
2207

Highly stereocontrolled synthesis of trans-enediynes
via carbocupration of fluoroalkylated diynes
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Abstract
Treatment of readily prepared (Z)-6-benzyloxy-1,1,1,2-tetrafluoro-6-methyl-2-hepten-4-yne with 1.5 equiv of LHMDS in −78 °C

for 1 h gave the corresponding trifluoromethylated diyne in an excellent yield. This diyne was found to be a good substrate for the

carbocupration with various higher-ordered cyanocuprates to give the corresponding vinylcuprates in a highly regio- and stereose-

lective manner. The in situ generated vinylcuprates could react very smoothly with an excess amount of iodine, the vinyl iodides

being obtained in high yields. Thus-obtained iodides underwent a very smooth Sonogashira cross-coupling reaction to afford

various trans-enediynes in high yields.
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Figure 1: trans-Enediyne.

Introduction
trans-Enediynes (trans-hex-3-ene-1,5-diynes), as shown in

Figure 1, are well-recognized as one of the most important

building blocks because they are frequently utilized for the syn-

thesis of π-conjugated polymers, which have attracted much

attention in the fields of electronic and photonic materials

science [1-3].

While numerous synthetic approaches to non-fluorinated trans-

enediynes have been reported so far, there has been quite a

limited number studies on the preparation of fluoroalkylated

trans-enediynes [4-7], although the introduction of fluorine

atom(s) into organic molecules very often changes their phys-

ical as well as chemical characteristics significantly, resulting in

the discovery of new materials with unique physical properties

[8-14].
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Scheme 1: Synthetic strategy for the preparation of trifluoromethylated diynes.

In this paper we report a convenient and efficient access to tri-

fluoromethylated enediynes by the highly regio- and stereose-

lective carbocupration reaction of trifluoromethylated diyne

with various organocuprates (Scheme 1).

Results and Discussion
Our initial studies began with the preparation of trifluoro-

methylated diyne derivatives [15-22]. Thus, treatment of

2,3,3,3-tetrafluoro-1-iodo-1-propene (1), which could be easily

prepared from 2,2,3,3,3-pentafluoropropanol in three steps [23],

with 1.2 equiv of terminal alkynes 2 and 1.5 equiv of Et3N in

the presence of 5 mol % of Pd(OAc)2 and 10 mol % each of

PPh3 and CuI in DMF at room temperature for 24 h, gave the

corresponding Sonogashira cross-coupling products 3a–e in

good to high yields [24-26] (Scheme 2).

Scheme 2: Preparation of various enynes.

Subsequently, 3a was subjected to the usual β-elimination

conditions according to the literature [23,27-29], i.e., treatment

of 3a with 1.5 equiv of potassium tert-butoxide (t-BuOK) in

THF at room temperature for 2 h. Very surprisingly, the desired

trifluoromethylated diyne 4a was not detected at all and the

addition–elimination product 5a was obtained quantitatively.

Therefore, we examined the reaction conditions for the β-elimi-

nation of 3a in detail (Table 1). As shown in Table 1, entries 2

and 3, the reactions with t-BuOK in various solvents, such as

1,4-dioxane and ether, were found to be fruitless, leading to a

quantitative formation of 5a. Changing the base from t-BuOK

to KOH brought about better results (Table 1, entries 4–6).

Thus, the reaction with 1.5 equiv of KOH at the reflux tempera-

ture of THF produced the desired diyne 4a in ca. 10%, while no

desired product was given at room temperature. On the other

hand, a dramatic change could be observed when the amide

bases were used. The use of lithium diisopropylamide (LDA) in

THF at −78 °C for 2 h resulted in a significant increase of the

yield from 10% to 46% (Table 1, entry 7). Switching LDA into

lithium hexamethyldisilazide (LHMDS) led to a further

improvement of the yield (Table 1, entry 8). Finally, the best

yield was obtained when the reaction was carried out in THF at

−78 °C for 1 h by using LHMDS. In this case the desired diyne

4a was generated in 74% 19F NMR yield as a sole product.

Unfortunately, 4a was found to be somewhat thermally

unstable, and a partial decomposition was observed in silica-gel

column chromatography, 4a being isolated in very low yield.

Additionally, such a partial decomposition of 4a was also

observed even when 4a was kept in a freezer.

With the thus-obtained optimum reaction conditions, we next

investigated the β-elimination reaction of various enynes as

described in Table 2. As shown in Table 2, entry 2, changing a

phenyl group into an anisyl group in R1 resulted in a significant

increase of the yield from 74% to a quantitative yield. In this

case, it was found that 4b was slightly thermally stable,

compared to 4a, while it could not be isolated in a pure form. In

the case of the enyne having an n-C6H13 group as R1, on the

other hand, the starting material was not completely consumed,

and an inseparable mixture of the desired diyne 4c and the

enyne 3c was given (Table 2, entry 3). In addition, the reaction

proceeded very sluggishly in the enyne having CH2OBn as R1,
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Table 1: Investigation of the reaction conditions.

entry base solvent temp. (°C) time (h) yielda (% of 4a) yielda (% of 5a) recoverya (% of 3a)

1 t-BuOK THF rt 2 0 quant. 0
2 t-BuOK 1,4-dioxane rt 2 0 quant. 0
3 t-BuOK Et2O rt 2 0 quant. 0
4 KOH THF rt 2 0 — quant.
5 KOH THF reflux 2 9 — 83
6 KOH THF reflux 2 10 — 47
7 LDA THF −78 2 46 — 0
8 LHMDS THF −78 2 69 — 0
9 LHMDS THF −78 1 74 — 0

aDetermined by 19F NMR.

Table 2: β-Elimination of various enynes.

entry R1 yielda (% of 4) recoverya (/% of 3)

1 Ph (a) 74 0
2 p-MeOC6H4 (b) quant. 0
3b n-C6H13 (c) 48 35
4 CH2OBn (d) 3 13

5 CMe2OBn (e) quant.
(95) 0

aDetermined by 19F NMR. Value in parentheses is of isolated yield. bCarried out for 24 h.

and neither 3d nor 4d could be obtained in high yields (Table 2,

entry 4). Interestingly, the enyne 3e having a CMe2OBn group

as R1 was found to be a good substrate, the desired diyne 4e

being obtained quantitatively (Table 2, entry 5). Additionally,

4e was so thermally stable that it could be obtained in 95%

isolated yield after the silica-gel column chromatography.

With the substrate 4e in hand, our interest was next directed

toward the carbocupration reaction of 4e. First of all, we

attempted the investigation of the reaction conditions for the

carbocupration reaction of 4e, as described in Table 3. Thus,

treatment of 4e with 1.2 equiv of higher-ordered cyanocuprate

(n-Bu)2CuLi·LiCN, which was prepared from CuCN and

2 equiv of n-BuLi, at −78 °C for 2 h, followed by quenching the

reaction with saturated aqueous NH4Cl, gave the corresponding

carbocupration product 5 in 46% yield as a sole product (it is

well known that the carbocupration reaction of fluoroalkylated

alkynes with cuprates proceeds in a highly cis-selective manner

[30,31]), together with a slight recovery of the starting material

(Table 3, entry 1). In this case, the reaction proceeded in a

highly regio- and stereoselective manner and the other isomers

6–12 were not detected at all (Figure 2). It was especially note-

worthy that only the triple bond possessing a CF3 group, not the

triple bond having a CMe2OBn group, was subjected to the

carbocupration reaction. As shown in Table 3, entry 2, raising

the reaction temperature from −78 to −45 °C led to a signifi-

cant increase in the yield. We also examined the reaction with

the cuprate prepared from Grignard reagent, n-BuMgBr. As
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Table 3: Investigation of the reaction conditions in carbocupration.

entry copper reagenta
(R2

2CuM·MCN) x (equiv) temp. (°C) time (h) yieldb (% of 5) recoveryb (% of 4e)

1 (n-Bu)2CuLi·LiCN 1.2 −78 2 46 7
2 (n-Bu)2CuLi·LiCN 1.2 −45 1 61 0
3 (n-Bu)2CuMgBr·MgBrCN 1.2 −45 1 38 0
4 (n-Bu)2CuMgBr·MgBrCN 1.2 −78 1 44 3
5 (n-Bu)2CuMgBr·MgBrCN 1.2 −78 2 44 0
6 (n-Bu)2CuMgBr·MgBrCN 1.5 −78 1 85 0
7 (n-Bu)2CuMgBr·MgBrCN 1.5 −78 2 57 0

aCopper reagents were prepared from 1 equiv of CuCN and 2 equiv of R2Li or R2MgBr. bDetermined by 19F NMR.

Figure 2: Regio- and stereoisomers.

summarised in Table 3, entries 3–5, a significant decrease of the

yield was observed when the reaction was performed by using

1.2 equiv of cuprate. Very interestingly, the use of 1.5 equiv of

the higher-ordered cyanocuprate realized the most satisfactory

result, the desired product being obtained in 85% yield, though

the yield was somewhat eroded in the reaction for 2 h.

With the optimum reaction conditions in hand, we next investi-

gated the carbocupration reaction by using various copper

reagents. In all cases, iodine was employed as an electrophile

instead of aqueous NH4Cl. The results are summarised in

Table  4 .  As  shown in  Tab le  4 ,  en t r i es  1  and  2 ,

(n-Bu)2CuLi·LiCN and Me2CuLi·LiCN could participate in the

reaction to give the corresponding iodide 13a,b in good yields.

Furthermore, the cuprates prepared from alkyl Grignard

reagents, such as n-Bu, Me, and cyclohexylmagnesium bro-

mide, reacted smoothly (Table 4, entries 3–5). Switching the

cuprate from dialkylcuprate into diarylcuprate did not bring

about any influence on the yields at all (Table 4, entries 6

and 7).

A proposed reaction mechanism is outlined in Scheme 3. Based

on the accumulated studies on the chemistry of fluoroalkylated

alkynes, it appears possible that the copper reagent coordinates

to the triple bond proximate to the CF3 group (Int-A), rather

than the alternative one (Int-B), due to high reactivity of the

fluoroalkylated alkyne. Then, CuI adds oxidatively to the alkyne

to form the intermediate Int-C, not Int-D. Since a CF3 group

has a very strong electron-withdrawing ability,  the

CF3Cα—CuIII bond may be stronger than CuIII—Cβ. (In the

hydrometalation and the carbometalation reaction of fluoroalky-

lated alkynes, the same regioselectivity was observed [32-35].)

Accordingly, a transfer of the R2 group on CuIII to the olefinic
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Table 4: Carbocupration with various cuprates.

entry copper reagenta
(R2

2CuM·MCN) x (equiv) temp. (°C) product yieldb (% of 13)

1 (n-Bu)2CuLi·LiCN 1.2 −45 13a 54
2 Me2CuLi·LiCN 1.2 −45 13b 55
3 (n-Bu)2CuMgBr·MgBrCN 1.5 −78 13a 60
4 Me2CuMgBr·MgBrCN 1.5 −78 13b 59
5 Cy2CuMgBr·MgBrCN 1.5 −78 13c 44
6 Ph2CuMgBr·MgBrCN 1.5 −78 13d 55
7 (p-MeOC6H4)2CuMgBr·MgBrCN 1.5 −78 13e 49

aCopper reagents were prepared from 1 equiv of CuCN and 2 equiv of R2Li or R2MgBr. bIsolated yield.

Scheme 3: A proposed reaction mechanism.

carbon distal to a CF3 group may take place preferably, with

vinylcopper intermediate Int-E, not Int-F, being produced

exclusively. As a result, vinyl iodide 13 can be given in a highly

regio- and stereoselective manner.

Finally, we attempted the Sonogashira cross-coupling reaction

of the obtained iodide 13a (Scheme 4). Thus, treatment of 13a

with 1.2 equiv of terminal alkynes and 40 equiv of Et3N in the

presence of 10 mol % each of Pd(PPh3)4 and CuI in THF at
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Scheme 4: Synthesis of trans-enediynes. aDetermind by 19F NMR. Values in parentheses are of isolated yield.

70 °C for 2–5 h gave the corresponding enediynes 14a–c in

high to excellent yields. In all cases, other stereoisomers were

not detected at all and 14a–c were generated as the sole prod-

ucts in a pure form.

Conclusion
In summary, we have established a convenient as well as effi-

cient access to the trifluoromethylated diyne by Sonogashira

cross-coupling reaction of readily accessible 2,3,3,3-tetrafluoro-

1-iodo-1-propene (1) and the following HF elimination reaction.

The thus-obtained CF3-enediyne could participate in the

carbocupration with various higher-ordered cyanocuprates very

well to give the corresponding vinyliodides in good yields.

Finally, the thus-obtained iodide underwent a smooth Sono-

gashira cross-coupling reaction to afford the various desired

trans-enediyne derivatives in high yields.
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