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Abstract
End game synthetic strategy studies towards the total synthesis of the vibsanin type diterpenes, vibsanin E, 3-hydroxyvibsanin E,

furanovibsanin A, and 3-O-methylfuranovibsanin A are discussed, with focus on construction of the side chain and peripheral func-

tionality associated with this group of natural products is the current focus of this report.
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Introduction
Vibsane-type diterpenes occur exclusively in Viburnum species

such as V. awabuki [1], V. odoratissimum [2] and V. suspensum

[3], and can be regarded as quite rare natural products. Nine

structure subtypes have so far been isolated from this family,

for example, vibsanin B (1) [1], vibsanin C (2) [1], vibsanin E

(3)  [1],  vibsanin  O (4)  [4],  cyclovibsanin  A (5)  [5],  furan-

ovibsanin D (6) [6], spirovibsanin A (7) [7], aldolvibsanin B (8)

[8], and neovibsanin A (9) [9] (Figure 1).

In previous reports our group detailed biogenetically modelled

approaches to rapidly access the central core of family members

of type 3 [10,11], 5 [10,12] and 7 [13-15] (Figure 1). We now

detail  end game synthetic  strategy studies  towards the total

synthesis  of  the  vibsanin  type  diterpenes,  vibsanin  E  (3),

3-hydroxyvibsanin E (13),  furanovibsanin A (14),  and 3-O-

methylfuranovibsanin A (15) (Figure 2) building on core struc-

tures 10–12 (Figure 2).

Results and Discussion
As shown in the first generation retrosynthesis (Scheme 1) a

[4+2] cycloaddition to install  the required functionality was

envisaged. All attempts, however, to procure this transforma-

tion (i.e. 16), that is reaction of isoprene and oxygenated deriv-

atives,  with  enone  12  completely  failed.  Davies  [16,17],

however, demonstrated that a photochemical assisted thermal

[4+2] cycloaddition does proceed but with incorrect relative

stereochemistry and limited regiocontrol (i.e. 18). Nevertheless,

Davies [16] pursued and completed an elegant synthesis of (±)-

5,10-bis-epi-vibsanin E based on their cycloaddition methodo-

logy.
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Figure 1: A collection of the structural diversity seen in the vibsanin type diterpene family.

Figure 2: Vibsanin type diterpene synthetic targets.

With this knowledge in hand, and the availability of racemic 10

[10,11], attention was directed towards stepwise introduction of

the required sidechain and corresponding α-oxo functionality

depicted in Scheme 2. Essentially four areas were identified for

study; 1) regio- and stereospecific α-hydroxylation (methoxyla-

tion) 19,  2) furan formation i.e. 20,  3) installing the acetone

sidechain i.e. 21, and 4) building the enol ester function i.e. 22

(Scheme 2). The results of each area of investigation allow end

game strategies to be postulated based on combinations of these

results. For example, success with α-hydroxylation (methoxyla-

tion) 19 could flow into furan formation (i.e. 20), installing the

acetone sidechain i.e. 21, or building the enol ester function i.e.

22,  with  subsequent  flow  into  each  area  to  attempt  total

synthesis  (Scheme  2).

The first area of study [18] concentrated on implementation of

the acetone sidechain. Enolate chemistry was the only viable

option in this regard and as such two electrophiles were invest-

igated. Initially the lithium enolate of 23 (best generated with

LDA) was reacted with bromoacetone but this afforded only

trace amounts of product. Switching to the more active electro-

phile methallyl bromide gave the desired methallylated product

25  in  an  optimized  yield  of  37% along  with  the  undesired

regioisomer 24. Temperature was critical to the outcome of the

reaction.  At  −78  °C  only  undesired  regioisomer  24  was

obtained in low yield (11%). However, when the enolate was

quenched at 0 °C the desired regioisomer 25 was obtained in

15% yield along with the undesired isomer 24 in 17% (Scheme

3, Figure 3). The ratio and yield could be further improved [25
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Scheme 1: Retrosynthesis of vibsanin type targets.

Scheme 2: The four functional group areas identified for investigation.

(37%) : 24 (25%)] if the enolate solution was heated to 50 °C

before  addition  of  the  electrophile.  The  difficulty  in  over-

coming a significant preference for the undesired regioisomer

24 could be attributed to a number of combined, or individual,

factors. For example, the first formed enolate could be stabil-

ised by overlap of the π orbital with the σ*C–O orbital [19], or

because the tertiary bridgehead hydrogen is a longer C-H bond

than the secondary hydrogen C-H bond, which is kinetically

favoured.  Conversion  of  the  undesired  isomer  24  into  the

desired (i.e. 25) by a Claisen rearrangment (via the silyl enol

ether) was not high yielding and produced many side products.

Ozonolysis of 25  afforded the acetone sidechain (i.e.  26)  in

acceptable yield (50%). Other methods to unmask the ketone

functionality failed, for example, dihydroxylation followed by

oxidative cleavage. Nevertheless, the acetone sidechain could

be introduced in ~20% overall yield allowing end game func-

tionalisation (as discussed below).

α-Hydroxylation  was  next  investigated.  Considering  the

observed preference for regiospecific enolate formation in our

system we devised a simple two pot procedure based on the

epoxidation  of  silyl  enol  ethers.  Ketone  23  was  smoothly
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Scheme 3: Acetone sidechain studies.

Figure 3: ORTEP diagrams of compounds 24 and 23 (30% probability elipsoids).

converted into the TBS enol ether 27  (85% yield) with TBS

triflate,  which  was  then  treated  with  dimethyldioxirane

(DMDO). When work up was restricted to a simple 1 M hydro-

chloric acid wash (i.e. separatory funnel) only the epoxide ring

opened  product  (i.e.  28)  was  isolated  (via  epoxide  29).

Subsequent  treatment  of  the  crude  material  (i.e.  28)  with

sodium hydride gave as the sole product  the TBS protected

α-hydroxy ketone 30 in 80% yield over two steps, via a 1,2-

Brook rearrangement. The unprotected derivative 31 could be

obtained in 93% yield from 27, via 29, if hydrogen fluoride was

used.  Unfortunately,  methylation  of  the  hydroxy  group  in

compound 31 was unsuccessful since unavoidable C-methyla-

tion also occurred to afford 32 (Scheme 4, Figure 4).

In the view that α-hydroxylation, in the form of TBS protection,

proceeded so efficiently furan ring formation was investigated

with ketone 30. Three general protocols were identified as suit-

able for attempting fused furan formation with substrate 30; 1)

Padwa [20] and Mukaiyama [21] furan synthesis, 2) Nishizawa

furan synthesis [22], and 3) classical acid catalysed diketone

dehydration (i.e.  phosphorus pentaoxide [23]).  For Padwa’s

protocol  the  TMS  enol  ether  33  was  required,  which  was

obtained in 75% from sequential treatment of 30 with LDA and

TMSCl. Subsequent reaction of 33 with Padwa’s electrophile

34  [24] and silver tetrafluoroborate gave a complex mixture

with no identifiable trace of desired product 35, a precusor to

desired furan 36 (Scheme 5). The lack of reactivity was without

doubt substrate specific (i.e. 33), as model studies on the TMS

enol ether of cycloheptanone gave the expected furan product

using Padwa’s protocol. Mukaiyama reported [21] the use of

electrophile 37  to access the furan ring system using similar

conditions  to  that  of  Padwa,  however,  this  returned  mostly

starting material and traces of the tertiary hydroxy compound

38 (Scheme 5).
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Scheme 4: α-Hydroxylation investigations.

Figure 4: ORTEP diagram of compound 32 (30% probability ellips-
oids).

Nishizawa reported [22] the conversion of α-propargyl substi-

tuted ketones directly into methylated furans using catalytic

amounts  of  mercury  triflate.  Although  verification  of  this

protocol  was  undertaken  on  a  cycloheptanone  derivative,

substrate 39  failed to give the desired furan 42  (Scheme 6).

Instead, hydration was observed as the major reaction pathway

(i.e. 40) with furan 41 being obtained as the minor component.

Furan 41 is an interesting molecule in that it contains a bridge-

head  double  bond,  presumably  formed  due  to  the  ease  of

carbocation formation at the benzylic (tertiary) centre. Unfortu-

nately, the bridgehead double bond contained within 41 could

not be hydrated. Conversion of diketone 40,  which could be

accessed from 43 (and 44) via a Wacker oxidation (64%), also

failed to yield furan functionality using classical conditions (i.e.

phosphorus pentaoxide and amberlyst resin) (Scheme 6).

Enol ester  sidechain construction: although Davies [16] has

reported  the  construction  of  the  enol  ester  sidechain  (3,3-

dimethylacrylic anhydride, 4-pyrrolidinopyridine) associated

with the vibsanin family members this functionality was derived

from  a  two  carbon  chain  aldehyde  (i.e.  CH2CHO).  In  the

current case (i.e. 23) the ester function would require homolog-

ation or new methodology to install the enol ester sidechain

from one carbon unit (i.e. aldehyde). Considering one carbon

homologation  would  demand  multiple  steps  we  opted  to

develop new methodology.  A literature  search revealed the

work of Anders [25-30], which utilized methyleneoxy ylids of

type 45. Our modification [31] introduced 3-methylcrotonate

functionality (i.e. 45), which gave similar yields to that reported

for  the  benzoate  and  related  studies  [25-30].  For  example,

treating 23 with lithium aluminium hydride followed by Swern

oxidation gave 46  (77% over two steps) which when treated

with 45 gave the desired material 47 in 21% yield with an E/Z

ratio of 3.4:1 respectively (Scheme 7). This could be improved

if the reduction/oxidation [32] sequence was performed on the

TBS  enol  ether  27,  which  gave  48  in  88%  yield  and

subsequently gave 49 in 32% yield E (2.4) : Z (1)]. Enol ether

49  could  be  conveniently  converted  in  92% yield  to  47  by

treating 49 with hydrogen fluoride pyridine complex at −78 °C

(Scheme 7).
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Scheme 5: Investigating literature methods to install the furan ring system.

Scheme 6: Installation of the furan ring system continued.

With the four areas of study complete [i.e.  α-hydroxylation,

furan formation,  acetone sidechain,  and enol  ester  function

(Scheme 2)] formulation of suitable end game stategies could

now be undertaken.  In  summary,  these  studies  showed that

α-hydroxylation was viable and high yielding, the incorpora-

tion of the acetone and enol ether sidechains were possible but

moderately yielding, and furan formation was not viable. On

this basis only two targets seemed approachable: 1) bis-epi-

vibsanin E 50,  and 2) bis-epi-3-hydroxyvibsanin E 51.

Initial studies concentrated on 26, in that tricarbonyl reduction

followed  by  oxidation  was  envisaged  to  give  aldehyde  52,

which could then undergo reaction with ylid 45 in the hope of

gaining access to bis-epi-vibsanin E 50. Reduction with lithium

aluminium hydride proceded smoothly, however, global oxida-

tion  caused  significant  problems  yielding  only  very  low

amounts of aldehyde 52, which was not enough to attempt the

Wittig reaction with 45 (Scheme 8).

In the view of the diasppointing results obtained above (Scheme

8) all attention was directed towards bis-epi-3-hydroxyvibsanin

E 51.  This  manoeuvre  was further  justified by the  fact  that

diketone 40  was readily available via the allylation/Wacker

protocol  as  described in Scheme 6.
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Scheme 7: Installation of the enol sidechain utilizing Wittig chemistry.

Scheme 9: Further attempts to gain access to target compound 51.

Scheme 8: Attempts to gain access to targets 50 and 51.

Considering  the  knowledge  gained  in  Scheme  8,  it  was

perceived best not to perform tricarbonyl reduction then oxida-

tion on diketone 40, but to first protect the ketone functionality

as silyl enol ethers as was undertaken in Scheme 7 (i.e. 27–48).

Treating diketone 40 with t-butyldimethylsilyl trifluorometh-

anesulfonate  afforded  only  the  monoprotected  product  53

(crude yield 55%), which smoothly underwent reduction with

diisobutylaluminium hydride, but all attempts to oxidise the diol

to  54  failed (Scheme 9).  Oxidation and reduction problems

occurred  also  when  working  with  ketone  43,  for  example,

ketone 43 gave only partial reduction and subsequent oxidation

of diol 56 gave the aldehyde 55 only in 5% yield (Scheme 9).

Conclusion
In conclusion, we have investigated the construction of four

different functionality types [i.e. α-hydroxylation, furan forma-

tion, acetone and enol ester sidechain functions (Scheme 2)]
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associated with the vibsanin family of natural products. These

studies  were  vital  for  investigating  end game strategies  for

attempting total syntheses of vibsanin E, 3-hydroxyvibsanin E,

furanovibsanin A, and 3-O-methylfuranovibsanin A. Unfortu-

nately, the optimum combination of functional group installa-

tion could not be found. Nevertheless, valuable insights into the

scope and limitations of some literature methods called upon for

the attempted total synthesis of this family of natural products

were gained.
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