Supporting Information

for

Synthesis of chiral N-phosphoryl aziridines

through enantioselective aziridination of alkenes

with phosphoryl azide via Co(II)-based metalloradical catalysis

Jingran Tao, Li-Mei Jin and X. Peter Zhang*

Address: Department of Chemistry, University of South Florida, Tampa, Florida

33620

Email: X. Peter Zhang - xpzhang@usf.edu

*Corresponding author

Experimental procedures and characterization data

Copies of ¹H, ¹³C, and ³¹P NMR spectra and

HPLC data for all new compounds

Table of Contents

Experimental procedures and characterization data	S2
References	S8
NMR and HPLC spectra of compound 3a–3k	S9

General considerations:

Unless otherwise noted, all reactions were carried out under a nitrogen atmosphere in oven-dried glassware following standard Schlenk techniques. Gas-tight syringes were used to transfer liquid reagents and solvents in catalytic reactions. Solvents were freshly distilled/degassed prior to use unless otherwise noted. Thin layer chromatography was performed on Merck TLC plates (silica gel 60 F254). Flash column chromatography was performed with silica gel (60 Å, 230–400 mesh, 32–63 µm). Phosphoryl azides **2a**, **2b**, **2c**, and **2d** were synthesized according to previously reported procedure [1]. Catalysts [Co(P1)] [2], [Co(P2)] [2], [Co(P3)] [3], [Co(P4)] [4], [Co(P5)] [5] and [Co(P6)] [3] were readily prepared according to the literature.

Instrumentation:

Nuclear magnetic resonance (¹H NMR and ¹³C NMR) spectra were recorded on a Varian 400 MHz instrument. Chemical shifts for protons are reported in parts per million downfield from tetramethylsilane and are referenced to the residual protium in the NMR solvent (CHCl₃ = 7.24 ppm). Chemical shifts for carbons are reported in parts per million downfield from tetramethylsilane and are referenced to the carbon resonances of the solvent residual peak (CDCl₃ = 77.00 ppm). ¹⁹F NMR spectra were recorded on a Varian 400 spectrometer (376 MHz), using CFCl₃ (δ = 0 ppm) as internal standard. ³¹P NMR spectra were recorded on a Varian 400 spectrometer (162 MHz), using H₃PO₄ (δ = 0) as external standard. Infrared spectra were measured with a Nicolet Avatar 320 spectrometer with a Smart Miracle accessory. High-resolution mass spectra were obtained on an Agilent 6220 instrument using electrospray ionization time-of-flight mass spectrometry (ESI-TOF).

General Procedure for catalytic aziridination: A Schlenk tube was filled with 200 mg of 4 Å molecular sieves (MS) that were dried overnight in an oven before use. To the Schlenk tube, the catalyst (2 mol %) and bis(2,2,2-trichloroethyl) phosphoryl azide (0.10 mmol) were added together. The filled tube was capped with a Teflon screw cap, evacuated, backfilled with nitrogen, and then replaced with a rubber septum. After the addition of alkene substrate (0.50 mmol; 5.0 equiv) and the solvent benzene (1.0 mL) via syringe, the Schlenk tube was capped again with the Teflon screw cap and stirred at 35 °C for 36 h. After the completion of the reaction, the desired aziridine product was purified by flash chromatography from the reaction mixture. In most cases, the aziridine product could be visualized on TLC using cerium ammonium molybdate (CAM) or phosphomolybdic acid (PMA) as the stain.

Bis(2,2,2-trichloroethyl)-(2-phenylaziridin-1-yl)phosphonate (3a): ¹H NMR (400 MHz, CDCl₃): δ 2.37 (ddd, J = 15.5, 3.6, 1.2 Hz, 1 H), 2.89 (ddd, J = 19.3, 6.1, 1.2 Hz, 1 H), 3.72 (ddd, J = 16.6, 6.1, 3.6 Hz, 1 H), 4.58 ~ 4.71 (m, 4 H), 7.29 ~ 7.32 (m, 5 H). ¹³C NMR (100 MHz, CDCl₃): δ 135.87 (d, J = 4.8 Hz), 128.59, 128.30, 126.20, 94.84 (dd, J = 10.2, 4.2 Hz), 76.87 (dd, J = 5.1, 2.2 Hz), 39.02 (d, J = 6.1 Hz), 34.90 (d, J = 8.2 Hz). ³¹P NMR (162 MHz, CDCl₃): δ 11.96. HPLC analysis: ee = 82%. Whelk (98% hexanes: 2% isopropanol, 1.0 mL/min) $t_{major} = 24.91$ min. $t_{minor} = 23.00$ min. HRMS (ESI) ([M+H]⁺) Calcd. for $C_{12}H_{12}Cl_6NO_3P\cdotH^+$: 459.8764, Found: 459.8760.

S3

Bis(2,2,2-trichloroethyl)-(2-(4-methylphenyl)aziridin-1-yl)phosphonate (3b):

¹H NMR (400 MHz, CDCl₃): δ 2.36 (m, 4 H), 2.87 (dd, J = 19.4, 6.1 Hz, 1 H), 3.69 (ddd, J = 16.6, 6.1, 3.6 Hz, 1 H), 4.73 ~ 4.57 (m, 4 H), 7.14 (d, J = 8.0 Hz, 2 H), 7.19 (d, J = 8.2 Hz, 2 H). ¹³C NMR (100 MHz, CDCl₃): δ 138.12, 132.82 (d, J = 4.9 Hz), 129.267, 126.116, 94.85 (dd, J = 10.4, 4.1 Hz), 76.86 (dd, J = 5.0, 2.9 Hz), 38.99 (d, J = 6.2 Hz), 34.80 (d, J = 8.2 Hz), 21.15. ³¹P NMR (162 MHz, CDCl₃): δ 12.10. HPLC analysis: ee = 76%. Whelk (98% hexanes: 2% isopropanol, 1.0 mL/min) $t_{major} = 27.13$ min, $t_{minor} = 24.65$ min. HRMS (ESI) ([M+H]⁺) Calcd. for C₁₃H₁₄Cl₆NO₃P·H⁺: 473.8915, Found: 473.8917.

Bis(2,2,2-trichloroethyl)-(2-(3-nitrophenyl)aziridin-1-yl)phosphonate (3c): ¹H NMR (400 MHz, CDCl₃): δ 2.39 (dd, *J* = 15.3, 3.3 Hz, 1 H), 2.97 (dd, *J* = 18.9, 6.1 Hz, 1 H), 3.81 (ddd, *J* = 16.4, 6.0, 3.4 Hz, 1 H), 4.85-4.55 (m, 4 H), 7.53 (t, *J* = 8.2 Hz, 1 H), 7.66 (d, *J* = 7.6 Hz, 1 H), 8.29 ~ 8.06 (m, 2 H). ¹³C NMR (100 MHz, CDCl₃): δ 148.53, 138.41, 138.36, 132.38, 129.68, 123.30, 121.24, 94.70 (d, *J* = 10.2 Hz), 76.91 (t, *J* = 4.9 Hz), 37.96 (d, *J* = 5.9 Hz), 35.13 (d, *J* = 8.2 Hz). ³¹P NMR (162 MHz, CDCl₃): δ 11.15. HPLC analysis: *ee* = 66%. Whelk (98% hexanes: 2% isopropanol, 1.0 mL/min) t_{major} = 61.10 min, t_{minor} = 57.34 min. HRMS (ESI) ([M+H]⁺) Calcd. for C₁₂H₁₁Cl₆N₂O₅P·H⁺: 504.8610, Found: 504.8609. **Bis(2,2,2-trichloroethyl)-(2-(4-nitrophenyl)aziridin-1-yl)phosphonate (3d):** ¹H NMR (400 MHz, CDCl₃): δ 2.37 (dd, *J* = 15.3, 3.2 Hz, 1 H), 3.21-2.83 (m, 1 H), 3.95 ~ 3.70 (m, 1H), 5.39 ~ 4.12 (m, 4 H), 7.63 ~ 7.44 (m, 2 H), 8.34 ~ 8.11 (m, 2 H). ¹³C NMR (100 MHz, CDCl₃): δ 147.90, 143.410, 127.09, 123.90, 76.92 (t, *J* = 4.7 Hz), 38.02 (d, *J* = 5.7 Hz), 35.36 (d, *J* = 8.2 Hz). ³¹P NMR (162 MHz, CDCl₃): δ 11.16. HPLC analysis: *ee* = 23%. Whelk (98% hexanes: 2% isopropanol, 1.0 mL/min) $t_{major} = 54.72 \text{ min}, t_{minor} = 51.47 \text{ min}. \text{ HRMS (ESI) ([M+H]^+) Calcd. for}$ $C_{12}H_{11}Cl_6N_2O_5P \cdot H^+: 504.8610$, Found: 504.8620.

Bis(2,2,2-trichloroethyl)-(2-(2-(trifluoromethyl)phenyl)aziridin-1-

yl)phosphonate (3e): ¹H NMR (400 MHz, CDCl₃): δ 2.28 (dd, J = 15.3, 3.5 Hz, 1 H), 2.95 (dd, J = 18.7, 6.4 Hz, 1 H), 4.14 ~ 3.99 (m, 1 H), 4.84 ~ 4.70 (m, 4 H), 7.42 (t, J = 7.5 Hz, 1 H), 7.72 ~ 7.51 (m, 3 H). ¹³C NMR (100 MHz, CDCl₃): δ 134.55, 132.25, 128.06, 127.18, 125.73, 125.67, 94.82, 77,18, 76.88 (t, J = 4.9 Hz), 36.26 (d, J = 5.5 Hz), 35.00 (d, J = 7.4 Hz). ³¹P NMR (162 MHz, CDCl₃): δ 11.85. ¹⁹F NMR (376 MHz, CDCl₃): δ -59.91. HRMS (ESI) ([M+H]⁺) Calcd. for C₁₃H₁₁Cl₆F₃NO₃P·H⁺: 527.8633, Found: 527.8657.

Bis(2,2,2-trichloroethyl)-(2-(4-(trifluoromethyl)phenyl)aziridin-1-

yl)phosphonate (3f): ¹H NMR (400 MHz, CDCl₃): δ 2.36 (ddd, J = 15.4, 3.4, 1.1 Hz, 1 H), 2.95 (ddd, J = 19.0, 6.2, 1.1 Hz, 1 H), 3.77 (ddd, J = 16.4, 6.1, 3.5 Hz, 1 H), 5.04 ~ 4.33 (m, 4 H), 7.44 (d, J = 8.2 Hz, 2 H), 7.61 (d, J = 8.2 Hz, 2 H). ¹³C NMR (100 MHz, CDCl₃): δ 140.09, 130.72, 126.57, 125.60 (d, J = 3.7 Hz), 94.75 (d, J = 10.1 Hz), 77.186, 76.890 (t, J = 4.7 Hz), 38.32(d, J = 5.9 Hz), 35.10(d, J = 8.1 Hz). ³¹P NMR (162 MHz, CDCl₃): δ 11.51. ¹⁹F NMR (376 MHz, CDCl₃): δ -62.66. HPLC analysis: ee = 48%. Whelk (98% hexanes: 2% isopropanol, 0.5 mL/min) $t_{major} = 40.40$ min, $t_{minor} = 37.39$ min. HRMS (ESI) ([M+H]⁺) Calcd. for C₁₃H₁₁Cl₆F₃NO₃P·H⁺: 527.8633, Found: 527.8643.

Bis(2,2,2-trichloroethyl)-(2-(4-fluorophenyl)aziridin-1-yl)phosphonate (3g): ¹H NMR (400 MHz, CDCl₃): δ 2.33 (ddd, J = 15.4, 3.5, 1.1 Hz, 1 H), 2.88 (ddd, J = 19.2, 6.1, 1.1 Hz, 1 H), 3.70 (ddd, J = 16.6, 6.1, 3.5 Hz, 1 H), 4.65 (m, 4 H), 7.09-6.94 (m, 2 H), 7.27 (m, 2 H). ¹³C NMR (100 MHz, CDCl₃): δ 163.91, 161.45, 131.68, 127.91 (d, *J* = 8.1 Hz), 115.61 (d, *J* = 21.6 Hz), 94.82 (d, *J* = 7.7 Hz), 76.89, 38.43 (d, *J* = 5.9 Hz), 34.94 (d, *J* = 8.1 Hz). ³¹P NMR (162 MHz, CDCl₃): δ 11.81. ¹⁹F NMR (376 MHz, CDCl₃): δ -113.52 (m). HPLC analysis: *ee* = 85%. Whelk (98% hexanes: 2% isopropanol, 1.0 mL/min) t_{major} = 24.28 min, t_{minor} = 22.31 min. HRMS (ESI) ([M+H]⁺) Calcd. for C₁₂H₁₁Cl₆FNO₃P·H⁺: 477.8665, Found: 477.8667.

Bis(2,2,2-trichloroethyl)-(2-(4-chlorophenyl)aziridin-1-yl)phosphonate (3h): ¹H NMR (400 MHz, CDCl₃): δ 2.33 (dd, J = 15.4, 3.5 Hz, 1 H), 2.90 (dd, J = 19.2, 6.1 Hz, 1 H), 3.69 (ddd, J = 16.5, 6.1, 3.5 Hz, 1 H), 4.74 ~ 4.57 (m, 4 H), 7.23 (d, J = 8.8 Hz, 2 H), 7.30 (d, J = 12 Hz, 2 H). ¹³C NMR (100 MHz, CDCl₃): δ 134.48 (d, J = 5.1 Hz), 134.14, 128.81, 127.54, 94.77 (dd, J = 10.1, 2.7 Hz), 76.88 (t, J =4.0 Hz), 38.36 (d, J = 6.1 Hz), 34.97 (d, J = 8.2 Hz). ³¹P NMR (162 MHz, CDCl₃): δ 11.71. HPLC analysis: ee = 74%. Whelk (98% hexanes: 2% isopropanol, 1.0 mL/min) $t_{major} = 24.26$ min, $t_{minor} = 22.11$ min. HRMS (ESI) ([M+H]⁺) Calcd. for C₁₂H₁₁Cl₇NO₃P·H⁺: 493.8369, Found: 493.8374.

Bis(2,2,2-trichloroethyl)-(2-(4-bromophenyl)aziridin-1-yl)phosphonate (3i): ¹H NMR (400 MHz, CDCl₃): δ 2.32 (ddd, J = 15.4, 3.5, 1.1 Hz, 1 H), 2.89 (ddd, J = 19.2, 6.1, 1.1 Hz, 1 H), 3.67 (ddd, J = 16.5, 6.1, 3.5 Hz, 1 H), 4.77 ~ 4.55 (m, 4 H), 7.18 (m, 2 H), 7.50 ~ 7.42 (m, 2 H). ¹³C NMR (100 MHz, CDCl₃): δ 135.03 (d, J = 5.0 Hz), 131.75, 127.86, 122.24, 94.77 (dd, J = 10.2, 3.0 Hz), 76.87 (t, J = 4.8Hz), 38.42 (d, J = 6.0 Hz), 34.94 (d, J = 8.1 Hz). ³¹P NMR (162 MHz, CDCl₃): δ 11.68. HPLC analysis: ee = 72%. Whelk (98% hexanes: 2% isopropanol, 1.0 mL/min) $t_{major} = 27.48$ min, $t_{minor} = 24.80$ min. HRMS (ESI) ([M+H]⁺) Calcd for C₁₂H₁₁BrCl₆NO₃P·H⁺: 537.7864, Found: 537.7860.

Bis(2,2,2-trichloroethyl)-(2-(3-bromophenyl)aziridin-1-yl)phosphonate (3j):

¹H NMR (400 MHz, CDCl₃): δ 2.34 (ddd, J = 15.4, 3.4, 1.1 Hz, 1 H), 2.90 (ddd, J = 19.1, 6.13, 1.1 Hz, 1 H), 3.68 (ddd, J = 16.5, 6.1, 3.5 Hz, 1 H), 4.80 ~ 4.57 (m, 4 H), 7.45 (ddd, J = 7.5, 3.3, 1.8 Hz, 2 H), 7.24 (m, 2 H). ¹³C NMR (100 MHz, CDCl₃): δ 138.32 (d, J = 5.2 Hz), 131.43, 130.13, 129.16, 125.02, 122.74, 94.74 (dd, J = 10.2, 2.3 Hz), 76.88 (t, J = 4.4 Hz), 38.22(d, J = 6.0 Hz), 34.93 (d, J = 8.2 Hz). ³¹P NMR (162 MHz, CDCl₃): δ 11.55. HPLC analysis: ee = 66%. Whelk (98% hexanes: 2% isopropanol, 1.0 mL/min) $t_{major} = 26.83$ min, $t_{minor} = 23.72$ min. HRMS (ESI) ([M+H]⁺) Calcd for $C_{12}H_{11}BrCl_6NO_3P\cdotH^+$: 537.7864, Found: 537.7866.

Bis(2,2,2-trichloroethyl)-(2-(2-bromophenyl)aziridin-1-yl)phosphonate (3k): ¹H NMR (400 MHz, CDCl₃): δ 2.25 (ddd, J = 15.2, 3.6, 1.3 Hz, 1 H), 2.94 (ddd, J = 18.7, 6.2, 1.3 Hz, 1 H), 4.00 (ddd, J = 16.4, 6.2, 3.5 Hz, 1 H), 4.79 ~ 4.61 (m, 4 H), 7.21 ~ 7.13 (m, 1 H), 7.38 ~ 7.26 (m, 2 H), 7.54 (dd, J = 8.0, 1.1 Hz, 1 H). ¹³C NMR (100 MHz, CDCl₃): δ 135.44 (d, J = 5.6 Hz), 132.44, 129.55, 127.65, 127.46, 123.35, 94.82 (d, J = 10.1 Hz), 76.91 (t, J = 6.3 Hz), 39.32 (d, J = 5.6 Hz), 34.54 (d, J = 7.9 Hz). ³¹P NMR (162 MHz, CDCl₃): δ 12.00. HPLC analysis: *ee* = 85%. Whelk (98% hexanes: 2% isopropanol, 1.0 mL/min) *t_{major}* = 23.95 min, *t_{minor}* = 22.51 min. HRMS (ESI) ([M+H]⁺) Calcd for C₁₂H₁₁BrCl₆NO₃P·H⁺: 537.7864, Found: 537.7864.

References

- Lu, H. J.; Tao, J. R.; Jones, J. E.; Wojtas, L.; Zhang, X. P. Org. Lett. 2010, 12, 1248–1251. doi:10.1021/ol100110z
- Chen, Y.; Fields, K. B.; Zhang, X. P. J. Am. Chem. Soc. 2004, 126, 14718–14719. doi:10.1021/ja0448891
- **2011,** *133,* 3304–3307. doi:10.1021/ja111334j
- 4.Äyin, L.-M.; Xu, X.; Lu, H.; Cui, X.; Wojtas, L.; Zhang, X. P. *Angew. Chem., Int. Ed.* **2013**, *52*, 5309–5313. doi:<u>10.1002/anie.201209599</u>
- 5/44Xu, X.; Lu, H.; Ruppel, J. V.; Cui, X.; Lopez de Mesa, S.; Wojtas, L.;
 Zhang, X. P. J. Am. Chem. Soc. 2011, 133, 15292–15295.
 doi:10.1021/ja2062506_

Figure S1. ¹H NMR of compound **3a**.

Figure S2. ¹³C NMR of compound **3a**.

Figure S3. ³¹P NMR of compound **3a**.

Figure S4. HPLC of compound 3a.

Figure S5. ¹H NMR of compound 3b.

Figure S6. ¹³C NMR of compound 3b.

Figure S7. ³¹P NMR of compound **3b**.

Figure S8. HPLC of compound 3b.

Figure S9. ¹H NMR of compound **3c**.

Figure S10. ¹³C NMR of compound **3c**.

Figure S11. ³¹P NMR of compound **3c**.

Figure S12. HPLC of compound 3c.

Figure S13. ¹H NMR of compound **3d**.

Figure S15. ³¹C NMR of compound **3d**.

Figure S16. HPLC of compound 3d.

Figure S17. ¹H NMR of compound **3e**.

Figure S18. ¹³C NMR of compound 3e.

Figure S19. ¹⁹F NMR of compound **3e**.

Figure S20. ³¹P NMR of compound **3e**.

Figure S21. ¹H NMR of compound **3f**.

Figure S22. ¹³C NMR of compound **3f**.

Figure S23. ³¹P NMR of compound 3f.

Figure S24. ¹⁹F NMR of compound **3f**.

Figure S25. HPLC of compound 3f.

Figure S26. ¹H NMR of compound **3g**.

Figure S27. ¹³C NMR of compound **3g**.

Figure S28. ³¹P NMR of compound **3**g.

Figure S29. ¹⁹F NMR of compound **3g**.

Figure S30. HPLC of compound 3g.

Figure S31. ¹H NMR of compound **3h**.

Figure S32. ¹³C NMR of compound **3h**.

Figure S33. ³¹P NMR of compound **3h**.

Figure S34. HPLC of compound 3h.

JRT-VI-101WK2@1ML40MIN

Figure S35. ¹ H NMR of compound **3i**.

Figure S36. ¹³ C NMR of compound **3i**.

Figure S37. ³¹ P NMR of compound **3i**.

Figure S38. HPLC of compound 3i.

JRT-VI-218B-WK2@1ML30MIN

Figure S39. ¹ H NMR of compound **3**j.

Figure S40. ¹³ C NMR of compound **3**j.

Figure S41. ³¹ P NMR of compound **3j**.

Figure S42. HPLC of compound 3j.

Figure S43. ¹H NMR of compound **3k**.

Figure S45. ³¹P NMR of compound 3k.

JRT-VI-219B-WK2&1ML150MIN C:\EZStart\Projects\Default\Method\shifatest_2,5-dimehoxy.met C:\EZStart\Projects\Default\Data\JRT-VI-219B-WK2&1ML150MIN

Figure S46. HPLC of compound 3k.