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Abstract
Herein, the benefits which extrusion can provide for the automated continuous synthesis of organic compounds are highlighted.

Extrusion is a well-established technique that has a vital role in the manufacturing processes of polymers, pharmaceuticals and food

products. Furthermore, this technique has recently been applied to the solvent-free continuous synthesis of co-crystals and coordina-

tion compounds including metal-organic frameworks (MOFs). To date, a vast amount of research has already been conducted into

reactive extrusion (REX), particularly in the polymer industry, which in many cases has involved organic transformations, however,

it has not received significant recognition for this. This review highlights these transformations and discusses how this previous

research can be applied to the future of organic compound manufacture.
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Review
Extrusion methodology
Extrusion is an umbrella term covering a family of processes

that involves the movement of material through a confined

space, most typically along a set of screws – screw extrusion.

There are two main types of screw extrusion – single (SSE) and

twin screw (TSE) (Figure 1) [1-3]. As the names suggest, SSE

involves the movement of material by one screw, whereas TSE,

which is more frequently employed, involves the movement of

material by two, i.e., the material is conveyed from one screw to

the other as it makes its way along the extruder barrel [4].

Both techniques process materials by mixing, heating and also

by applying mechanical energy. The main forces present in an

extrusion process are compression forces and shear. However,

the methodology of each technique differs significantly, as well

as the applications for which they are employed, for example

SSE is typically used to carry out hot melt extrusion (HME),

where the emphasis is on the melting of material for thorough

mixing and processing [5]. The process can be adapted via

modulation of the screw, as depicted in Figure 2, to make the
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Figure 1: Typical pilot scale single screw extruder (left) and a laboratory scale twin screw extruder (right).

Figure 2: PTFE screw employed in single screw extrusion, with increasing root diameter (RD) from 45 mm to 95 mm and a final kneading section.

process more efficient. An industrial single screw extruder typi-

cally has a screw diameter ranging from anywhere between

1 inch and 24 inches. Principally, the root diameter (the diame-

ter of the central part of the screw) of the screw increases along

its length, this is to i) provide greater free volume at the begin-

ning of the ‘starve-fed’ extruder for maximum feeding of mate-

rial and ii) to increase the compressive forces at a later stage of

the process, as a result of the volume being reduced, whilst a

large amount of material is still present [3]. This also results in

an increase of the shear applied to the material, as it experi-

ences friction from moving between both the screw and the

barrel walls. In addition, a kneading segment can be added at

the end of the screw, to provide a region of intense mixing (with

increased shear) before the material exists the extruder. It must

be noted that the flow of material along a single screw extruder

is essentially reliant on the feeding of material into the barrel,

which provides a forward pressure so that the material can exit

the barrel [5].

TSE however employs two intermeshing screws and it is mainly

the movement of material from one screw to the other, and back

again, that conveys the material along the barrel. The configura-

tion of these screws is generally more intricate and typically

comprised of a series of alternating conveying and kneading

segments (Figure 3). The main advantage of employing modu-

lated screws is that the screw configuration can be adjusted for

each process. The conveying segments are generally of quite

large channel depth, i.e., the radial distance between the flight

tip and the screw root (ca. 2–3 mm for smaller extruders, and

several centimetres or inches for extruders employed in

industry), but again as with SSE, this channel depth decreases

along the screw length, resulting in an increase of the compres-

sive forces and shear. The equivalent to channel depth within

continuous flow chemistry is typically very narrow of several

millimetres. Furthermore, the kneading segments can be posi-

tioned at angles of 30o, 60o and 90o relative to each other, with

the latter angle providing the greatest kneading (and shear). The

kneading section can be quite hostile as it involves not just

mixing, but also the grinding of the material, which resultantly

leads to changes in the material properties, most commonly its

rheology [3]. Furthermore, the mechanical energy applied to the

system can be controlled by the screw profile, as well as the

residence time which is not only dependent on screw speed, but

on the configuration too, allowing it to be prolonged if required.

Modification of the screw profile, by inserting additional seg-

ments or those of a different configuration, e.g., toothed seg-
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Figure 3: Modulated stainless steel intermeshing co-rotating screws employed typically in twin screw extrusion, comprised of conveying and kneading
segments.

ments, can result in some control of the temperature as well,

screw segments that apply greater mechanical energy may result

in a greater amount of frictional heat being produced, particular-

ly in comparison to those segments which provide less vigorous

kneading.

Both single and twin screw extruders range from 10–443 mm in

screw diameter [6] and extrusion processes are scalable to

produce large quantities of materials in the range of tonnes per

hour as a result of the extensive engineering research. Herein, a

focused discussion of the reactive processes carried out by

extrusion is provided. A substantial amount of the organic trans-

formations carried out by extrusion has been in the polymer

industry, however, most of these processes have been over-

looked by synthetic chemists. In fact, the authors of these REX

processes have focused mainly on optimising the process condi-

tions and have not discussed the chemistry itself. It is hoped that

this article will show readers that there is an extensive amount

of research into continuous organic transformations by extru-

sion and encourage them to consider the potential that extru-

sion holds for continuous chemical synthesis, particularly under

solvent-free conditions.

Reactive extrusion (REX)
Extrusion is employed most frequently in the polymer industry,

generally for the dispersion of materials (e.g., graphene or quan-

tum dots) into polymers [7]. However, REX is also employed as

a technique to synthesise polymers or to carry out post synthe-

tic polymer modification (e.g., functionalisation of polymer

chains) via organic transformations, which in turn alters the

properties of the materials [6].

Initially, the polymer industry employed only batch mixers to

synthesise polymers and carry out post synthetic modification

(PSM), however, this proved difficult and inefficient. This was

due to a dramatic increase or change in the viscosity and

rheology of the material, a common feature of REX, and there-

fore as reactions proceed, they can become very difficult to mix

efficiently, leading to low conversions. A second problem asso-

ciated with the change in viscosity is the resultant poor heat

transfer, meaning that longer heating times are required, which

often leads to polymer degradation. Employing extrusion over-

came these issues. REX is now initially carried out in a batch

mixer and the material is subsequently transferred to an

extruder. This allows for fresh, thin reactive surfaces to be

exposed, which encourages these reactions to go to completion

[8]. Overall, the time required to carry out these processes was

reduced, as well as the time during which the material is

exposed to heat, therefore preventing polymer degradation

[9,10].

There are five main types of reactive polymerisation for which

extrusion has been employed, containing some clear examples

of organic transformations. One of the most common forms is

bulk polymerisation, involving the formation of a polymer

(linear, branched and crosslinked) of high molecular weight

starting from a series of monomers [11]. Bulk polymerisation

will be discussed in detail, however, it is worthwhile noting the

other various reaction types explored by extrusion:

• Grafting reactions – a grafted polymer is synthesised

from the reaction of a polymer and a functionalised

monomer [12].
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Scheme 2: Telescoping process of the formation of polystyrene, followed by post polymerisation functionalisation with isoprene. The figure depicts
the screw configuration employed and each reaction. Adapted from [16].

• Functionalisation – this takes place on already prepared

polymers, when the polymer is either functionalised by

the modification or addition of a functional group [13].

• Controlled degradation – degradation and crosslinking of

polymers to produce a product with controlled molecu-

lar weight distribution. This results in a higher number of

active sites that can later be used for grafting [13].

• Reactive blending – this involves the extrusion of two or

more compatible polymer blends, leading to the forma-

tion of a polymer–polymer complex [13].

Bulk polymerisation involves several common organic transfor-

mations, including living polymerisation, polyaddition, radical

and polycondensation polymerisation. Living polymerisation,

the most common transformation, involves the constant growth

of a polymer chain where the ability to terminate the reaction is

removed [14]. Again, there are several types of transformation

including ionic polymerisation, ring opening metathesis, free

radical and growth polycondensations [15]. All of which have

been shown to be successful by extrusion.

Living polymerisation
There have been several publications on the use of living anion-

ic polymerisations in the preparation of polystyrene. Höcker et

al. have investigated the role of extrusion in i) the preparation of

this polymer and ii) the sequential postsynthetic modification of

polystyrene by isoprene [16]. The authors focus mainly on the

engineering aspects of the project rather than the chemical reac-

tion itself. The first part of the process involves the chemical

reaction between styrene and s-BuLi, which is employed as an

initiator (Scheme 1). The s-BuLi reacts with the double bond of

styrene, initiating a homopolymerisation process. Once all the

monomer is consumed, the polymer has a stable anionic

Scheme 1: Polymerisation of styrene using s-BuLi as an initiator.

polymer chain, which allows for further functionalisation by

reaction with electrophilic functional groups.

The solution-based living polymerisation reactions are typical-

ly dependent on the solvent employed, temperature and concen-

tration [17], however, when they are conducted by extrusion,

they are carried out under solvent-free conditions, which is a

major advantage. It must also be noted that to carry out a reac-

tion solvent-free, when a pyrophoric reagent, such as s-BuLi, is

involved is quite remarkable, and it is carried out as a continu-

ous process and not on a small scale. This suggests that solvent-

free extrusion can be on par with continuous flow technology,

allowing a wider range of hazardous reagents to be used contin-

uously and on large scale.

Furthermore, Höcker et al. report the post polymerisation of

polystyrene with isoprene, which is actually carried out in the

same processing line as the polymerisation of styrene, i.e.,

styrene is polymerised initially in the extruder barrel and

isoprene is fed into the barrel at a later point to react with poly-

styrene in a second reaction (Scheme 2) [16]. This is an exam-

ple of telescoping which is considered to be very advantageous

in continuous flow technology for example. As a result of being

able to carry out polymerisation and post polymerisation func-

tionalisation by TSE, different polymer geometries can be

achieved, for example a star or comb-shaped polymer [18,19].
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Scheme 3: Proposed mechanism for the branching of polylactide. Adapted from [23].

This indicates that large molecules of well-defined architecture,

in addition to polymers, could be synthesised by TSE. It must

also be noted that these processes were optimised in order to

have throughput rates of ca. 3–10 kg h−1 (after both transfor-

mations have been carried out) [16]. Unfortunately, there is no

example in the literature for this reaction carried out in batch,

however, Meyer reports on the general scalability of batch poly-

merisation and comments that up to 200 kg d−1 quantities can

be obtained. It must be noted, however, that the reaction re-

ported by Höcker involves the use of s-BuLi, making the

process more difficult, but still a greater throughput rate is ob-

tained than that predicted by Meyer [20].

Free radical polymerisation involving deactivation polymerisa-

tion, iniferter polymerisation and reversible addition fragmenta-

tion chain transfer (RAFT) polymerisation, amongst others [21],

has been studied extensively by extrusion to produce, for exam-

ple, branched polypropylene, polyethylene and polylactide

polymers. The process involves the production of a free radical

at the end of an active polymer chain, and is further charac-

terised as living free radical polymerisation due to the complete

absence of a termination reaction [22]. Narayan et al. report the

branching of polylactide by TSE, during which the molecular

weight of polylactide was increased dramatically at 170–180 °C

[23]. This work highlights another advantage of extrusion in

that the barrel can have separate heating zones (some also

provide cooling), allowing the temperatures to be varied along

the production line. In addition, due to the low free volume of

the extruder barrel, but the high throughput rates achievable by

extrusion, the material has a resultantly higher surface area

exposed directly to heat. The material is exposed to heat usually

only for a couple of minutes, which then avoids polymer degra-

dation [3].

Narayan reports the addition of an initiator, Lupersol, a

di-tertiary alkyl peroxide which produces free radicals in bulk,

to the formation of polylactide. Another advantage is that

Lupersol is a food additive and is approved by the Food and

Drug Administration (FDA). Furthermore, the authors hypothe-

sise a mechanism by which the branching of polylactide is

occurring, suggesting that the initial polymer undergoes a

hydrogen radical abstraction, followed by radical coupling and

finally chain scission (Scheme 3) [23].

Polyaddition polymerisation
Another common form of polymerisation is polyaddition poly-

merisation, an example is the formation of polyurethane from a

reaction between an isocyanate and a hydroxy functional group
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Scheme 5: Generic polycondensation reaction to produce polyamides.

(Scheme 4). Polyaddition involves the addition of monomers

onto an actively growing polymer chain; however, there is also

‘step growth polymerisation’ which is employed in the forma-

tion of polyurethane. Step growth polymerisation involves a

gradual approach to the polymer by initially forming a dimer

from multifunctional monomers, which then forms a trimer,

then oligomer and finally a polymer (Figure 4) [24].

Scheme 4: Chemical reaction between isocyanate and an alcohol to
form polyurethane.

Figure 4: Representative diagram explaining the process involved in
step growth polymerisation, which involves the formation of a dimer,
then trimer followed by oligomer synthesis. Taken from [24].

Kim and Hyun report the synthesis of polyurethane, discussing

the associated numerical simulation they conducted to deter-

mine the dependency of shear rate on viscosity, rheology and

the kinetics of formation also. The authors report that a reaction

between 4,4’-diphenylmethane diisocyanate, polycaprolactone-

diol and 1,4-butanediol takes place in a twin screw extruder,

employing a screw speed of 15 rpm and a temperature of 60 °C

[25]. This transformation was conducted in the presence of a

catalyst – dibutyltin diaurate. The authors focus on the process-

ing of this reaction rather than the chemistry taking place itself,

however, this is one of the most traditional organic transformat-

ions carried out by TSE to date, carried out on a continuous

scale whilst being metal catalysed by an organotin compound. It

must be highlighted that the residence times for these reactions

are relatively short at ca. 10 minutes, particularly upon compari-

son with the time required to carry out conventional organic

synthesis, yet the process still forms the desired polymers of

high molecular weight at moderate temperatures of 60 °C [25].

Polycondensation polymerisation
Finally, another important example of organic synthesis in the

production of polymers is the polycondensation reaction to

produce polymers such as polyamides. There are numerous

patents on this application of polymer extrusion [26-28]. The

reactions work very well by TSE as a result of being able to

heat the extruder barrel to temperatures greater than that of

boiling water. As a result, water (reaction byproduct) is re-

moved during the extrusion process, driving the reactions to

completion. Typically, reactions are carried out between di-

amines and an anhydride, dicarboxylic acid or a dicarbonyl

compound (Scheme 5). Takekoshi et al. released a patent

demonstrating the ability of extrusion to form a variety of dif-

ferent polyimides by extrusion in a completely solvent-free,

continuous manner. Polycondensations were performed at tem-

peratures between 210–350 °C, it can therefore be speculated

that the high temperatures are required to accelerate the poly-

merisation reaction, rather than just drive off the water byprod-

uct [29]. Batch synthesis of polyimide polymers typically

involves mixing for 48 hours at temperatures ranging from

room temperature to 250 °C [30].
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Chemical synthesis by extrusion
Extrusion is heavily relied upon within the pharmaceutical

industry with regards to the formulation of drugs and their in-

corporation into drug delivery systems. However, extrusion has

not been employed to carry out any organic compound or active

pharmaceutical ingredient (API) synthesis in this industry.

There has been some research in the last decade demonstrating

the preparation of cocrystals by hot melt extrusion (HME) and

liquid assisted extrusion. This work has been essentially con-

ducted by Amgen, preparing cocrystals consisting of a pharma-

ceutical component [31-33]. There is currently extensive

research being carried out into the effectiveness of cocrystals as

medicinal products due to the higher dissolution rates they

provide. Therefore, in order to employ cocrystals as drugs avail-

able to patients, not only is research into their bioavailability

being conducted, but also into manufacturing techniques that

could be utilised for their production. Currently, research into

non-solvent based synthetic methods is being pursued to elimi-

nate the influence that the solvent has over the cocrystal

formed.

Cocrystal formation
In 2009, Alvarez-Nunez et al. of Amgen used TSE to scale up

the synthesis of a cocrystal which had already been reported to

be synthesised successfully by ball milling (employing liquid-

assisted grinding (LAG)). This was the first example demon-

strating that mechanochemical synthesis could be scaled up to

several hundred grams and carried out continuously by employ-

ing hot melt extrusion (HME) [31,34]. Initially two cocrystals

were optimised – a cocrystal formed from caffeine and oxalic

acid and another consisting of AMG517 (a selective TRPV1

antagonist) and sorbic acid [31].

Since the publication of this work, Moradiya et al. (of Amgen)

have reported the synthesis of carbamazepine-saccharin cocrys-

tals by both TSE and SSE techniques [35]. Moradiya et al.

found some difficulties in regards to maintaining an exact stoi-

chiometry of cocrystal components – any deviation from the

correct stoichiometry could potentially lead to undesirable vari-

ations in the properties of the product. Kulkarni et al., however,

demonstrated that this issue could be resolved by careful manip-

ulation of the extruder temperature [36], demonstrating that in

the extrusion of a 2:1 mixture of caffeine/malic acid, extrusion

temperatures of below 104 °C favoured the formation of a 1:1

product. Increasing to above 104 °C however resulted in the

subsequent melting of the 1:1 product, followed by formation of

the desired 2:1 cocrystal.

There are now several examples of cocrystal formation by HME

present in the literature (<30 publications, mainly from

researchers at Amgen) and studies on the extrusion process

itself with regards to cocrystal manufacture is also gaining

momentum. There are a few publications investigating the

effect of screw speed and temperature on the process [37].

There is also an example in the literature demonstrating the util-

isation of near-infrared spectroscopy for online monitoring to

determine where in the extruder the cocrystal begins to form.

Consequently this also provides feedback regarding screw con-

figuration and deductions can be made as to whether sufficient

mechanical energy is being applied in order to achieve 100%

conversion to product for example [38].

Mechanistically, it was initially believed that the formation of a

eutectic was vital to the formation of a cocrystal, but it has been

reported that this is not always the case, in some cases it is the

effect of high temperatures and screw configurations that has

had the greatest influence. Furthermore, extrusion not only

provides advantages to the formation of cocrystals by improv-

ing the manufacturing process, it has also been demonstrated to

improve the properties of the materials. Alvarez-Nunez et al.

report that in the formation of AMG517-sorbic acid cocrystal

by extrusion, the N2 Brunauer–Emmett–Teller (BET) surface

area was greater than the conventionally prepared cocrystals,

and there were also improvements to the bulk density and flow

properties of the material [31]. As a result of these superior ma-

terial properties, a final milling process step typically employed

in the conventional synthesis to increase the surface area was

removed.

Deep eutectic solvents
Deep eutectic solvents (DESs) – regarded as a new generation

of ionic liquids – are two-component ionic solvents with

melting points lower than either constituent of the mixture [39-

42]. These materials are receiving a lot of attention due to their

potential applications in metal deposition and as green media in

chemical reactions [43]. James et al. have reported the prepara-

tion of DESs Reline 200 (choline chloride:urea, 1:2), choline

chloride:zinc chloride (1:2) and choline chloride:D-fructose

(1.6:1) by TSE [44]. Typically they are prepared by batch

heating, but this is not always very effective on large scale,

especially as processing of these mixtures results in a dramatic

increase in viscosity, this then results in an uneven distribution

of each component in the mixture [45]. Furthermore, it was re-

ported that batch heating also resulted in the thermal degrada-

tion of choline chloride:D-fructose DES due to the caramelisa-

tion of D-fructose [45].

TSE overcame the problems identified by batch heating. The

residence time for the continuous extrusion of the DES compo-

nents was determined to be 4–8 minutes on average, producing

quantities of ca. 0.4 kg h−1 (value of Reline 200 collected per

hour) of DES [44]. The reaction times in the formation of DESs



Beilstein J. Org. Chem. 2017, 13, 65–75.

72

was greatly decreased, and as a result, thermal degradation was

avoided in those DESs containing D-fructose due to the short

exposure times to heat (Figure 5). The authors made a direct

comparison of the determined space time yields (STY) for

the batch preparation versus continuous preparation, which

were significantly different. The STY determined for the

extrusion process was four orders of magnitude greater at

3250,000 kg m−3 d−1, whereas batch synthesis was determined

to be 500 kg m−3 d−1 [44]. Furthermore, these materials (partic-

ularly choline chloride/zinc chloride (1:2)) are known to be

incredibly viscous and so very difficult to transport from the

batch mixer into storage containers, but extrusion has avoided

this issue as well, the material can be extruded directly into a

storage container. This rules out the need for transfer and elimi-

nates the loss of material upon that transfer. Therefore, it can be

concluded that the use of TSE has improved the preparation of

DESs and the quality of material obtained, which may in turn

make them a more accessible media for metal processing or an

alternative green solvent for synthesis [44].

Figure 5: Comparison of choline chloride/D-fructose DES prepared via
twin screw extrusion (left) and conventional heating (right). Taken from
[44].

Metal-organic frameworks (MOFs)
The above examples of cocrystal and DES formation describe

systems which involve the formation of eutectic and intermolec-

ular interactions upon mixing, but these did not involve the for-

mation of a covalent bond. However, James et al. report on the

formation of covalent bonds in metal-organic frameworks

(MOFs) and discrete metal complexes by TSE, under solvent-

free conditions or in the presence of stoichiometric amounts of

MeOH [2]. There is a lot of commercial interest into the use of

MOFs for gas capture and chemical separations [46]. Recently,

the first commercial use of MOFs has been reported and this

involves the adsorption of ethylene gas from the ripening of

fruit and vegetables postharvest [47]. As the commercial

interest and usage of MOFs increases, the manufacture of these

materials, which typically require solvothermal techniques, has

become a key research area.

Mechanochemical synthesis of several MOFs has been

reported typically by ball milling [48], and James et al.

have scaled up the synthesis of HKUST-1, ZIF-8 and

Al(fumarate)OH by TSE. Each synthesis involves the reaction

between an organic ligand and metal salt. In the synthesis of

ZIF-8 and Al(fumarate)OH, high temperatures were required in

the absence of solvent, whereas the synthesis of HKUST-1 re-

quired stoichiometric amounts of EtOH at room temperature.

STYs of 144,000 kg m−3 d−1 were reported for ZIF-8 and

HKUST-1, and for the latter, the STY was three orders of mag-

nitude greater than that reported for the conventional batch syn-

thesis in the literature (Scheme 6) [2].

As with most examples discussed herein, the reaction times to

form these MOFs were dramatically reduced from days (via

solvothermal methods), to minutes (by TSE) [49]. Furthermore,

the TSE products were of very high quality, comparable to the

products obtained by batch, solvothermal methods. The N2 BET

surface areas of extruded MOFs were similar to, or greater than,

that of MOFs prepared in batch. PXRD analysis also indicated

that highly crystalline materials were produced from the extru-

sion process, prior to any post process purification [2].

Two discrete metal complexes have been synthesised by extru-

sion, involving the reaction between salenH2 and nickel acetate

dihydrate as well as the reaction between triphenylphosphine

and nickel thiocyanate, both in the presence of stoichiometric

amounts of MeOH (Figure 6) [2]. High-quality products were

obtained, as determined by 1H NMR spectroscopy, PXRD anal-

ysis (which gave sharp diffraction patterns, indicating high

crystallinity) and elemental analysis. James et al. report that

both of these complexes were isolated and characterised with

the only post process workup involved was heating in an oven

for two hours [2], which is highly advantageous. Typically,

workup of these complexes would involve isolating a precipi-

tate through filtration, followed by drying to remove the

copious amounts of MeOH employed as the reaction media.

Conclusion
Organic synthesis is typically quite labour intensive and there-

fore industrialists are actively seeking ways to minimise the

amount of labour required to manufacture organic compounds,

particularly in an automated continuous fashion. In addition,

they are also looking for techniques that still allow for com-

pounds requiring many synthetic steps to be manufactured and

preferably at a lower cost.

As discussed, extrusion has many roles within the food,

polymer and pharmaceutical industries. Here we discussed how

organic transformations have already been carried out by extru-

sion, hopefully allowing readers to understand that this tech-
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Scheme 6: Synthesis of HKUST-1, ZIF-8 and Al(fumarate)OH by twin screw extrusion. Adapted from [2].

Figure 6: Synthesis of Ni(NCS)2(PPh3)2 and [Ni(salen)] by twin screw extrusion. Adapted from [2].

nique could have a future in organic synthesis. To validate this,

we have reviewed briefly how the technique has been used for

inorganic synthesis and the preparation of cocrystals. This is the

first time that the work reviewed here has been highlighted as a

form of organic synthesis. In fact, the authors of the work

included put a great emphasis on the processing and applica-

tions of the polymers and thus do not discuss any of the chem-

istry that is involved. This may be the reason why these trans-

formations have been overlooked as organic synthesis, and it is

hoped that we have highlighted this here.

Employing extrusion for chemical processes brings with it

many advantages as discussed. However, there still remains

some limitations that inhibits the potential of this technique in

chemical synthesis, for example, reactions between two or more

liquids have not been studied by extrusion and may be more
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difficult to carry out. In fact, there are still very few examples of

this reported in ball mill reactions. Secondly, although it has

been described that pyrophoric materials can be used in the

extruder, through the use of s-Buli by Höcker et al., reagents

that are potentially explosive or can be ignited when dry or

exposed to friction are too hazardous to be used in an extrusion

process, therefore chemistry involving azides or hydrazines for

example, would need to be avoided.

In summary, extrusion is a technique that has great potential for

use in organic synthesis. It has already been demonstrated as a

method to scale up synthesis carried out by ball milling, there-

fore there is very little preventing its use for the organic reac-

tions that have been reported to be successful by ball milling

also. Condensation reactions (e.g., Knoevenagel condensations,

Michael additions and Aldol reactions) in particular are the

most obvious reaction to be successful by extrusion due to its

general success in the ball mill, and as their reactions can be

accelerated by the simple removal of water (by heating for ex-

ample).

Extrusion provides a way to achieve intimate mixing of the

reagents, it also allows for the extent of mixing to be fine-tuned

(via modification of the screw configuration), the extruder itself

can be heated to several hundred degrees and if required, small

amounts of solvent can be added to accelerate reactions (liquid-

assisted grinding). Therefore, it can be concluded that the

extruder provides most, if not all of the parameters that conven-

tional solvent-based synthesis can provide. In fact, in regards to

the current drive towards a more sustainable environment, the

extruder is advantageous as the amount of solvent required is

either reduced or eliminated. Furthermore, typically the reac-

tion times are greatly reduced and telescoping can be achieved

in the extrusion process as discussed.
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