H7--03°  0.94(3) 248(3) 3.367(3)  159(1)

5d

N1-H1A-019 0.87(2) 2.20(2) 3.051(2) 166(2)

ap, donor; A, acceptor; ®symmetry related operator = 1-x,-y,~z;
Csymmetry related operator = 1-x, 1-y,~z; 9symmetry related
operator = 1-x,-y,2-z.

pentavalent tetracoordinated form A was by 25-28 kJ mol™!
more stable than the trivalent form B.

The calculations predicted the attack of the trivalent form B of
the P reagent on the nitrogen atom of the C=N unit of the
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Table 8: Relative enthalpies, free energies and entropies for the tautomeric forms in case of methoxy and phenyl substituents.

\_)
P! S
H
A
Y = MeO AH AG AS
[kJ mol~] [kJ mol™"] [J (mol K)™]
A 0 0 0
B 27.7 26.4 1.1

imine 1. Moreover, the P-C and the N-H bonds are formed in a
single concerted step, via five-membered transition states TS 2,
4, and 5 (Table 9) and the additions are in all cases exothermic.
The reactions with dimethyl phosphite are more favorable than
those with diphenylphosphine oxide. It can also be seen that the
additions to N-benzylideneaniline have the greatest driving
force of ca. 31 kJ mol™!. The energy content of the TSs fall in
the range of 77-89 kJ mol ™.

The energy diagrams for the reactions with dimethyl phosphite
and diphenylphosphine oxide are shown in Figure 6 and
Figure 7, respectively.

Y\Fl,,OH
Y
B
Y =Ph AH AG AS
[kJ mol™"] [kJ mol™"] [J (mol K)™"]
A 0 0 0
B 247 22.3 1.9
Conclusion

In conclusion, we have developed an efficient, solvent-free and
catalyst-free MW-assisted method for the Pudovik synthesis of
a-aryl-a-aminophosphonates and a-aryl-a-aminophosphine
oxides. This method is a novel approach for the preparation of
the target compounds, and was optimized for each case.
Twenty-four derivatives were isolated and characterized. Except
six compounds, these were new compounds. Furthermore, the
reactivity was mapped, and the mechanism was evaluated by
B3LYP/6-31G (d,p) calculations. The crystal structure of two
a-aminophosphonates was studied by X-ray analysis suggesting
centrosymmetric dimers.

Table 9: Relative enthalpies, free energies and entropies for the addition reaction of >P(O)H species to imines.

Y\IID/OH ,
Y Y\,P/”O‘H
B —_— Y o \eon
—N-Z Ph Z
Ph
1a—c TS2,4,5
Y = MeO AHOIAH* AGYAGH ASOUAS?
[kJ mol~1] [kJ mol™"] [J (mol K)™]
Z=Bu
B+1a— 2a -21.1 -4.7 -13.1
TS 2a 83.9 100.5 -13.3
Z = c-hex
B+1b— 4a -16.6 -5.6 -8.8
TS 4a 89.2 96.7 -6.0
Z=Ph
B+1c — 5a -31.3 -17.4 -11.2
TS 5a 89.0 98.8 -7.9

Y\P/,O
Y )—NH-Z
Ph

Y|MeO|MeO|MeO|Ph| Ph |Ph

7| Bu |cHex| Ph |Bulc-Hex|Ph
2a 4a 5a 2e de 5e

Y =Ph AHO/AHH AGYAG* ASYAS*
[kJ mol™"] [kJ mol™"] [J (mol K)™]

Z=Bu

B+1a— 2e -10.9 35 -11.5
TS 2e 80.8 924 -9.3

Z = c-hex

B+ 1b — 4e -7.6 8.3 -12.8
TS 4e 85.3 100.8 -12.4
Z=Ph

B +1c — 5e -30.9 -15.3 -12.5
TS 5e 774 90.9 -10.8
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Figure 6: The energy diagram for the reaction with dimethyl phosphite.
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Figure 7: The energy diagram for the reaction with diphenylphosphine oxide.
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