Supporting Information

for

Postsynthetic functionalization of glycodendrons at the focal point

Thisbe K. Lindhorst* and Katharina Elsner

Address: Otto Diels Institute of Organic Chemistry, Christiana Albertina University of Kiel, Otto-Hahn-Platz 3-4, D-24098 Kiel

Email: Thisbe K. Lindhorst* - tklind@oc.uni-kiel.de

*Corresponding author

Detailed experimental procedures and full NMR interpretation of all synthesised compounds.

Experimental

General methods. Reactions requiring dry or oxygen free conditions were carried out under an atmosphere of argon (Schlenk conditions). THF and n-hexane were dried by distillation from sodium/potassium ketyl, methanol by distillation from magnesium turnings and dichloromethane by distillation from calcium hydride, each under an atmosphere of argon. Sodium hydride was used as a suspension in paraffin oil (content 55–65%). For metathesis 1st generation Grubbs' catalyst from Aldrich was employed. Thin-layer chromatography was performed on silica gel F₂₅₄ (Merck) or RP-18 (Merck) plates. Detection was effected by UV and subsequent charring with 10% sulfuric acid in EtOH followed by heat treatment. (Flash) chromatography was performed on silica gel 60 (230-400 mesh, particle size 0.040-0.063 mm, Merck) using distilled solvents. Gel permeation chromatography was carried out on Sephadex LH-20 from Pharmacia-Biotech. Sephadex was swollen in the specified solvent and used to pack glass columns of typically 3 cm diameter with bed heights around 100 cm. Sephadex columns were regularly re-used after careful washing. The flow rate was around 50 mL/h using a peristaltic pump. For NMR spectroscopy Bruker DRX 500 or AV 600 instruments were used. Chemical shifts (δ) are calibrated relative to internal solvent. For complete assignment, 2D NMR techniques were used (1H-1H-COSY, 1H-13C-HSQC and ¹H-¹³C HMBC). ESI–MS measurements were performed on a Mariner instrument, MALDI-TOF mass spectra were recorded with a Bruker Biflex III instrument with 19 kV acceleration voltage and an ionization laser at 337 nm; 4-chloro-α-cyanocinnamic acid (Cl-CCA) was used as matrix. Optical rotation values were measured on a Perkin-Elmer 241 polarimeter (10 cm cells, Na-D-line: 589 nm) and are averaged from at least three measurements. Naming of compounds is not according to IUPAC but according to coherent acronyms.

Tetravalent glycodendron(isopropylidene)-O-allyl 9

The glycodendron alcohol 8 [1] (226 mg, 163 μmol) was dissolved in dry THF (5 mL) and treated with NaH (60% suspension in paraffin oil, 7 mg, 1.1 equiv) under Schlenk conditions. The reaction mixture was stirred at rt for 5 min, then allyl bromide (18 μL, 212 μmol, 1.3 equiv) was added and the reaction mixture was stirred at 60 °C for 16 h. The mixture was cooled to rt and water (1 mL) and solid potassium carbonate were added for phase separation. The aqueous phase was extracted with ethyl acetate (4 x 10 mL) and the combined organic phases dried over MgSO₄. It was filtered and the solvent removed under reduced pressure. Column chromatography (cyclohexane/ethyl acetate, 1:1) delivered the pure product as a colourless oil (161 mg, 113 μ mol, 69%); $[\alpha]_D^{20}$ = +5.5 (c = 1.1, CHCl₃); ¹H NMR (600 MHz, CDCl₃): $\delta = 5.92$ (ddt, 1H, O-CH₂-CH=CH₂), 5.26 (dq, 1H, O-CH₂-CH=CH₂), 5.15 (dq, 1H, O-CH₂-CH=CH₂), 5.05 (s, 4H, 4 H-1), 4.20 (d, 4H, ${}^{3}J_{2,3} = 5.6$ Hz, 4 H-2), 4.16 -4.13 (m, 6H, 44 H-3, OCH₂CH=CH₂), 3.86 (dd, 4H, ${}^{3}J_{5.6} = 5.6$, ${}^{2}J_{6.6} = 10.8$ Hz, 4 H-6), 3.80 -3.76 (m, 6H, CH₂CH₂O, 2 (CH₂)₂CH), 3.77 (d, 4H, ${}^{3}J_{6.6'} = 10.4$ Hz, 4 H-6'), 3.74 (dd, 2H, $^{3}J_{3,4} = 7.7, ^{3}J_{4,5} = 10.1 \text{ Hz}, 4 \text{ H-4}), 3.67 - 3.53 (m, 29H, 4 H-5, (CH₂)₂C<u>H</u>OCH₂CH=CH₂,$ CH₂CH₂O, 10 CH₂), 1.55, 1.52, 1.42, 1.35 (each s, each 12H, 16 isoprop-CH₃) ppm; ¹³C NMR (150 MHz, CDCl₃): $\delta = 135.4$ (CH=CH₂), 116.5 (CH₂=CH), 104.9, 99.7 ((CH₃)₂C), 97.9 (C-1), 78.6 (CHOCH₂CH=CH₂), 77.8 (CH₂CH), 77.2 (CH₂CH), 76.1 (C-2), 74.9 (C-3), 72.8 (C-4), 71.3 (CH₂CH=CH₂), 71.1 (2 CH₂), 70.5 (2 CH₂), 70.4 (2 CH₂), 66.7 (CH₂CH₂O), 62.1 (C-6), 61.4 (C-5), 29.1, 28.2, 26.2, 18.8 (isoprop-CH₃) ppm; HRESI-MS: m/z=1448.7229 $[M+Na]^+$ (calcd. m/z = 1448.7080) for $C_{68}H_{112}O_{31}$ (M = 1424.7188).

[1] Boysen, M.M.K.; Elsner, K.; Sperling, O.; Lindhorst. T.K. *Eur. J. Org. Chem.* **2003**, 4376-4386.

Divalent glycodendron(isopropylidene)-O-tetradecyl 10

The glycodendron 4 (150 mg, 225 µmol) was dissolved in dry DMF (6 mL) and treated with NaH (60% suspension in paraffin oil, 10 mg, 1.1 equiv) under Schlenk conditions. The suspension was stirred at rt for 5 min and then 1-bromotetradecane (68 µL, 250 µmol, 1.1 equiv) and KI (~ 10 mg) were added and the reaction mixture was stirred at 60 °C for 16 h. It was allowed to cool to rt and water (3 mL) was added to guench the reaction. Then, ethyl acetate and water (10 mL each) were added, the phases separated and the aqueous phase extracted with ethyl acetate (4 x 15 mL). The combined organic phases were dried over MgSO₄, it was filtered and the filtrate evaporated under reduced pressure. The brownish crude product was purified by column chromatography (cyclohexane/ethyl acetate, 1:1) to yield the title compound as a colourless oil (64 mg, 74 μ mol, 33%); $[\alpha]_D^{20}$ = +8.0 (c = 0.8, CHCl₃); ¹H NMR (500 MHz, CDCl₃): δ = 5.06 (s, 2H, 2 H-1), 4.20 (d, 2H, ³J_{2.3} = 5.6 Hz, 2 H-2), 4.14 (dd, 2H, ${}^{3}J_{2.3} = 5.7$, ${}^{3}J_{3.4} = 7.9$ Hz, 2 H-3), 3.87 (dd, 2H, ${}^{3}J_{5.6} = 5.6$, ${}^{2}J_{6.6} = 10.8$ Hz, 2 H-6), 3.81 - 3.77 (m, 2H, CH_2CH_2O), 3.75 (d, 2H, ${}^3J_{6.6}$ = 10.5 Hz, 2 H-6'), 3.74 (dd, 2H, $^{3}J_{3,4} = 7.9, ^{3}J_{4,5} = 10.1 \text{ Hz}, 2 \text{ H-4}), 3.66 - 3.53 (m, 15H, 2 H-5, <math>(C\underline{H}_{2})_{2}C\underline{H}, C\underline{H}_{2}C\underline{H}_{2}O,$ CH_2CH_2O , $OCH_2(CH_2)_{12}CH_3$), 1.57 (m_c, 2H, $OCH_2CH_2(CH_2)_{11}CH_3$), 1.55, 1.52, 1.42, 1.35 (each s, each 6H, 8 isoprop-CH₃), 1.32 - 1.24 (m, 22H, OCH₂CH₂(CH₂)₉CH₂, CH₂CH₂CH₃, CH_2CH_3), 0.88 (t, 3H, ${}^3J_{CH_2,CH_3} = 7.0 \text{ Hz}$, CH_2CH_3) ppm; ${}^{13}C$ NMR (125 MHz, $CDCI_3$): δ = 109.4, 99.7 ((CH₃)₂C), 97.9 (C-1), 77.8 (CH₂CH), 76.1 (C-2), 74.9 (C-3), 72.8 (C-4), 71.3 $(OCH_2(CH_2)_{11})$, 70.8 (2 CH₂), 70.4 (2 CH₂), 66.7 (CH₂CH₂O), 62.1 (C-6), 61.3 (C-5), 31.9 $(CH_2CH_2CH_3)$, 30.1 $(OCH_2CH_2(CH_2)_{11})$, 29.7 (3 CH_2), 29.5 (3 CH_2), 29.4 (3 CH_2), 29.1, 28.2, 26.2, 22.7, 18.8 (isoprop-CH₃), (CH₂CH₃), 14.1 (CH₂CH₃) ppm; HRESI-MS: m/z = 883.5437 $[M+Na]^+$ (calcd. m/z = 883.5489) for $C_{45}H_{80}O_{15}$ (M = 860.5497).

Divalent glycodendron(isopropylidene)-O-CH₂-CH₂-O-tetradecyl 11

The glycodendron 6 (200 mg, 270 µmol) was dissolved in dry DMF (4 mL) under Schlenk conditions and treated with NaH (60% suspension in paraffin oil, 12 mg, 1.1 equiv). It was stirred at RT for 5 min and then 1-bromotetradecane (84 µL, 270 µmol) was added. The reaction mixture was stirred at 60 °C for 16 h, then water (1 mL) was added to quench the reaction and ethyl acetate and water (5 mL each) were added. The phases were separated, and the aqueous phase extracted with ethyl acetate (4 x 10 mL). The combined organic phases were dried over MgSO₄, it was filtered and the filtrate evaporated under reduced pressure. Column-chromatographic purification (cyclohexane/ethyl acetate, 3:1) gave the title compound as a colourless oil (107 mg, 118 μ mol, 44%); $\left[\alpha\right]_{D}^{20}$ = +2.0 (c = 1.0, CHCl₃); ¹H NMR (500 MHz, CDCl₃): $\delta = 5.06$ (s, 2H, 2 H-1), 4.20(d, 2H, ${}^{3}J_{2.3} = 5.6$ Hz, 2 H-2), 4.15 (dd, 2H, ${}^{3}J_{2.3} = 5.7$, ${}^{3}J_{3.4} = 8.0$ Hz, 2 H-3), 3.86 (dd, 2H, ${}^{3}J_{5.6} = 5.1$, ${}^{2}J_{6.6} = 10.6$ Hz, 2 H-6), 3.79 (m_c, 2H, CH₂CH₂O), 3.77 - 3.71 (m, 6H, 2 H-4, 2 H-6', CH₂), 3.68 (m_c, 1H, (CH₂)₂CH), 3.66 - 3.59 (m, 14H, 2 H-5, 5 CH₂, CH₂CH₂O), 3.45 (t, 2H, OCH₂(CH₂)₁₂CH₃), 1.56 (m_c, 2H, OCH₂CH₂(CH₂)₁₁CH₃), 1.55, 1.52, 1.42, 1.35 (each s, each 6H, 8 isoprop-CH₃), 1.26 (m_c, 22H, $(CH_2)_{11}CH_3$, 0.87 (t, 3H, CH_2CH_3) ppm; ¹³C NMR (125 MHz, $CDCl_3$): $\delta = 109.4, 99.7$ ((CH₃)₂C), 97.9 (C-1), 78.4 ((CH₂)₂CH), 76.0 (C-2), 74.9 (C-3), 72.8 (C-4), 71.6 $(OCH_2(CH_2)_{12}CH_3)$, 71.5, 71.3, 70.4, 70.3, 70.0 (5 CH₂), 66.6 (CH_2CH_2O), 62.1 (C-6), 61.3 (C-5), 31.9 (<u>C</u>H₂CH₂CH₃), 29.7 (2 CH₂), 29.5 (2 CH₂), 29.4 (3 CH₂), 29.1 (2 CH₂, CH₃), 28.2, 26.2, 18.8 (isoprop-CH₃), 22.7 ($\underline{C}H_2CH_3$), 14.1 ($\underline{C}H_2\underline{C}H_3$) ppm; HRESI-MS: m/z = 927.6107 $[M+Na]^+$ (calcd. m/z = 927.5652) for $C_{47}H_{84}O_{16}$ (M = 904.5760).

Divalent glycodendron(isopropylidene)-S-dodecyl 12

The glycodendron **3** (230 mg, 0.348 mmol) was dissolved in dry dioxane (4 mL) and treated with 1-mercaptododecane (1.26 mL, 5.22 mmol, 15 equiv) and AIBN (25 mg, 0.17 mmol, 0.5 equiv) as radical starter. The reaction mixture was stirred at 60 °C for 4 h. After the reaction was complete (TLC control in cyclohexane/ethyl acetate, 1:1), the solvent was evaporated under reduced pressure. Ethyl acetate and water (10 mL each) were added, the

phases separated and the aqueous phase extracted with ethyl acetate (2 x 5 mL). The combined organic phases were dried over MgSO₄, it was filtered and the filtrate evaporated. Chromatographic purification (cyclohexane/ethyl acetate, 3:1), gave the title compound as a colourless oil (157 mg, 0.182 mmol, 52%); $\left[\alpha\right]_{D}^{20}$ = +1.9 (c = 0.8, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃): $\delta = 5.06$ (s, 2H, 2 H-1), 4.20 (d, 2H, ${}^{3}J_{3.4} = 5.6$ Hz, 2 H-2), 4.15 (dd, 2H, ${}^{3}J_{2.3} = 5.7$, CH_2CH_2O), 3.75 (t, 2H, ${}^2J_{6.6}$ = 10.7 Hz, 2 H-6'), 3.74 (dd, 2H, ${}^3J_{3.4}$ = 7.9, ${}^3J_{4.5}$ = 10.1 Hz, 2 H-4), 3.65 - 3.59 (m, 8H, 2 H-5, CH₂CH₂O, 2 CH₂), 3.57 - 3.50 (m, 4H, 2 CH₂), 2.60 (d, 2H, $^{3}J_{CH,CH2} = 6.7 \text{ Hz}, CHC_{H_2}S), 2.50 \text{ (t, 2H, } ^{3}J_{CH2,CH2} = 7.4 \text{ Hz, } SC_{H_2}CH_2), 2.59 \text{ (m, 1H, }$ $(CH_2)_2CH_1$, 1.58 (m, 2H, SCH_2CH_2), 1.55, 1.52, 1.42, 1.35 (each s, each 6H, isoprop- CH_3), 1.29 - 1.25 (m, 18H, $(CH_2)_9CH_3$), 0.88 (t, 3H, $^3J_{CH_2,CH_3} = 6.9$ Hz, CH_2CH_3) ppm; ^{13}C NMR (125) MHz, CDCl₃): $\delta = 109.4$, 99.7 ((CH₃)₂C), 97.9 (C-1), 76.1 (C-2), 74.9 (C-3), 72.8 (C-4), 70.7 (OCH₂), 70.1 (OCH₂), 66.6 (OCH₂), 62.1 (C-6), 61.3 (C-5), 39.9 (CHCH₂S), 33.0 (SCH₂CH₂), 31.9 (CH₂CH₂CH₃), 31.3 (CHCH₂S), 29.7 (4 CH₂), 29.4 (2 CH₂), 29.3 (CH₂), 29.1 (isoprop-CH₃), 28.9 (CH₂), 28.2 (isoprop-CH₃), 26.2 (isoprop-CH₃), 22.7 (<u>C</u>H₂CH₃), 18.8 (isoprop-CH₃), 14.1 (CH₂CH₃) ppm; MALDI-ToF-MS: m/z = 885.9 [M+Na]⁺ (calcd. m/z = 895.5) for $C_{46}H_{86}O_{14}S$ (M = 862.5).

Tetravalent glycodendron(isopropylidene)-S-dodecyl 13

The glycodendron alkene **7** (120 mg, 0.087 mmol) was dissolved in dry dioxane (2 mL) under Schlenk conditions. Then 1-mercaptododecane (0.3 mL 1.3 mmol, 15 equiv) and AIBN (~10 mg) were added and the reaction mixture stirred at 60 °C for 4 h. After the reaction was complete (TLC control in cyclohexane/ethyl acetate, 1:1), the solvent was evaporated under reduced pressure. Ethyl acetate and water (10 mL each) were added, the phases separated and the aqueous phase was extracted with ethyl acetate (2 × 5 mL). The combined organic phases were dried over MgSO₄, it was filtered and the filtrate evaporated. Column chromatography on silica gel (cyclohexane/ethyl acetate, 1:1) and subsequent GPC (Sephadex LH-20, eluent MeOH) furnished a colourless oil (84 mg, 0.053 mmol, 61%); $[\alpha]_D^{20}$

= +3.5 (c = 0.8, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃): δ = 5.06 (s, 4H, 4 H-1), 4.21 (d, 4H, ³J_{2,3} = 5.6 Hz, 4 H-2), 4.15 (dd, 4H, ³J_{2,3} = 5.7, ³J_{3,4} = 7.7 Hz, 4 H-3), 3.87 (dd, 4H, ³J_{5,6} = 5.6, ²J_{6,6′} = 10.7 Hz, 4 H-6), 3.80 - 3.76 (m, 4H, CH₂CH₂O), 3.75 (d, 4H, ³J_{6,6′} = 10.3 Hz, 4 H-6′), 3.73 (dd, 4H, ³J_{3,4} = 7.5, ³J_{4,5} = 10.1 Hz, 4 H-4), 3.68 - 3.53 (m, 30H, 4 H-5, CHHCH₂O, (CH₂)₂CHO, CH₂CH₂O, OCH₂CHO, OCH₂CHCH₂), 2.60 (d, 4H, ³J_{CH,CH2} = 6.6 Hz, CHCH₂S), 2.48 (t, 2H, ³J_{CH2,CH2} = 7.4 Hz, SCH₂CH₂), 1.71 (m, 2H, SCH₂CH₂), 1.55, 1.52, 1.42, 1.35 (each s, each 12H, 16 CH₃), 1.30 - 1.25 (m, 20H, 10 CH₂), 0.88 (t, 3H, ³J_{CH2,CH3} = 7.0 Hz, CH₂CH₃) ppm; ¹³C NMR (125 MHz, CDCl₃): δ = 109.4, 99.7 ((CH₃)₂C), 97.8 (C-1), 78.2 (CHCH₂O), 76.0 (C-2), 74.8 (C-3), 72.7 (C-4), 70.8 (OCH₂), 70.4 (OCH₂), 69.7 (OCH₂), 66.6 (OCH₂), 62.0 (C-6), 61.3 (C-5), 40.3 (CHCH₂S), 32.8 (SCH₂CH₂C), 31.9 (CH₂CH₂CH₃), 30.9 (CHCH₂S), 29.7 (4 CH₂), 29.6, 29.4, 29.3 (3 CH₂), 29.1 (isoprop-CH₃), 29.0 (CH₂), 28.2 (isoprop-CH₃), 26.2 (isoprop-CH₃), 22.7 (CH₂CH₃), 18.8 (isoprop-CH₃), 14.1 (CH₂CH₃) ppm; HRESI-MS: m/z = 1605.8606 [M+Na]* (calcd. m/z = 1605.8573) for C₇₈H₁₃₄O₃₀S (M = 1582.8681).

Divalent glycodendron(isopropylidene)-O-trans-undec-2-enyl 14

The glycodendron **5** (50 mg, 0.071 mmol) was dissolved in dichloromethane (2 mL) under Schlenk conditions and 1-decene (40 μ L, 0.28 mmol, 4 equiv) and Grubbs' catalyst (3 mg, 0.004 mmol, 5 mol %) were added. The reaction mixture was stirred under reflux for 16 h. The reaction was quenched by addition of ethylvinyl ether (1 mL), stirred at rt for 45 min and evaporated under reduced pressure. The residual crude product was purified by column chromatography (cyclohexane/ethyl acetate, 1:1) to yield a colourless oil (64 mg, 0.074 mmol, 81%); $\left[\alpha\right]_D^{20} = +8.0$ (c = 0.8, CHCl₃); ¹H NMR (500 MHz, CDCl₃): $\delta = 5.70$ (dt, 1H, 3 J_{CH,CH2} = 6.7, 3 J_{CH,CH} = 15.3 Hz, CH=CH(CH₂)₇CH₃), 5.56 (dt, 1H, 3 J_{CH,CH2} = 6.3, 3 J_{CH,CH2} = 15.3 Hz, OCH₂CH=CH), 5.06 (s, 2H, 2 H-1), 4.20 (dd, 2H, 3 J_{1,2} = 0.8, 3 J_{2,3} = 5.6 Hz, 2 H-2), 4.15 (dd, 2H, 3 J_{2,3} = 5.7, 3 J_{3,4} = 7.9 Hz, 2 H-3), 4.09 (dd, 2H, 4 J_{CH,CH2} = 0.9, 3 J_{CH,CH2} = 6.3 Hz, OCH₂CH=CH), 3.86 (dd, 2H, 3 J_{5,6} = 5.6, 2 J_{6,6} = 10.7 Hz, 2 H-6), 3.79 (m, 2H, 2 CH<u>H</u>CH₂O), 3.75 (t, 2H, 3 J_{6,6} = 10.5 Hz, 2 H-6'), 3.74 (dd, 2H, 3 J_{3,4} = 7.9,

 $^{3}J_{4,5} = 10.1 \text{ Hz}, 2 \text{ H-4}), 3.68 \text{ (m}_{c}, 1\text{H}, (\text{CH}_{2})_{2}\text{C}\underline{\text{H}}), 3.66 - 3.54 \text{ (m}, 12\text{H}, 2 \text{H-5}, \text{CH}_{2}\text{CH}_{2}\text{O}), (C\underline{\text{H}}_{2})_{2}\text{CH}, \text{CH}_{2}\text{C}\underline{\text{H}}_{2}\text{O}), 2.03 \text{ (dq, 2H, CH=CHC}\underline{\text{H}}_{2}(\text{CH}_{2})_{6}\text{CH}_{3}), 1.55, 1.52, 1.42, 1.35 \text{ (each s, each 6H, 8 isoprop-CH}_{3}), 1.30 - 1.24 \text{ (m, 12H, (C}\underline{\text{H}}_{2})_{6}\text{CH}_{3}), 0.98 \text{ (t, 3H, }^{3}J_{\text{CH2,CH3}} = 7.0 \text{ Hz}, C\underline{\text{H}}_{2}\text{C}\underline{\text{H}}_{3}) \text{ ppm; }^{13}\text{C NMR (125 MHz, CDCI}_{3}): \delta = 134.9 \text{ (CH=}\underline{\text{C}}\text{H}(\text{CH}_{2})_{7}\text{CH}_{3}), 126.5 \text{ (OCH}_{2}\underline{\text{C}}\text{H=CH}), 109.4, 99.7 \text{ ((CH}_{3})_{2}\underline{\text{C}}), 97.9 \text{ (C-1), } 76.6 \text{ ((CH})_{2}\underline{\text{C}}\text{H}), 76.0 \text{ (C-2), } 74.8 \text{ (C-3), } 72.8 \text{ (C-4), } 71.3 \text{ (O}\underline{\text{C}}\text{H=CH, CH}_{2}\text{C}\text{H, CH}_{2}), 70.4 \text{ (CH}_{2}\text{), } 66.7 \text{ (C}\underline{\text{H}}_{2}\text{CH}_{2}\text{O}), 62.1 \text{ (C-6), } 61.3 \text{ (C-5), } 32.3 \text{ (CH=CHC}\underline{\text{H}}_{2}(\text{CH}_{2})_{6}\text{CH}_{3}), 31.9 \text{ (C}\underline{\text{H}}_{2}\text{CH}_{2}\text{CH}_{3}), 29.4 \text{ (2 CH}_{2}), 29.3 \text{ (2 CH}_{2}), 29.1, 28.2, } 26.2 \text{ (isoprop-CH}_{3}), 22.7 \text{ (C}\underline{\text{C}}\text{H}_{2}\text{CH}_{3}), 18.8 \text{ (isoprop-CH}_{3}), 14.4 \text{ (CH}_{2}\underline{\text{C}}\text{H}_{3}) \text{ ppm; HRESI-MS: } m/z = 841.4988 \text{ [M+Na]}^{+} \text{ (calcd. } m/z = 839.4763) \text{ for } \text{C}_{42}\text{H}_{72}\text{O}_{15} \text{ (M = 816.4871).}$

Divalent glycodendron(isopropylidene)-O-trans-hexadec-2-enyl 15

The glycodendron 5 (50 mg, 71 µmol) was dissolved in dry dichloromethane (4 mL) under Schlenk conditions and 1-pentadecene (77 µL, 280 µmol, 4 equiv) and Grubbs' catalyst (6 mg, 7 μmol, 10 mol %) were added. The reaction mixture was stirred at 40 °C for 4 h and then quenched by addition of diisopropylamine (1 mL). It was stirred at rt for 40 min, evaporated and the crude product purified by column chromatography (cylohexane/ethyl acetate, 1:1) to yield a colourless oil (40 mg, 45 μ mol, 64%); $[\alpha]_D^{20} = +3.2$ (c = 1.0, CHCl₃); ¹H NMR (600 MHz, CDCl₃): $\delta = 5.69$ (ddt, 1H, $^4J_{CH,CH2} = 1.0$, $^3J_{CH,CH2} = 6.7$, $^2J_{CH,CH} = 15.4$ Hz, $CH=CHCH_2)_{12}CH_3$, 5.55 (dtt, 1H, $^4J_{CH,CH2}=1.4$, $^3J_{CH,CH2}=6.3$, $^2J_{CH,CH}=15.4$ Hz, $OCH_2CH_2CH_2$ =CH), 5.06 (s, 2H, 2 H-1), 4.20 (dd, 2H, ${}^3J_{1,2} = 1.3$, ${}^3J_{2,3} = 5.7$ Hz, 2 H-2), 4.14 (dd, 2H, ${}^{3}J_{2,3} = 5.7 \text{ Hz}$, ${}^{3}J_{3,4} = 7.9 \text{ Hz}$, 2H-3), 4.09 (dd, 2H, ${}^{4}J_{CH,CH2} = 1.0$, ${}^{3}J_{CH,CH2} = 6.3 \text{ Hz}$, $OC_{H_2}CH=CH$), 3.86 (dd, 2H, ${}^3J_{5.6} = 5.7$, ${}^2J_{6.6} = 10.8$ Hz, 2 H-6), 3.79 (m, 2H, $C_{H_2}CH_2O$), 3.75 $(t, 2H, {}^{2}J_{6.6}) = 10.7 \text{ Hz}, 2 \text{ H-6}), 3.73 \text{ (dd, } 2H, {}^{3}J_{3.4} = 7.9, {}^{3}J_{4.5} = 10.2 \text{ Hz}, 2 \text{ H-4}), 3.68 - 3.57 \text{ (m, } 3.68 + 3.57 \text{ (m, } 3.$ 11H, $(CH_2)_2CH$, CH_2CH_2O , 4 CH_2), 3.55 (dd, 2H, $^3J_{4.5} = 5.5$, $^3J_{5.6} = 10.3$ Hz, 2 H-5), 2.03 (m, 2H, CH=CHCH₂CH₂), 1.55, 1.51, 1.42 (each s, each 6H, 6 isoprop-CH₃), 1.38 (m, 2H, CH=CHCH₂C \underline{H}_2 (CH₂)₁₀CH₃), 1.35 (s, 6H, 2 isoprop-CH₃), 1.30 - 1.25 (m, 20H, (C \underline{H}_2)₁₀CH₃), 0.88 (t, 3H, ${}^{3}J_{CH2 CH3} = 7.0 \text{ Hz}$, $CH_{2}CH_{3}$) ppm; ${}^{13}C$ NMR (150 MHz, $CDCI_{3}$): $\delta = 134.8$ $(CH=CH(CH_2)_{12})$, 126.6 $(OCH_2CH=CH)$, 109.4, 99.7 $((CH_3)_2C)$, 98.0 (C-1), 76.7 $((CH_2)_2CH)$,

76.1 (C-2), 74.9 (C-3), 72.8 (C-4), 71.4 ($\underline{C}H_2$)₂CH), 71.3 ($\underline{C}H_2$)₂CH), 70.5 (CH₂ $\underline{C}H_2$ O), 70.4 (CH₂ $\underline{C}H_2$ O), 66.7 ($\underline{C}H_2$ CH₂O), 62.1 (C-6), 61.4 (C-5), 32.3 (CH=CH $\underline{C}H_2$), 31.9 ($\underline{C}H_2$ CH₂CH₃), 29.7 (4 CH₂), 29.6, 29.5, 29.4, 29.3, 29.1 (5 CH₂), 29.1, 28.2, 26.2 (isoprop-CH₃), 22.7 ($\underline{C}H_2$ CH₃), 18.8 (isoprop-CH₃), 14.1 (CH₂ $\underline{C}H_3$) ppm; HRESI-MS: m/z = 909.5657 [M+Na]⁺ (calcd. m/z = 909.5546) for C₄₇H₈₂O₁₅ (M = 886.5654).

Tetravalent glycodendron(isopropylidene)-O-trans-tetradec-2-enyl 16

The tetravalent glycodendron 9 (140 mg, 98.3 µmol) was dissolved in dichloromethane (2 mL) under Schlenk conditions and 1-tridecene (36 μL, 197 μmol, 2 equiv) and Grubbs' catalyst (8 mg, 10 µmol, 10 mol %) were added. The reaction mixture was stirred under reflux for 16 h. The reaction was guenched by addition of ethyl vinyl ether (1 mL), stirred at rt for 45 min and evaporated under reduced pressure. The residual crude product was purified by column chromatography (cyclohexane/ethyl acetate, 1:1) to yield a colourless oil (118 mg, 75 μ mol, 77%); $\left[\alpha\right]_{D}^{20} = +5.2$ (c = 0.6, CHCl₃); ¹H NMR (500 MHz, CDCl₃): = 5.67 (dt, 1H, $^{3}J_{CH,CH2} = 6.7$, $^{3}J_{CH,CH} = 15.3$ Hz, $CH = CHCH_{2}CH_{2}$)₁₀ CH_{3}), 5.58 (dt, 1H, $^{3}J_{CH,CH2} = 6.2$, $^{3}J_{CH,CH} = 15.4 \text{ Hz}$, OCH₂CH=CH), 5.05 (s, 4H, H-1), 4.20 (d, 4H, $^{3}J_{2.3} = 5.6 \text{ Hz}$, 4 H-2), 4.14 $(dd, 4H, {}^{3}J_{2.3} = 5.9 Hz, {}^{3}J_{3.4} = 7.9 Hz, 4 H-3), 4.07 (d, 2H, {}^{4}J_{CH,CH2} = 0.7, {}^{3}J_{CH,CH2} = 6.2 Hz,$ $OC_{H_2}CH=CH_2$), 3.86 (dd, 4H, ${}^3J_{5.6} = 5.6$, ${}^2J_{6.6} = 10.8$ Hz, 4 H-6), 3.80 - 3.76 (m, 4H, CH_2CH_2O), 3.75 (t, 4H, ${}^2J_{6.6}$ = 10.5 Hz, 4 H-6'), 3.73 (dd, 4H, ${}^3J_{3.4}$ = 7.9, ${}^3J_{4.5}$ = 10.1 Hz, 4 H-4), 3.71 - 3.68 (m, 2H, (CH₂)₂CHOCH₂CH=CH), 3.66 - 3.53 (m, 29H, H-5, (CH₂)₂CH, $(C_{H_2})_2$ CHOCH₂CH=CH, $(C_{H_2})_2$ CH, CHHCH₂O, CH₂CH₂O), 2.02 (m, 2H, CH=CHCH₂CH₂), 1.55, 1.51, 1.42, 1.35 (each s, each 12H, 16 isoprop-CH₃), 1.30 - 1.24 (m, 18H, (CH₂)₉CH₃), 0.88 (t, 3H, ${}^{3}J_{CH2,CH3} = 7.0$ Hz, $CH_{2}CH_{3}$) ppm; ${}^{13}C$ NMR (150 MHz, $CDCI_{3}$): $\delta = 134.4$ (OCH₂CH=CH), 126.7 (CH=CHCH₂CH₂), 109.4, 99.7 ((CH₃)₂C), 97.9 (C-1), 78.6 ((CH₂)₂CH), 77.4 ((CH_2)₂CH), 77.2 ((CH_2)₂CH), 76.1 (C-2), 74.9 (C-3), 72.8 (C-4), 71.1 ($OCH_2CH=CH$), 70.5, 70.4 (2 CH₂), 66.7 (CH₂CH₂O), 62.1 (C-6), 61.4 (C-5), 32.4 (CH=CHCH₂CH₂), 31.9 (CH₂CH₂CH₃), 29.7, 29.6 29.4, 29.2 (4 CH₂), 29.1, 28.2, 26.2 (isopro-CH₃), 22.7 (CH₂CH₃), 18.8 (isoprop-CH₃), 14.1 (CH₂CH₃) ppm; HRESI-MS: $m/z = 1601.8824 \text{ [M+Na]}^{+}$ (calcd.

m/z = 1601.8801), 812.4476 [M+2Na]²⁺ (calcd. m/z = 812.4347) for C₇₉H₁₃₄O₃₁ (M = 1578.8909).

Tetravalent glycodendron(isopropylidene)-O-trans-hexadec-2-enyl 17

The tetravalent glycodendron **9** (100 mg, 70.2 μmol) was dissolved in dry dichloromethane (2 mL) under Schlenk conditions and treated with 1-pentadecene (76 μL, 280 μmol, 4 equiv) and Grubbs' catalyst (3 mg, 3.5 μmol, 5 mol %). The reaction mixture was stirred under reflux for 5 h. The reaction was guenched by addition of ethyl vinyl ether (1 mL), stirred at rt for 45 min and evaporated under reduced pressure. The residual crude product was purified by column chromatography (cyclohexane/ethyl acetate, 1:1) to yield a colourless oil (49 mg, 31.0 μ mol, 43%); $\left[\alpha\right]_{D}^{20} = +0.5 (c = 1.20, CHCl_3)$; ¹H NMR (500 MHz, CDCl₃): $\delta = 5.67$ (dtt, 1H, ${}^{4}J_{CH CH2} = 1.2$, ${}^{3}J_{CH CH2} = 6.6$, ${}^{3}J_{CH CH} = 15.4$ Hz, OCH₂CH=CH), 5.62 (dtt, 1H, $^{4}J_{CH,CH2} = 1.4$, $^{3}J_{CH,CH2} = 6.2$, $^{3}J_{CH,CH} = 15.4$ Hz, $C\underline{H} = CH(CH_2)_{12}CH_3$), 5.05 (s, 4H, 4 H-1), 4.20 (d, ${}^{3}J_{2,3} = 5.7$ Hz, 4 H-2), 4.15 (d, ${}^{3}J_{3,4} = 7.2$ Hz, 4 H-3), 4.06 (dd, 1H, ${}^{5}J_{CH2,CH2} = 1.0$, ${}^{3}J_{CH,CH2} = 6.2 \text{ Hz}, OCH_{2}CH=CH), 3.88 (dd, {}^{3}J_{5.6} = 5.6, {}^{2}J_{6.6'} = 10.8 \text{ Hz}, 4H, 4 H-6), 3.79 - 3.70$ (m, 10H, 4 H-4, $C_{H_2}CH_2O$, 2 CH_2), 3.73 (dd, ${}^3J_{5.6} = 5.7$, ${}^2J_{6.6} = 10.5$ Hz, 4H, 4 H-6'), 3.65 -3.53 (m, 29H, 4 H-5, OCH₂CH₂, 3 CH, 9 CH₂), 2.01 (m, 2H, CH₂CH=CH), 1.54, 1.51, 1.41 (each s, each 12H, 12 isoprop-CH₃), 1.34 (s, 14H, OCH₂CH₂(CH₂)₁₁CH₃, 4 isoprop-CH₃), 1.27 - 1.24 (m, 20H, $(CH_2)_{10}CH_3$), 0.87 (t, 3H, $^3J_{CH2,CH3} = 7.0$ Hz, CH_2CH_3) ppm; ^{13}C NMR (125 MHz, CDCl₃): $\delta = 134.5$ (CH= \underline{C} H(CH₂)₁₂CH₃), 126.6 ((CH₂)₂OCH₂ \underline{C} H=CH), 109.4, 99.7 ((CH₃)₂C), 97.9 (C-1), 78.6, 77.4, 77.2 (3 CH), 76.0 (C-2), 74.8 (C-3), 72.8 (C-4), 71.1 ((CH₂)₂CHO<u>C</u>H₂CH=CH), 71.0 (5 CH₂), 70.4 (5 CH₂), 66.6 (<u>C</u>H₂CH₂O), 62.1 (C-6), 61.4 (C-5), 32.4 (CH=CHCH₂(CH₂)₁₁CH₃), 31.9 (CH₂CH₂CH₃), 29.7 (2 CH₂), 29.6 (3 CH₂), 29.4 (2 CH₂), 29.2 (2 CH₂), 29.1, 28.2, 26.2 (isoprop-CH₃), 22.7 (CH₂CH₃), 18.8 (isoprop-CH₃), 14.1 (CH_2CH_3) ppm; MALDI-ToF-MS: m/z = 1629.8 [M+Na]⁺ (calcd. m/z = 1629.9), 1645.8 [M+K]⁺ (calcd. m/z = 1645.9) for $C_{81}H_{138}O_{31}$ (M = 1606.9).

Divalent glycodendron(isopropylidene)-O-undecyl 18

The alkene 14 (56 mg, 69 µmol) was dissolved in dry MeOH (4 mL), Pd/C (10%, 20 mg) was added and the reaction mixture stirred for 4 h under a hydrogen atmosphere. The course of the reaction was monitored by mass spectrometry (MALDI-TOF). When the reaction was completed, the catalyst was filtered over celite, it was washed with MeOH (5 x 2 mL) and the filtrate evaporated in vacuo. Column chromatographic purification (cyclohexane/ethyl acetate, 1:1) gave the title compound as a colourless oil (36 mg, 54 μ mol, 94%); $\alpha_D^{20} = +3.5$ $(c = 1.5, CHCl_3)$; ¹H NMR (600 MHz, CDCl₃): $\delta = 5.05$ (s, 2H, 2 H-1), 4.20 (dd, 2H, ³J_{1,2} = 1.4, ${}^{3}J_{5.6} = 5.7$, ${}^{2}J_{6.6} = 10.7$ Hz, 2 H-6), 3.80 - 3.77 (m, 2H, OC \underline{H}_{2} CH₂), 3.75 (t, 2H, ${}^{2}J_{6.6} = 10.6$ Hz, 2 H-6'), 3.73 (dd, 2H, ${}^{3}J_{3.4} = 8.0$, ${}^{3}J_{4.5} = 10.2$ Hz, 2 H-4), 3.66 - 3.52 (m, 15H, 2 H-5, (CH₂)₂CH, OCH₂CH₂, OCH₂CH₂O), 1.58 - 1.55 (m, 2H, OCH₂CH₂CH₂), 1.55,1.51, 1.42, 1.35 (each s, each 6H, isoprop-CH₃), 1.32 - 1.25 (m, 16H, (CH₂)₈CH₃), 0.88 (t, 3H, $^{3}J_{CH2,CH3} = 7.0 \text{ Hz}, CH_{2}C_{H_{3}}) \text{ ppm}; ^{13}C \text{ NMR (150 MHz, CDCI}_{3}): \delta = 109.4, 99.7 ((CH_{3})_{2}C_{2}),$ 97.9 (C-1), 77.9 ((CH₂)₂CH), 76.1 (C-2), 74.9 (C-3), 72.8 (C-4), 71.2, 70.7, 70.4 (3 CH₂), 66.7 (OCH₂CH₂O), 62.1 (C-6), 61.4 (C-5), 31.9 (CH₂CH₂CH₃), 30.1 (OCH₂CH₂CH₂), 29.7, 29.6, 29.5, 29.4, 29.3 (5 CH₂), 29.1, 28.2, 26.2 (isoprop-CH₃), 26.1 (CH₂), 22.7 (CH₂CH₃), 18.8 (isoprop-CH₃), 14.1 (CH₂CH₃) ppm; HRESI-MS: $m/z = 681.3692 \text{ [M+Na]}^+$ (calcd. $m/z = 681.3692 \text{ [M+Na]}^+$ 681.3668) for $C_{30}H_{58}O_{15}$ (M = 658.3776).

Divalent glycodendron-O-undecyl 19

The protected glycodendron **18** (30 mg, 37 µmol) was dissolved in 9:1 TFA–water (5 mL) and the mixture was stirred for ~15 min at rt. After the deprotection reaction was completed (TLC on RP-18 silica gel, acetonitrile/water, 1:1), it was co-distilled with toluene and the residue purified by GPC (Sephadex LH-20, eluent water) to yield a colourless oil (23 mg, 35 µmol, 95%); $\left[\alpha\right]_D^{20}$ = +51.3 (c = 1.3, CH₃OH); ¹H NMR (600 MHz, CD₃OD): δ = 4.84 (s, 2H, H-1), 3.89 - 3.85 (m, 6H, 2 H-2, 2 H-6, CH₂CH₂O), 3.76 (dd, 2H, 3 J_{5.6} = 5.7, 3 J_{6.6′} = 11.5 Hz, 2 H-6′),

3.76 - 3.74 (m, 2H, 2 H-3), 3.71 - 3.69 (m, 4H, $(CH_2)_2CH$, CH_2CH_2O), 3.68 - 3.65 (m, 4H, H-4, CH_2CH_2O), 3.64 - 3.57 (m, 9H, 2 H-5, $(CH_2)_2CH$, $(CH_2)_2CH$, CH_2CH_2O , $OCH_2CH_2CH_2$), 1.60 (quin., 2H, $^3J_{CH2,CH2} = 1.2$ Hz, $OCH_2CH_2(CH_2)_{11}CH_3$), 1.43 - 1.29 (m, 16H, $(CH_2)_8CH_3$), 0.94 (t, 3H, $^3J_{CH2,CH3} = 7.0$ Hz, CH_2CH_3) ppm; ^{13}C NMR (150 MHz, CD_3OD): $\delta = 101.7$ (C-1), 79.3 ($(CH_2)_2CH$), 74.6 (C-5), 72.6 (C-3), 72.1 (C-2), 72.0 (CH_2), 71.7 (CH_2), 71.5 (CH_2), 68.6 (C-4), 67.8 (CH_2CH_2O), 62.9 (C-6), 33.0 ($CH_2CH_2CH_3$), 31.1 ($CH_2CH_2CH_2CH_3$), 30.7 (3 $CH_2CH_2CH_3$), 30.6, 30.4, 27.2 (3 $CH_2CH_2CH_3$), 14.1 ($CH_2CH_3CH_3$) ppm; HRESI-MS: m/z = 681.3692 [M+Na]⁺ (calcd. m/z = 681.3668) for $C_{30}H_{58}O_{15}$ (M = 658.3776).

Tetravalent glycodendron(isopropylidene)-O-tetradecyl 20

The alkene 16 (45 mg, 29 μmol) was dissolved in dry MeOH (4 mL), Pd/C (10%, 25 mg) was added and the reaction mixture stirred for 4 h under a hydrogen atmosphere. The course of the reaction was monitored by mass spectrometry (MALDI-TOF). When the reaction was completed, the catalyst was filtered over celite, it was washed with MeOH (5 x 2 mL) and the filtrate evaporated in vacuo. Column chromatographic purification (cyclohexane/ethyl acetate, 1:1) gave the title compound as a colourless oil (41 mg, 26 μ mol, 93%); $[\alpha]_D^{20} =$ +3.7° (c = 1.1, CHCl₃); ¹H NMR (500 MHz, CDCl₃): $\delta = 5.05$ (s, 4H, 4 H-1), 4.20 (dd, 4H, $^{3}J_{1,2} = 1.4, \, ^{3}J_{2,3} = 5.6 \, \text{Hz}, \, 4 \, \text{H-2}), \, 4.15 \, (\text{dd}, \, 4\text{H}, \, ^{3}J_{2,3} = 5.7 \, \text{Hz}, \, ^{3}J_{3,4} = 7.9 \, \text{Hz}, \, 4 \, \text{H-3}), \, 3.86 \, (\text{dd}, \, ^{2}J_{3,4} = 1.4), \, ^{2}J_{3,4} = 1.4 \, \text{H-3}), \, ^{2}J_{3,4} = 1.4 \, \text{H-3}$ 4H, ${}^{3}J_{5.6} = 5.7$, ${}^{2}J_{6.6} = 10.8$ Hz, 4 H-6), 3.80 - 3.70 (m, 6H, CH₂CH₂O, CH₂CH₂O, (CH₂)₂CH), 3.75 (t, 4H, ${}^{2}J_{6.6}$ = 10.5 Hz, 4 H-6'), 3.74 (dd, 4H, ${}^{3}J_{3.4}$ = 7.9, ${}^{3}J_{4.5}$ = 10.1 Hz, 4 H-4), 3.66 -3.53 (m, 31H, H-5, (CH₂)₂CH, CHHCH₂O, CH₂CH₂O, (CH₂)₂CH, OCH₂(CH₂)₁₂CH₃), 1.55 (s, 12H, isoprop-CH₃), 1.54 - 1.51 (m, 2H, OCH₂CH₂(CH₂)₁₁CH₃), 1.51, 1.42, 1.35 (each s, each 12H, isoprop-CH₃), 1.32 - 1.22 (m, 22H, (C \underline{H}_2)₁₁CH₃), 0.88 (t, 3H, ${}^3J_{CH2,CH3} = 7.0$ Hz, CH₂C \underline{H}_3) ppm; ¹³C NMR (150 MHz, CDCl₃): δ = 109.4, 99.7 ((CH₃)₂C), 97.9 (C-1), 78.5 ((CH₂)₂CH), 78.3 ((CH₂)₂CH), 76.0 (C-2), 74.8 (C-3), 72.7 (C-4), 71.0 (2 CH₂), 70.6 (2 CH₂), 70.4 (4 CH₂), 70.3 (2 CH₂), 66.6 (<u>C</u>H₂CH₂O), 62.0 (C-6), 61.3 (C-5), 31.9 (<u>C</u>H₂CH₂CH₃), 30.2 (OCH₂CH₂(CH₂)₁₁CH₃), 29.7 (6 CH₂), 29.6 (CH₂), 29.4 (CH₂), 29.1, 28.2, 26.2 (isoprop-CH₃),

26.9 (CH₂), 22.7 (CH₂CH₃), 18.8 (isoprop-CH₃), 14.1 (CH₂CH₃) ppm; HRESI-MS: $m/z = 1603.8917 \text{ [M+Na]}^+ \text{ (calcd. } m/z = 1603.8958) \text{ for } \text{C}_{79}\text{H}_{136}\text{O}_{31} \text{ (M} = 1580.9025).}$

Tetravalent glycodendron-O-tetradecyl 21

The protected glycodendron **20** (22 mg, 14 μ mol) was dissolved in 9:1 TFA–water (5 mL) and the mixture was stirred for ~15 min at rt. After the deprotection reaction was completed (TLC on RP-18 silica gel, acetonitrile/water, 1:1), it was co-distilled with toluene and the residue purified by GPC (Sephadex LH-20, eluent water) to yield a colourless oil (16 mg, 13 μ mol, 91%); $\left[\alpha\right]_D^{20}$ = +51 (c = 0.9, CH₃OH); ¹H NMR (600 MHz, CD₃OD): δ = 4.91 (s, 4H, 4 H-1), 3.97 (dd, 4H, ³J_{1,2} = 1.7, ³J_{2,3} = 3.4 Hz, 4 H-2), 3.91 - 3.87 (m, 8H, 4 H-6, CH₂CH₂O), 3.83 (dd, 4H, ³J_{2,3} = 3.3, ³J_{3,4} = 9.6 Hz, 4 H-3), 3.83 - 3.79 (m, 4H, 4 H-6), 3.78 - 3.63 (m, 37H, 4 H-4, 4 H-5, (CH₂)₂CH, CH₂CH₂O, OCH₂(CH₂)₁₂CH₃), 1.61 (m_c, 2H, OCH₂CH₂(CH₂)₁₁CH₃), 1.38 - 1.31 (m, 22H, (CH₂)₁₁CH₃), 0.94 (t, 3H, ³J_{CH2,CH3} = 7.0 Hz, CH₂CH₃) ppm; ¹³C NMR (150 MHz, CD₃OD): δ = 101.0 (C-1), 79.1 ((CH₂)₂CH), 73.8 (C-5), 71.8 (C-3), 71.3 (C-2), 71.2 ((CH₂)₂CH, CH₂CH₂O, OCH₂(CH₂)₁₁CH₃), 67.7 (C-4), 67.4 (CH₂CH₂O), 62.0 (C-6), 32.8 (CH₂CH₂CH₃), 30.6 (OCH₂CH₂(CH₂)₁₁CH₃), 30.5 (7 CH₂), 30.3 (CH₂), 30.2 (CH₂), 26.8 (CH₂), 23.5 (CH₂CH₃), 14.8 (CH₂CH₃) ppm; HRESI-MS: m/z = 1283.6430 [M+Na]⁺ (calcd. m/z = 1283.6454) for C₅₅H₁₀₄O₃₁ (M = 1260.6562).

Divalent glycodendron(isopropylidene)-O-but-2-enyl-glycerol diether 23

The divalent glycodendron **5** (200 mg, 284 μ mol) was dissolved in dry dichloromethane (2 mL) under Schlenk conditions and treated with glycerol triether **22** (298 mg 568 μ mol, 2 equiv) and Grubbs' catalyst (23 mg, 28 μ mol, 10 mol %). The reaction mixture was stirred under reflux for 14 h. The reaction was quenched by addition of ethyl vinyl ether (1 mL), stirred at rt for 30 min and evaporated under reduced pressure. The residual crude product was purified by column chromatography (cyclohexane/ethyl acetate, 1:1) to yield a colourless oil (130 mg, 108 μ mol, 38%; 73% *trans* isomer, according to ¹H NMR); $[\alpha]_D^{20} = +2.2$ (c = 0.6, CHCl₃); as main product, the cross-coupled homo-dimer of **22** was obtained as a colourless

oil (97 mg, 95 μmol, 81% trans isomer). ¹H NMR (600 MHz, CDCl₃): δ = 5.79 (t, 2H, $^{4}J_{CH\ CH2} = 2.7\ Hz$, CH=CH_{trans}), 5.71 (t, 2H, $^{4}J_{CH\ CH2} = 5.4\ Hz$, CH=CH_{cis}), 5.05 (s, 2H, 2 H-1), 4.22 (d, 2H, ${}^{3}J_{CH,CH2} = 5.3$ Hz, $C_{H_2}CH=CH_{cis}$), 4.20 (dd, 2H, ${}^{4}J_{2,4} = 0.9$, ${}^{3}J_{2,3} = 5.6$ Hz, 2 H-2), 4.16 (m, 2H, $CH_2CH=CH_{trans}$), 4.14 (dd, 2H, $^3J_{2,3} = 5.8$ Hz, $^3J_{3,4} = 7.8$ Hz, 2 H-3), 4.07 (d, 2H, $^{3}J_{CH,CH2} = 5.3 \text{ Hz}, C_{H_2}CH = CH_{cis}), 4.00 \text{ (m, 2H, C}_{H_2}CH = CH_{trans}), 3.86 \text{ (dd, 2H, } ^{3}J_{5.6} = 5.6,$ $^{2}J_{6.6}$ = 10.8 Hz, 2 H-6), 3.81 - 3.77 (m, 2H, CH₂CH₂O), 3.75 (t, 2H, $^{2}J_{6.6}$ = 10.4 Hz, 2 H-6'), 3.73 (dd, 2H, ${}^{3}J_{3.4} = 7.8$, ${}^{3}J_{4.5} = 10.1$ Hz, 2 H-4), 3.69 - 3.63 (m, 7H, (CH₂)₂CH, 3 CH₂), 3.63 -3.54 (m, 11H, 2 H-5, (CH₂)₂CHOCHCH=C, CHHCH₂O, 3 CH₂), 3.50 (dt, 1H, ${}^{3}J_{CH2,CH2} = 5.2$, $^{2}J_{CH2,CH2} = 10.2 \text{ Hz}$, CHH), 3.46 (m, 1H, CHH), 3.43 (t, 2H, $^{3}J_{CH2,CH2} = 6.7 \text{ Hz}$, CH₂), 1.58 -1.53 (m, 4H, 2 OCH₂CH₂(CH₂)₁₁CH₃), 1.55, 1.51, 1.42, 1.35 (each s, each 6H, isoprop-CH₃), 1.30 - 1.25 (m, 40H, 2 (CH_2)₁₀ CH_3), 0.88 (t, 6H, $^3J_{CH_2,CH_3} = 7.0$ Hz, 2 CH_2CH_3) ppm; ^{13}C NMR (150 MHz, CDCl₃): δ = 129.5 (CH₂CH=CH), 109.4, 99.7 ((CH₃)₂C), 98.0 (C-1), 78.0 ((CH₂)₂CHOCHCH=), 77.2 ((CH₂)₂CH), 76.1 (C-2), 74.9 (C-3), 72.8 (C-4), 71.7 (CH₂), 71.4 (CH₂CH=CH_{trans}), 71.3 (2 CH₂), 71.0 (CH₂), 70.9 (CH₂), 70.7 (CH₂), 70.6 (2 CH₂), 70.5 $(\underline{C}H_2CH=CH_{trans})$, 67.2 $(\underline{C}H_2CH=CH_{cis})$, 66.7 $(\underline{C}H_2CH_2C)$, 66.2 $(\underline{C}H_2CH=CH_{cis})$, 62.1 (C-6), 61.4 (C-5), 31.9 (<u>C</u>H₂CH₂CH₃), 30.2 (OCH₂CH₂(CH₂)₁₁CH₃), 29.7 (6 CH₂), 29.5 (4 CH₂), 29.4 (4 CH₂), 29.1, 28.2, 26.2 (isoprop-CH₃), 26.1 (4 CH₂), 22.7 (<u>C</u>H₂CH₃), 18.8 (isoprop-CH₃), 14.1 (CH₂CH₃) ppm; HRESI-MS: m/z = 1223.8348 [M+Na]⁺ (calcd. m/z = 1223.8367) for $C_{66}H_{120}O_{18}$ (M = 1200.8475).

Tetravalent glycodendron(isopropylidene)-O-but-2-enyl-glycerol diether 24

The tetravalent glycodendron **9** (100 mg, 70.2 μ mol) was dissolved in dry dichloromethane (2 mL) under Schlenk conditions and treated with glycerol triether **22** (74 mg, 140 μ mol, 2 equiv) and Grubbs' catalyst (6 mg, 7 μ mol, 10 mol %). The reaction mixture was stirred under reflux for 22 h. The reaction was quenched by addition of ethyl vinyl ether (1 mL), stirred at rt for 60 min and evaporated under reduced pressure. The residual crude product was purified by column chromatography (cyclohexane/ethyl acetate, 1:1) to yield a colourless oil (51 mg, 27 μ mol, 38%; 81% *trans* isomer, according to ¹H NMR); α

CHCl₃); ¹H NMR (600 MHz, CDCl₃): $\delta = 5.78$ (t, 2H, ⁴J_{CH.CH2} = 2.8 Hz, CH=CH_{trans}), 5.68 (m_c, 2H, CH=CH_{cis}), 5.05 (s, 4H, 4 H-1), 4.20 (d, 2H, CH₂CH=CH_{cis}), 4.19 (d, 4H, ${}^{3}J_{23}$ = 5.5 Hz, 4 H-2), 4.14 (m_c, 2H, C_{H2}CH=CH_{trans}), 4.14 (dd, 4H, ${}^{3}J_{2,3} = 5.5$, ${}^{3}J_{3,4} = 7.9$ Hz, 4 H-3), 4.05 (d, 2H, ${}^{3}J_{CH,CH2} = 5.7$ Hz, $C_{H_2}CH = CH_{cis}$), 3.99 (m_c, 2H, $C_{H_2}CH = CH_{trans}$), 3.86 (dd, 4H, ${}^{3}J_{5.6} = 5.6$, $^{2}J_{6.6} = 10.6 \text{ Hz}, 4 \text{ H-6}, 3.79 - 3.76 (m, 4H, OCH<u>H</u>CH₂), 3.74 (t, 4H, <math>^{2}J_{6.6} = 10.3 \text{ Hz}, 4 \text{ H-6}),$ $3.72 \text{ (dd, 4H, }^{3}\text{J}_{3.4} = 7.8, ^{3}\text{J}_{4.5} = 10.0 \text{ Hz, 4 H-4)}, 3.70 \text{ (m}_{c}, 2H, CH_{2}), 3.65 - 3.53 \text{ (m, 32H, H-5, H-5)}$ (CH₂)₂CH, OCHHCH₂,10 CH₂), 3.52- 3.41 (m, 6H, 3 CH₂), 1.58- 1.54 (m, 4H, 2 OCH₂CH₂CH₂), 1.55, 1.51, 1.42, 1.35 (each s, each 12H, isoprop-CH₃), 1.32 - 1.22 (m, 44H, 2 (CH₂)₁₁CH₃), 0.88 (t, 6H, ${}^{3}J_{CH2,CH3} = 7.0$ Hz, CH₂CH₃) ppm; ${}^{13}C$ NMR (150 MHz, CDCl₃): $\delta =$ 129.7 (CH=CH), 129.1 (CH=CH), 109.4, 99.7 ((CH₃)₂C), 98.0 (C-1), 78.6 ((CH₂)₂CH), 78.0 $((CH_2)_2CH)$, 77.9 $((CH_2)_2CH)$, 77.2 $((CH_2)_2CH)$, 76.1 (C-2), 74.9 (C-3), 72.8 (C-4), 71.7 (CH_2) , 71.5 (<u>C</u>H₂CH=CH_{trans}), 71.1 (CH₂), 70.7 (CH₂), 70.6 (CH₂), 70.5 (CH₂), 70.4 (CH₂), 70.3 $(\underline{C}H_2CH=CH_{trans})$, 67.2 $(\underline{C}H_2CH=CH_{cis})$, 66.7 $(\underline{O}CH_2CH_2)$, 66.2 $(\underline{C}H_2CH=CH_{cis})$, 62.1 (C-6), 61.4 (C-5), 31.9 (<u>C</u>H₂CH₂CH₃), 30.2 (OCH₂<u>C</u>H₂CH₂), 29.7 (CH₂), 29.6 (CH₂), 29.4 (CH₂), 29.1, 28.2, 26.2 (isoprop-CH₃), 26.1 (CH₂), 22.7 (<u>C</u>H₂CH₃), 18.8 (isoprop-CH₃), 14.1 (CH_2CH_3) ppm; HRESI-MS: m/z = 1944.1771 [M+Na]⁺ (calcd. m/z = 1944.1935) for $C_{100}H_{176}O_{34}$ (M = 1921.2043).

Divalent glycodendron(isopropylidene)-O-butyl-glycerol diether 25

The alkene **23** (136 mg, 113 µmol) was dissolved in dry MeOH (4 mL), Pd/C (10%, 13 mg) was added and the reaction mixture stirred for 1.5 h under a hydrogen atmosphere. The course of the reaction was monitored by mass spectrometry (MALDI–TOF). When the reaction was completed, the catalyst was filtered over celite, it was washed with MeOH (4 × 3 mL) and the filtrate was evaporated in vacuo. Column chromatographic purification (cyclohexane/ethyl acetate, 2:1) gave the title compound as a colourless oil (116 mg, 960 µmol, 85%); $\left[\alpha\right]_D^{20}$ = +2.1 (c = 0.8, CHCl₃); ¹H NMR (600 MHz, CDCl₃): δ = 5.05 (s, 2H, 2 H-1), 4.20 (dd, 2H, 3 J_{1,2} = 1.0, 3 J_{2,3} = 5.6 Hz, 2 H-2), 4.14 (dd, 2H, 3 J_{2,3} = 5.7 Hz, 3 J_{3,4} = 7.9 Hz, 2 H-3), 3.86 (dd, 2H, 3 J_{5,6} = 5.7, 2 J_{6,6} = 10.89 Hz, 2 H-6), 3.80 - 3.77 (m, 2H,

CH₂CH₂O), 3.75 (t, 2H, ${}^{2}J_{6,6}$: = 10.3 Hz, H-6'), 3.73 (dd, 2H, ${}^{3}J_{3,4}$ = 7.8, ${}^{3}J_{4,5}$ = 10.1 Hz, 2 H-4), 3.66 - 3.53 (m, 6H, 2 H-5, (CH₂)₂CH, CHHCH₂O), 3.51 - 3.40 (m, 20H, CH₂CH₂O, OCH₂(CH₂)CH₂O, (CH₂)₂CH, OCH₂(CH₂)₁₂CH₃), 1.62 (quin. 4H, ${}^{3}J_{CH2,CH2}$ = 3.1 Hz, OCH₂(CH₂)CH₂O), 1.58 - 1.55 (m, 4H, OCH₂CH₂(CH₂)₁₁CH₃), 1.55, 1.51, 1.42, 1.35 (each s, each 6H, isoprop-CH₃), 1.32 - 1.25 (m, 44H, 2 (CH₂)₁₁CH₃), 0.88 (t, 6H, ${}^{3}J_{CH2,CH3}$ = 7.0 Hz, CH₂CH₃) ppm; ${}^{13}C$ NMR (150 MHz, CDCl₃): δ = 109.4, 99.7 ((CH₃)₂C), 97.9 (C-1), 78.0 ((CH₂)₂CH), 77.9 ((CH₂)₂CH), 76.1 (C-2), 74.9 (C-3), 72.8 (C-4), 71.7, 71.3, 71.2 (3 CH₂), 71.0 (2 CH₂), 70.6, 70.5, 70.4 (3 CH₂), 66.7 (CH₂CH₂O), 62.1 (C-6), 61.4 (C-5), 31.9 (CH₂CH₂CH₃), 30.2 (OCH₂CH₂(CH₂)₁₁CH₃), 29.7 (2 CH₂), 29.5 (2 CH₂), 29.4 (2 CH₂), 29.1, 28.2 (isoprop-CH₃), 26.8 (CH₂), 26.4 (OCH₂(CH₂)₂CH₂O), 26.2 (isoprop-CH₃), 26.2 (CH₂), 26.1 (CH₂), 22.7 (CH₂CH₃O), 18.8 (isoprop-CH₃), 14.1 (CH₂CH₃) ppm; HRESI-MS: m/z = 1225.8504 [M+Na]⁺ (calcd. m/z = 1225.8523) for C₆₆H₁₂₂O₁₈ (M = 1202.8631).

Tetravalent glycodendron(isopropylidene)-O-butyl-glycerol diether 26

The alkene **24** (87 mg, 45 µmol) was dissolved in dry MeOH (3 mL), Pd/C (10%, 8 mg) was added and the reaction mixture stirred for 1.5 h under a hydrogen atmosphere. The course of the reaction was monitored by mass spectrometry (MALDI–TOF). When the reaction was completed, the catalyst was filtered over celite, it was washed with MeOH (5 × 2 mL) and the filtrate evaporated in vacuo. Column chromatographic purification (cyclohexane/ethyl acetate, 1:1) gave the title compound as a colourless oil (82 mg, 43 µmol, 94%); $\left[\alpha\right]_D^{20}$ = +1.7 (c = 0.9, CHCl₃); ¹H NMR (600 MHz, CDCl₃): δ = 5.05 (s, 4H, 4 H-1), 4.19 (dd, 4H, 3 J_{1,2} = 1.0, 3 J_{2,3} = 5.7 Hz, 4 H-2), 4.15 (m_c, 4H, 4 H-3), 3.86 (dd, 4H, 3 J_{5,6} = 5.6, 2 J_{6,6} = 10.8 Hz, 4 H-6), 3.81 - 3.76 (m, 4H, CH₂CH₂O), 3.75 (t, 4H, 2 J_{6,6} = 10.6 Hz, 4 H-6'), 3.73 (dd, 4H, 3 J_{3,4} = 7.8, 3 J_{4,5} = 9.9 Hz, 4 H-4), 3.68 (dd, 2H, CH₂), 3.65 - 3.53 (m, 32H, 4 H-5, (CH₂)₂CH₂, OCH₁CH₂, 10 CH₂), 3.48 - 3.41 (m, 8H, 4 CH₂), 1.60 (m_c, 4H, OCH₂(CH₂)₂CH₂O), 1.56 (m_c, 4H, 2 OCH₂CH₂(CH₂)₁₁CH₃), 1.54, 1.51, 1.42, 1.35 (each s, each 12H, isoprop-CH₃), 1.32 - 1.25 (m, 44H, 2 (CH₂)₁₁CH₃), 0.88 (t, 6H, 3 J_{CH2,CH3} = 7.1 Hz, CH₂CH₃) ppm; 13 C NMR (150 MHz, CDCl₃): δ = 109.4, 99.7 ((CH₃)₂C), 97.9 (C-1), 78.6 ((CH₂)₂CH), 78.4 ((CH₂)₂CH), 78.0

((CH₂)₂CH), 76.1 (C-2), 74.9 (C-3), 72.8 (C-4), 71.7 (CH₂), 71.4 (CH₂), 71.1 (2 CH₂), 70.7 (CH₂), 70.5 (CH₂), 70.4 (2 CH₂), 70.2 (CH₂), 66.7 (CH₂CH₂CH₂O), 62.1 (C-6), 61.4 (C-5), 31.9 (CH₂CH₂CH₃), 30.2 (OCH₂CH₂(CH₂)₁₁CH₃), 29.7 (4 CH₂), 29.6, 29.4 (2 CH₂), 29.1, 28.2, 26.2 (isoprop-CH₃), 26.5, 26.2, 26.1 (3 CH₂), 22.7 (CH₂CH₃), 18.8 (isoprop-CH₃), 14.1 (CH₂CH₃) ppm; HRESI-MS: m/z = 1246.2450 [M+Na]⁺ (calcd. m/z = 1946.2092) and 984.6054, [M+2Na]²⁺ (calcd. m/z = 984.5992) for C₁₀₀H₁₇₈O₃₄ (M = 1923.2200).

Divalent glycodendron-O-butyl-glycerol diether 27

The protected glycodendron 25 (116 mg, 96 μmol) was dissolved in 9:1 TFA-water (4 mL) and the mixture stirred for ~15 min at rt. After the deprotection reaction was completed (TLC on RP-18 silica gel, acetonitrile/water, 1:1), it was co-distilled with toluene and the residue purified by GPC (Sephadex LH-20, eluent water) to yield a colourless oil (99 mg, 95 μmol, 98%); $\left[\alpha\right]_{D}^{20}$ = +24.7 (c = 0.3, CH₃OH); ¹H NMR (600 MHz, CD₃OD): δ = 4.86 (d, 2H, $^{3}J_{1,2} = 1.8 \text{ Hz}, 2 \text{ H-1}, 3.89 - 3.86 (m, 2H, OCH₂CH₂), 3.89 (dd, 2H, <math>^{3}J_{1,2} = 1.8, ^{3}J_{2,3} = 3.4 \text{ Hz},$ 2 H-2), 3.87 (dd, 2H, ${}^{3}J_{5.6} = 2.2$, ${}^{3}J_{6.6} = 11.7$ Hz, 2 H-6), 3.78 (dd, 2H, ${}^{3}J_{2.3} = 3.2$, $^{3}J_{3,4} = 9.2 \text{ Hz}, 2 \text{ H-3}, 3.77 \text{ (dd, 2H, } ^{3}J_{5,6} = 5.5, ^{3}J_{6,6'} = 11.8 \text{ Hz}, 2 \text{ H-6}, 3.72 - 3.47 \text{ (m, 28H, 2)}$ H-4, 2 H-5, (CH₂)₂CH, OCHHCH₂, CH₂CH₂O, OCH₂CH₂, OCH₂CH₂CH₂), 1.68 (m_c, 4H, $OCH_2CH_2CH_2CH_2CH_2O$), 1.60 (quin., 4H, ${}^3J_{CH_2,CH_2} = 6.8$ Hz, $OCH_2CH_2CH_2$), 1.37 - 1.31 (m, 44H, $(C_{H_2})_{11}CH_3$, 0.94 (t, 6H, $^3J_{CH_2,CH_3} = 7.0$ Hz, $CH_2C_{H_3}$) ppm; ^{13}C NMR (150 MHz, CD_3OD): $\delta =$ 101.6 (C-1), 79.2 ((CH₂)₂CH), 79.1 ((CH₂)₂CH), 74.4 (C-5), 72.6 (CH₂), 72.5 (C-3), 72.4 (CH₂), 72.0 (C-2, CH₂), 71.9 (2 CH₂), 71.7 (CH₂), 71.5 (CH₂), 71.2 (CH₂), 68.5 (C-4), 67.7 $(\underline{C}H_2CH_2O)$, 62.8 (C-6), 33.0 $(\underline{C}H_2CH_2CH_3)$, 31.0 $(OCH_2\underline{C}H_2(CH_2)_{11}CH_3)$, 30.7 (3 CH_2), 30.5, 30.4, 27.7, 27.3, 27.2, 27.1 (6 CH₂), 23.7 (<u>C</u>H₂CH₃), 14.4 (CH₂<u>C</u>H₃) ppm; HRESI-MS: $m/z = 1065.7199 \text{ [M+Na]}^+ \text{ (calcd. } m/z = 1065.7271) \text{ for } C_{54}H_{106}O_{18} \text{ (M} = 1042.7379).}$

Tetravalent glycodendron-O-butyl-glycerol diether 28

The protected glycodendron **26** (82 mg, 43 μ mol) was dissolved in 9:1 TFA—water (3 mL) and the mixture stirred for ~20 min at rt. After the deprotection reaction was completed (TLC on RP-18 silica gel, acetonitrile/water, 1:1), it was co-distilled with toluene and the residue purified by GPC (Sephadex LH-20, eluent water) to yield a colourless oil (67 mg, 42 μ mol, 98%); $[\alpha]_D^{20}$ = +24.7 (c = 0.3, CH₃OH); ¹H NMR (600 MHz, CD₃OD): δ = 4.85 (d, 4H, ³J_{1,2} = 1.8 Hz, 4 H-1), 3.89 - 3.85 (m, 4H, OCH \underline{H} CH₂), 3.88 (dd, 4H, ³J_{1,2} = 1.8, ³J_{2,3} = 3.4 Hz, 4 H-2), 3.87 (dd, 4H, ³J_{5,6} = 2.3, ³J_{5,6} = 11.7 Hz, 4 H-6), 3.78 - 3.74 (m, 8H, 4 H-3, 4 H-6), 3.73 - 3.61 (m, 40H, 4 H-4, 4 H-5, (CH₂)₂C \underline{H} , CH \underline{H} CH₂O, 12 CH₂), 1.68 (m_c, 4H, OCH₂(C \underline{H} ₂)₂CH₂O), 1.60 (m_c, 4H, OCH₂C \underline{H} ₂(CH₂)₁₁CH₃), 1.38 - 1.33 (m, 44H, (C \underline{H} ₂)₁₁CH₃), 0.94 (t, 6H, ³J_{CH2,CH3} = 7.0 Hz, CH₂C \underline{H} ₃) ppm; ¹³C NMR (150 MHz, CD₃OD): δ = 101.7 (C-1), 80.0 ((CH₂)₂CH), 79.4 ((CH₂)₂CH), 74.6 (C-5), 72.6 (C-3), 72.1 (C-2, 2 CH₂), 71.8 (2 CH₂), 71.5 (CH₂), 71.1 (CH₂), 68.7 (C-4), 67.8 (OCH₂CH₂O), 63.0 (C-6), 33.1 (CH₂CH₂CH₃), 31.2 (OCH₂CH₂(CH₂)₁₁CH₃), 30.8 (4 CH₂), 30.6, 30.5, 27.9, 27.5, 27.3 (5 CH₂), 23.7 (CH₂CH₃), 14.4 (CH₂CH₃) ppm; HRESI-MS: m/z = 1625.9543 [M+Na]* (calcd. m/z = 1625.9588) and 824.4842, [M+2Na]^{2*} (calcd. m/z = 824.4740) for C₇₆H₁₄₆O₃₄ (M = 1602.9696).