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Abstract
A facile approach to novel medicinally relevant spiro heterocyclic scaffolds (namely furan-2(5H)-ones, tetrahydrofurans and pyrans
spiro-conjugated with the succinimide ring) has been developed. The protocol consists of Rh(II)-catalyzed insertion of heterocyclic
carbenes derived from diazoarylidene succinimides (DAS) into the O–H bond of propiolic/allenic acids or brominated alcohols, fol-
lowed by base-promoted cyclization to afford the target spirocyclic compounds in good to high yields.
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Introduction
Spirocyclic motifs have emerged as auspicious frameworks for
modern drug design [1,2]. They are known to promote higher
success rates, when targeting three-dimensional protein
molecules [3,4]. Furthermore, a wide variety of spirocyclic
fragments can be spotted in natural products [5]. The
aspects mentioned unveil the development of synthetic method-
ologies towards spirocyclic scaffolds as a goal of great value
[6-9].

A rich synthetic platform for the design of various types of
spiroheterocycles is provided by cyclic diazo compounds [10].
Recently, we and others have demonstrated the efficient use of
diazoarylidene succinimides (DAS, 1) in the synthesis of spiro-
annulated pyrrolidine-2,5-diones by catalyzed spirocyclizations
involving aldehydes [11], tetrahydrofuran [12,13], and in the
O–H insertion/Claisen rearrangement/intramolecular oxa-
Michael addition cascade [14] (Scheme 1).
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Scheme 1: DAS spirocyclizations reported earlier and the synthetic methodology investigated in this work.

Herein, we report our findings obtained, while investigating the
extension of this methodology. This study is aimed at the devel-
opment of convenient protocols for the synthesis of new spiro-
heterocycles via tandem Rh(II)-catalyzed OH insertion/base-
promoted cyclization using DAS and various OH substrates
containing an activated multiple bond (propiolic and allenic
acids) or a bromine atom. These transformations yield spiro-
annulated O-heterocycles with succinimide ring, namely spiro-
Δα,β-butenolides 2 and 3, tetrahydrofurans 4 and benzopyrans 5
(Scheme 1).

Fragments of these oxygen-containing spiro-conjugated hetero-
cycles are part of many important drugs and natural products.
For example, spirocyclic Δα,β-butenolides (furan-2(5H)-ones)
represent a valuable class of molecular frameworks for drug
design and are abundant in nature [15]. Bioactive naturally
occurring spiro Δα,β-butenolides include spirofragilide (with
anti-inflammatory, antibiotic, antitumor, anti-HIV activity)
[16], ramariolide A (antitubercular) [17], (+)-massarinolin A
(antibacterial) [18], anemonin (antiparasitic) [19], (+)-pyreno-
lide D (cytotoxic) [20], and (+)-crassalactone D (antitumor)
[21]. Synthetic or semisynthetic spiro Δα,β-butenolides have
also shown a range of biological properties including aldos-
terone receptor antagonistic [22], anti-inflammatory [23], and
anti-HIV [24] activity.

Substantial drugs based on spirocyclic tetrahydrofuran and
pyran moieties include spironolactone (a multi-target drug that
is primarily used to treat high blood pressure and heart failure)
[25], drospirenone (exhibits high affinity to progesterone recep-
tors and is used as a birth control medication) [26,27], griseo-
fulvin (an antifungal agent used to treat fungal infections of the
fingernails and toes) [28], as well as oliceridine (a selective G
protein-biased μ-opioid receptor agonist used for treatment of
acute severe pain) [29] and an investigational drug NOP-1A (a
ligand for the nociceptin/orphanin FQ peptide (NOP) receptor
which is thought to be involved in several central nervous
system disorders such as anxiety, depression, drug abuse, and
seizures) [30]. A wide range of biological properties are exhib-
ited by compounds based on a THF and THP core spiro-conju-
gated with the pyrrolidine ring. These frameworks are present in
a number of synthetic biologically active compounds (such as
NaV1.7 blocker XEN907 for the treatment of pain [31], σ1 re-
ceptor ligand 6 [32], histamine-3 receptor antagonist 7 [33], and
aldosterone synthase inhibitor 8 [34]) as well as natural prod-
ucts (e.g., new alkaloids deoxytryptoquivaline and deoxy-
nortryptoquivaline from fungus Aspergillus clavatonanicus
identified as natural cardiomyocyte-protective agents against
cold ischemic injury [35] and possible natural multitarget drugs
against COVID-19 [36], and amiaspochalasin C isolated from
the solid culture of Aspergillus micronesiensis [37] and 1,9-
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Figure 1: Examples of biologically active compounds and natural products based on THF/THP spiro-conjugates with pyrrolidine rings.

Scheme 2: An initial example on Rh(II)-catalyzed O–H insertion/base-promoted cyclization involving diazo compound 1a.

epoxy-9a-hydroxystenine from the roots of Stemona tuberosa
[38]) (Figure 1).

Hence, the development of novel synthetic methods to construct
spiro O-heterocycles constitutes a distinctly worthy under-
taking which may as well influence the outlook of the novel
medicines discovered and developed in the future.

Results and Discussion
As a first step, we turned to studying the possibility of obtain-
ing spirocyclic butenolides from DAS 1, based on our previ-
ously proposed approach using propiolic acids [39]. The diazo
reagent 1a was introduced in the Rh2(esp)2-catalyzed insertion
into the O–H bond of phenylpropropiolic acid (9а) to form the
intermediate compound 10a (Scheme 2). The cyclization of the
latter was carried out in DCM solution under the action of
DIPEA (30 mol %). Under these conditions, the 5-endo-dig
cyclization leading to the target spirobutenolide 2a proceeded
rather slowly (about 25% conversion per day). However, an
attempt to accelerate the reaction by using a stronger base
(DBU) resulted in side processes with the formation of
unwanted impurities, whereas the reaction in the presence of

DIPEA proceeded selectively, albeit more slowly. By increas-
ing the DIPEA loading to 50 mol %, the product 2a was isolat-
ed in 75% yield after incubation for 7 days at room temperature.
The structure of the obtained spirobutenolide was confirmed by
single crystal X-ray data.

Further syntheses of spirobutenolides 2 were performed under
the one-pot conditions: after completion of the first O–H inser-
tion step, a base was added to the reaction mixture and kept at
room temperature until completion of the cyclization step, con-
trolled by TLC. The results of the syntheses carried out with
different substituted propiolic acids 9 and DAS 1 are shown in
Scheme 3. It can be noted that in the case of arylpropiolic acids,
no significant influence of electronic effects of substituents in
the aromatic ring was observed. In the case of the o-chloro de-
rivative 2d the yield was slightly reduced, which can be attri-
buted to the influence of the steric factor. The transition to
alkyl-substituted (Me and n-Pr) propiolic acids did not signifi-
cantly affect the yields of the final products 2f and 2k, which
were isolated in 65% and 66% yields, respectively. A moderate
yield (37%) was obtained when unsubstituted propiolic acid
was used as OH-substrate (2g). The reasons for this result may
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Scheme 3: Tandem Rh2(esp)2-catalyzed O–H insertion/base-promoted cyclization involving DAS 1 and various propiolic acids; PMP = 4-methoxy-
phenyl.

be due to the increased reactivity of the terminal triple bond of
the propiolic moiety, which favors the participation of the
OH-insertion intermediate in side processes. However, we were
unable to isolate or otherwise identify any byproducts in this
case.

Recently, we have shown that this approach to the synthesis of
spirocyclic butenolides can also be realized using allenic acids
[40]. This opens up the possibility of obtaining target spirohete-
rocycles with substituents not only in the beta but also in the
alpha position of the furanone ring. Reactions with allenic acids
11 were carried out according to a similar scheme, in the one-
pot mode, without isolation of OH-insertion intermediates 12
(Scheme 4). In order to accelerate the cyclization step in this
case, moderate heating was used after the addition of base
(DIPEA).

The target α,β-disubstituted spirobutenolides 3a–d were isolat-
ed in high yields irrespective of the change in the type of substi-
tution in the initial DAS. However, in the case of 3d, the cycli-
zation stage proceeded slower (8 days instead of 3) and under
an elevated amount of DIPEA (60 mol %), which can be ex-

plained by the presence of EDG in the corresponding DAS. In
general, the second step of the process appears to occur as endo-
cyclization onto an activated multiple bond followed by migra-
tion of the remaining endocyclic double bond into the furanone
ring. The structure of product 3b has been confirmed by crystal-
lographic data.

An approach to the construction of the THF cycle using a diazo
reagent and 3-bromopropan-1-ol (13) [41] or similar halo-
genated OH substrates [42] has already been demonstrated in
the literature using selected examples. We first validate this
protocol for spirocyclization and spiroheterocycle formation.

The first step of the synthesis, the insertion of rhodium carbene
into the O–H bond of 3-bromopropanol, was carried out under
standard conditions in the presence of 0.05 mol % Rh2(esp)2 in
dry DCM. 1H NMR spectroscopy was used to monitor the
progress of the reaction and the formation of the OH-insertion
product 14. An attempt to carry out the second step in a one-pot
format with the addition of 1.2 equiv of base (DIPEA or DBU)
was unsuccessful and the formation of the spirocyclic product
was not observed. Replacing DCM with a more polar solvent,
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Scheme 4: Tandem Rh2(esp)2-catalyzed O–H insertion/base-promoted cyclization involving DAS 1 and allenic acids.

Scheme 5: Tandem Rh2(esp)2-catalyzed O–H insertion/base-promoted cyclization involving various DAS 1 and 3-bromopropanol.

acetone, significantly accelerated the cyclization process. Thus,
one to three days were required to complete the 5-exo-tet cycli-
zation process in the acetone/DBU system. The results of the
syntheses carried out with the participation of various DAS 1 to
obtain spirocyclic THFs are presented in Scheme 5.

As can be seen, the yields of the target compounds 4 vary from
good to moderate per two steps of synthesis. The introduction

of acceptor substituents in both the aniline and arylidene
moieties of the DAS molecule leads to a decrease in the yield of
the final spirocycle. The structure of compound 4b has been
confirmed by single crystal X-ray data.

The next step was to investigate the possibility of obtaining
six-membered oxygen-containing spiroheterocycles by interac-
tion of DAS 1 with 2-(bromomethyl)benzyl alcohol (15)
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Scheme 6: Tandem Rh2(esp)2-catalyzed O–H insertion/base-promoted cyclization involving DAS 1 and 2-(bromomethyl)benzyl alcohol.

(Scheme 6). The synthesis was carried out under the conditions
previously tested using 3-bromopropanol. When the reaction
was carried out in a one-pot format, with the replacement of
DCM by acetone, the desired product 5a could only be isolated
in moderate yield (52%). In the case of preliminary isolation of
the OH-insertion product 16a (flash chromatography), the cycli-
zation step was more selective and the total yield of the desired
product was higher.

The 6-exo-tet cyclization of intermediate compounds 16 under
the action of DBU in acetone at room temperature proceeded
within a few minutes, which is much faster than in the case of
compounds 14. This can be explained by the higher reactivity of
benzyl bromide and the lower conformational mobility of the
side chain with the ortho-phenylene link. As a result, new spiro-
cyclic compounds 5 were obtained in high (5a,b) or moderate
(5c) yields.

With some other bromo-substituted OH substrates, we obtained
O–H insertion reaction products using diazo reagent 1b as an
example, but we failed to observe the formation of spirocyclic
cyclization products as a result of intramolecular substitution of
the bromine atom (Scheme 7). For example, during the
attempted cyclization of compound 18, obtained from
2-(bromomethyl)benzoic acid (17), the formation of a complex
mixture was observed, the main component of which turned out
to be phthalide (19). The use of 2-bromoethanol (20) gave a
similar result – compound 21 was transformed under the action
of DBU into a multicomponent mixture of unidentifiable com-
pounds. Judging from the 1H NMR spectroscopy data, one of its
components was the product of the migration of the double
bond of the benzylidene fragment into the succinimide cycle –

compound 22. Finally, a compound with a longer side chain 24,
obtained from 2-(2-bromoethoxy)ethanol (23), underwent ex-
clusively isomerization under basic conditions resulting in
achiral product 25. No proton signals related to the expected
cyclization product were detected in the proton NMR spectrum.

The formation of phthalide from compound 18 under the action
of base is difficult to explain. In this case, for some reason, the
nucleophilic attack of the oxygen atom of the ester group on the
benzyl bromide residue prevails, with the cleavage of the aryli-
dene succinimide fragment involved in further non-selective
processes. The causes of the failed cyclizations in the last two
cases can be summarized as follows. The intermediates ob-
tained from each of the bromo-substituted alcohols used by us
have two main pathways of transformation under the action of
base: 1) exo-tet cyclization with substitution of the bromine
atom and formation of the spirocycle, and 2) migration of the
exocyclic double C=C bond into the imide cycle (the process is
summarized in Scheme 8). The first pathway is realized in the
formation of five-membered (in the case of 3-bromopropanol)
and six-membered (in the case of 2-(bromomethyl)benzyl
alcohol) cycles – the cyclization of the anion is faster than its
reverse protonation. The same applies to substrates with acti-
vated multiple bonds (10 and 12). However, in the case of
shorter (from 2-bromoethanol) and longer (compound 24) chain
intermediates, the cyclization is retarded due to the disadvan-
tage of forming a strained four-membered ring in the former
case and a significant loss of entropy during the formation of a
seven-membered cycle in the latter case. The main direction of
the reaction in these examples becomes isomerization (migra-
tion of a proton when it is captured by an intermediate anion) or
other side processes.
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Scheme 7: Examples where a target spirocyclic product was not observed.

Scheme 8: Plausible mechanism of the transformations studied.

In the conjugated anion formed as a result of deprotonation
(Scheme 8), one would also expect cyclization involving the
γ-position, but we did not observe the formation of such prod-
ucts. This is probably due to the less favorable formation of
cycles of larger size and also in view of the significantly greater
contribution of the resonance structure with negative charge on
the oxygen atom and, as a consequence, the significantly greater
nucleophilicity of the nearest α-carbon atom. When an attempt

was made to generate an anion from compound 25 under the
action of a stronger base (t-BuOK/THF, 0 °C) in order to effect
spirocyclization, only the formation of a complex multicompo-
nent mixture was observed.

Conclusion
We have devised a straightforward access to novel spiro-annu-
lated O-heterocyclic frameworks based on Rh2(esp)2-catalyzed
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insertion of carbenes derived from diazoarylidene succinimides
(DAS) into the O–H bond of propiolic or allenic acids, as well
as 3-bromopropan-1-ol and 2-(bromomethyl)benzyl alcohol fol-
lowed by base-promoted cyclization. The procedures de-
veloped allow to obtain derivatives of such sought-after scaf-
folds in the field of medicinal chemistry as Δα,β-butenolides,
tetrahydrofurans, and pyrans spiro-conjugated with a pyrrol-
idine ring. The tandem approach proposed is characterized by
mild synthetic conditions and high or good yields of the target
compounds after two steps. The limitations of the method were
demonstrated by unsuccessful attempts to carry out the cycliza-
tion of ОН-insertion products derived from 2-(bromo-
methyl)benzoic acid, 2-bromoethanol, and 2-(2-bromo-
ethoxy)ethanol. In the latter case, the predominant process was
found to be the base-promoted migration of the C=C bond of
the arylidene fragment into the cycle.
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