Supporting Information

for
 Synthesis and solvodynamic diameter measurements of closely related mannodendrimers for the study of multivalent carbohydrate-protein interactions

Yoann M. Chabre, Alex Papadopoulos, Alexandre A. Arnold and René Roy*

Address: Pharmaqam, Department of Chemistry, Université du Québec à Montréal, P. O. Box 8888, Succ. Centre-ville, Montréal, Québec, Canada H3C 3P8

Email: René Roy* - roy.rene@uqam.ca
*Corresponding author

Experimental procedures, characterization data, NMR, IR and mass spectra and NMR diffusion experiments

Contents

1. Experimental procedures and data S 2
2. NMR, IR, and mass spectra S11
3. NMR diffusion experiments S49

Experimental procedures and data

All reactions in organic medium were performed in standard oven-dried glassware under an inert atmosphere of nitrogen using freshly distilled solvents. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was distilled from CaH_{2} and DMF from ninhydrin, and kept over molecular sieves. Solvents and reagents were deoxygenated when necessary by purging with nitrogen. Water used for lyophilization of final dendrimers was nanopure grade, purified through Barnstead NANOPure II Filter with Barnstead MegOhm-CM Sybron meter. All reagents were used as supplied without prior purification unless otherwise stated, and obtained from Sigma-Aldrich Chemical Co. Ltd. Reactions were monitored by analytical thin layer chromatography using silica gel 60 F 254 precoated plates (E. Merck) and compounds were visualized by 254 nm light, a mixture of iodine/silica gel and/or mixture of ceric ammonium molybdate solution ($\left.100 \mathrm{~mL} \mathrm{H}_{2} \mathrm{SO}_{4}, 900 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}, 25 \mathrm{~g}\left(\mathrm{NH}_{4}\right)_{6} \mathrm{Mo}_{7} \mathrm{O}_{24} \mathrm{H}_{2} \mathrm{O}, 10 \mathrm{~g} \mathrm{Ce}\left(\mathrm{SO}_{4}\right)_{2}\right)$ and subsequent development by gentle warming with a heat-gun. Purifications were performed by flash column chromatography using silica gel from Silicycle ($60 \AA, 40-63 \mu \mathrm{~m}$) with the indicated eluent.

NMR, IR spectroscopies and MS spectrometry

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded at 300 or 600 MHz and 75 or 150 MHz , respectively, on a Bruker spectrometer (300 MHz) and Varian spectrometer $(600 \mathrm{MHz})$. All NMR spectra were measured at $25^{\circ} \mathrm{C}$ in indicated deuterated solvents. Proton and carbon chemical shifts (δ) are reported in ppm and coupling constants (J) are reported in Hertz (Hz). The resonance multiplicity in the ${ }^{1} \mathrm{H}$ NMR spectra are described as " s " (singlet), " d " (doublet), " t " (triplet), and " m " (multiplet) and broad resonances are indicated by "br". Residual protic solvent of $\mathrm{CDCl}_{3}\left({ }^{1} \mathrm{H}, \delta 7.27 \mathrm{ppm} ;{ }^{13} \mathrm{C}, \delta 77.0 \mathrm{ppm}\right.$ (central resonance of the triplet)), $\mathrm{D}_{2} \mathrm{O}\left({ }^{1} \mathrm{H}, \delta 4.79 \mathrm{ppm}\right.$ and 30.89 ppm for CH_{3} of acetone for ${ }^{13} \mathrm{C}$ spectra of de- O-acetylated compounds), MeOD (${ }^{1} \mathrm{H}, \delta 3.31 \mathrm{ppm}$ and ${ }^{13} \mathrm{C}, \delta 49.0 \mathrm{ppm}$. 2D Homonuclear correlation ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY together with 2D heteronuclear correlation ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HSQC experiments were used to confirm NMR peak assignments.

Fourier transform infrared (FTIR) spectra were obtained with Thermo-scientific, Nicolet model 6700 equipped with ATR. The absorptions are given in wavenumbers $\left(\mathrm{cm}^{-1}\right)$. The intensity of the bands is described as s (strong), m (medium) or w (weak). Melting points were measured on an Electrothermal MELTEMP apparatus and are uncorrected.
Accurate mass measurements (HRMS) were performed on a LC-MSD-ToF instrument from Agilent Technologies in positive electrospray (ES) mode. Low-resolution mass spectra were performed on the same apparatus or on a LCQ Advantage ion trap instrument from Thermo Fisher Scientific in positive electrospray mode (Mass Spectrometry Laboratory (Université de Montréal), or Plateforme analytique pour molécules organiques (Université du Québec à Montréal), Québec, Canada). Either protonated molecular ions $[\mathrm{M}+n \mathrm{H}]^{n+}$ or adducts $[\mathrm{M}+n \mathrm{X}]^{n+}\left(\mathrm{X}=\mathrm{Na}, \mathrm{K}, \mathrm{NH}_{4}\right)$ were used for empirical formula confirmation.

General procedures

Procedure A: multiple CuAAc couplings on polypropargylated cores

To a solution of polypropargylated core (1.00 equiv) and complementary azido synthon (1.25 equiv/propargyl) in a THF/ $\mathrm{H}_{2} \mathrm{O}$ mixture ($1: 1$) were added sodium ascorbate (0.30 equiv/propargyl) and $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ (0.30 equiv/propargyl). The reaction mixture was stirred at $50{ }^{\circ} \mathrm{C}$ for 3 h then at room temperature for an additional 16 h period. EtOAc $(10 \mathrm{~mL})$ was added and the resulting solution was poured in a separatory funnel containing 25 mL of EtOAc and 30 mL of a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$. Organics were washed with $(2 \times 25 \mathrm{~mL})$ of saturated $\mathrm{NH}_{4} \mathrm{Cl}_{\mathrm{aq}}$, water $(2 \times 20 \mathrm{~mL})$ and brine $(10 \mathrm{~mL})$. The organic phase was then dried over MgSO_{4} and concentrated under reduced pressure. Column chromatography on silica (DCM/MeOH 100:0 to 90:10) afforded the desired glycocluster.

Procedure B: Zemplén de- O-acetylation procedure for insoluble derivatives

The acetylated compound was dissolved in anhydrous MeOH and a solution of sodium methoxide (1 M in $\mathrm{MeOH}, 5 \mu \mathrm{~L}$ every 20 minutes until precipitation) was added. An additional $100 \mu \mathrm{~L}$ was then injected and the heterogeneous reaction mixture was stirred at room temperature for 24 h . The solvent was then removed with a Pasteur pipette and a mixture of anhydrous $\mathrm{MeOH} / \mathrm{DCM}(4: 1,5 \mathrm{~mL})$ was added to the residual white foam. A vigorous agitation was maintained for an additional 15 min period. After removal of the solvents with a Pasteur pipette, the residue was dissolved in $\mathrm{H}_{2} \mathrm{O}(3 \mathrm{~mL})$, and the pH was adjusted to $6-7$ with addition of ion-exchange resin (Amberlite IR $120 \mathrm{H}^{+}$). After filtration, the solvent was removed under vacuum with rotary evaporator, lyophilized to yield the fully deprotected glycocluster.

Synthesis of peracetylated trivalent derivative (4): Derivative $\mathbf{4}$ was synthesized according to Procedure A with tripropargylated core $2(15.4 \mathrm{mg}, 47.9 \mu \mathrm{~mol}, 1.00$ equiv), mannoside $3(75.0 \mathrm{mg}, 180 \mu \mathrm{~mol}$, 3.75 equiv), sodium ascorbate ($8.5 \mathrm{mg}, 43 \mu \mathrm{~mol}, 0.90$ equiv) and $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(10.8 \mathrm{mg}, 43.1 \mu \mathrm{~mol}$, 0.90 equiv) in a $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}$ mixture ($4 \mathrm{~mL}, 1: 1$). Column chromatography on silica ($\mathrm{DCM} / \mathrm{MeOH} 98: 2$ to 94:6) afforded the desired compound $\mathbf{4}(42.0 \mathrm{mg}, 26.8 \mu \mathrm{~mol}, 56 \%)$ as a white solid.
$\mathbf{R}_{\mathbf{f}}=0.16$ (94:6 DCM/MeOH); m.p. $=103-106^{\circ} \mathbf{C}$ (not corrected). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta(\mathrm{ppm})$ $8.21\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{C} H_{\text {ar }}+\mathrm{N} H\right), 7.74\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C} H_{\text {triazole }}\right), 5.23-5.17\left(\mathrm{~m}, 9 \mathrm{H}, H_{2}, H_{3}, H_{4}\right), 4.81\left(\mathrm{~s}_{\text {app }}, 3 \mathrm{H}, H_{1}\right)$, 4.67-4.60 (m, 12H, $\mathrm{HNCH}_{2} \mathrm{C}_{\text {triazole }}+\mathrm{N}_{\text {triazole }} \mathrm{CH}_{2}$), 4.21-3.89 (m, 12H, $\mathrm{OCH}_{2}+H_{6}$), 3.62-3.60 (m, 3H, H_{5}), 2.11, 2.08, 2.01, $1.96\left(4 \mathrm{~s}, 36 \mathrm{H}, \mathrm{COCH}_{3}\right) .{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{7 5 ~ M H z}, \mathbf{C D C l}_{3}\right) \delta(\mathrm{ppm}) 170.7,170.1,170.0$, $169.7\left(\mathrm{COCH}_{3}\right)$, $165.9(\mathrm{CONH})$, $145.0\left(C_{\text {triazole }}\right)$, $134.6\left(C_{\text {arom }}\right)$, $128.5\left(\mathrm{CH}_{\text {arom }}\right), 123.4\left(\mathrm{CH}_{\text {triazole }}\right)$, $97.3\left(C_{1}\right)$, $69.2\left(C_{2}\right), 68.9\left(C_{3}\right), 68.8\left(C_{5}\right), 66.1\left(C_{6}\right), 65.7\left(C_{4}\right), 62.2\left(\mathrm{OCH}_{2}\right), 49.7\left(\mathrm{CH}_{2} \mathrm{~N}_{\text {triazole }}\right), 35.5\left(\mathrm{HNCH}_{2} \mathrm{C}_{\text {triazole }}\right)$, 20.8, 20.7, 20.6, $20.6\left(\mathrm{COCH}_{3}\right)$. HRMS (${ }^{+}$TOF-HRMS) m/z: calculated for $\mathrm{C}_{66} \mathrm{H}_{84} \mathrm{~N}_{12} \mathrm{O}_{33}[\mathrm{M}+\mathrm{H}]^{+}$: 1573.5337, found: $1573.5327(\Delta=-0.88 \mathrm{ppm}) ;[\mathrm{M}+\mathrm{Na}]^{+}: 1595.5156$, found: $1595.5151(\Delta=-0.29 \mathrm{ppm})$.

Synthesis of trivalent derivative (5): A solution of sodium methoxide (1 M in $\mathrm{MeOH}, 50 \mu \mathrm{~L}$) was added to a solution of acetylated precursor $4(30.0 \mathrm{mg}, 19.1 \mu \mathrm{~mol})$ in $\mathrm{MeOH}(2.5 \mathrm{~mL})$. The reaction mixture was stirred at room temperature for 24 h . The pH was adjusted to 6-7 with addition of ion-exchange resin (Amberlite IR $120 \mathrm{H}^{+}$). After filtration, the solvent was removed under vacuum with rotary evaporator and the residue was lyophilized to furnish desired de- O-acetylated compound $5(19.0 \mathrm{mg}, 17.9 \mu \mathrm{~mol}, 94 \%)$ as a white solid.
${ }^{1} \mathbf{H}$ NMR (300 MHz, $\left.\mathbf{D}_{\mathbf{2}} \mathbf{O}\right) \delta(\mathrm{ppm}) 8.27\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{\mathrm{ar}}\right), 8.01\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{\text {triazole }}\right), 4.74\left(\mathrm{~m}, 3 \mathrm{H}, H_{1}\right), 4.63-4.59$ $\left(\mathrm{m}, 12 \mathrm{H}, \mathrm{HNCH}_{2} \mathrm{C}_{\text {triazole }}+\mathrm{N}_{\text {triazole }} \mathrm{CH}_{2}\right), 4.05-4.01\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CHHCH}_{2} \mathrm{~N}\right), 3.88-3.79\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CHHCH} 2 \mathrm{~N}+\mathrm{H}_{2}\right)$, 3.63-3.47 (m, 12H, $\left.H_{6}+H_{4}+H_{3}\right), 2.90-2.86\left(\mathrm{~m}, 3 \mathrm{H}, H_{5}\right) .{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{7 5} \mathbf{~ M H z}, \mathbf{D}_{\mathbf{2}} \mathbf{O}\right) \delta(\mathrm{ppm}) 168.4$ $(C \mathrm{ONH}), 144.6\left(C_{\text {triazole }}\right), 134.5\left(C_{\text {arom }}\right), 129.3\left(C H_{\text {arom }}\right), 124.7\left(C H_{\text {triazole }}\right), 99.5\left(C_{1}\right), 72.8\left(C_{5}\right), 70.5\left(C_{3}\right), 69.9$ $\left(C_{2}\right), 66.4\left(C_{4}\right), 65.5\left(\mathrm{OCH}_{2}\right), 60.7\left(C_{6}\right), 50.1\left(\mathrm{CH}_{2} \mathrm{~N}_{\text {triazole }}\right), 35.1\left(\mathrm{HNCH}_{2} \mathrm{C}_{\text {triazole }}\right)$. HRMS (${ }^{+}$TOF-HRMS) m/z: calculated for $\mathrm{C}_{42} \mathrm{H}_{60} \mathrm{~N}_{12} \mathrm{O}_{21}[\mathrm{M}+\mathrm{Na}]^{+}: 1091.3888$, found: $1091.3888(\Delta=-0.11 \mathrm{ppm})$.

Synthesis of peracetylated trivalent derivative (8): To a solution of triazido core $6(50.0 \mathrm{mg}, 109 \mu \mathrm{~mol}$, 1.00 equiv) and mannoside $7\left(158 \mathrm{mg}, 409 \mu \mathrm{~mol}, 3.75\right.$ equiv) in a $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}$ mixture ($6 \mathrm{~mL}, 1: 1$) were added sodium ascorbate ($19.4 \mathrm{mg}, 98.1 \mu \mathrm{~mol}, 0.90$ equiv) and $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(24.5 \mathrm{mg}, 98.1 \mu \mathrm{~mol}, 0.90$ equiv $)$. The reaction mixture was stirred at $50^{\circ} \mathrm{C}$ for 3 h then at room temperature for an additional 16 h period. EtOAc $(10 \mathrm{~mL})$ was added and the resulting solution was poured in a separatory funnel containing 35 mL of EtOAc and 30 mL of a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$. Organics were washed with $(2 \times 25 \mathrm{~mL})$ of saturated $\mathrm{NH}_{4} \mathrm{Cl}_{\mathrm{aq}}$, water $(2 \times 20 \mathrm{~mL})$ and brine $(10 \mathrm{~mL})$. The organic phase was then dried over MgSO_{4} and concentrated under reduced pressure. Column chromatography on silica (DCM/MeOH 98:2 to 94:6) afforded the desired compound $\mathbf{8}(138 \mathrm{mg}, 86.0 \mu \mathrm{~mol}, 79 \%)$ as a viscous oil.
$\mathbf{R}_{\mathbf{f}}=0.34(95: 5 \mathrm{DCM} / \mathrm{MeOH}) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{6 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \delta(\mathrm{ppm}) 8.27\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C} H_{\mathrm{ar}}\right), 7.79(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{C}_{\text {triazole }}\right), 7.72(\mathrm{t}, J=5.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{NH}), 5.29-5.19\left(\mathrm{~m}, 9 \mathrm{H}, H_{2}, H_{3}, H_{4}\right), 4.92\left(\mathrm{~s}_{\text {app }}, 3 \mathrm{H}, H_{1}\right), 4.77-4.62(2 \times \mathrm{d}, J$ $\left.=12.4 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{OCH}_{2}\right), 4.54\left(\mathrm{t}, J=6.4 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{N}_{\text {triazole }} \mathrm{CH}_{2}\right), 4.28\left(\mathrm{dd}, J=12.4 \mathrm{~Hz}, J=5.4 \mathrm{~Hz}, 3 \mathrm{H}, H_{6 \mathrm{~b}}\right)$, 4.11-4.03 (m, $\left.6 \mathrm{H}, H_{5}+H_{6 \mathrm{a}}\right), 3.55\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{NHCH}_{2}\right), 2.28\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 2.12,2.10,2.02,1.96(4 \mathrm{~s}$, $\left.36 \mathrm{H}, \mathrm{COCH}_{3}\right) \cdot{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{1 5 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta(\mathrm{ppm}) 170.8,170.1,170.0,169.7\left(\mathrm{COCH}_{3}\right), 166.1$ $(C \mathrm{ONH}), 143.5\left(C_{\text {triazole }}\right), 134.9\left(C_{\text {arom }}\right), 128.5\left(C \mathrm{H}_{\text {arom }}\right), 123.9\left(C \mathrm{H}_{\text {triazole }}\right), 96.7\left(C_{1}\right), 69.3\left(C_{2}\right), 69.0\left(C_{3}\right), 68.7$ $\left(C_{5}\right), 65.9\left(C_{6}\right), 62.3\left(C_{4}\right), 60.7\left(\mathrm{OCH}_{2}\right), 48.3\left(\mathrm{CH}_{2} \mathrm{~N}_{\text {triazole }}\right), 37.5\left(\mathrm{NHCH}_{2}\right), 29.9\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 20.9,20.8$, 20.7, $20.7\left(\mathrm{COCH}_{3}\right) . \mathbf{M S}\left({ }^{+}\right.$TOF-MS $) \mathrm{m} / \mathrm{z}$: calculated for $\mathrm{C}_{69} \mathrm{H}_{90} \mathrm{~N}_{12} \mathrm{O}_{33}[\mathrm{M}+\mathrm{H}]^{+}: 1615.6$, found: 1615.6.

Synthesis of trivalent derivative (9): Derivative 9 was synthesized according to Procedure B with compound $\mathbf{8}(120.0 \mathrm{mg}, 74.3 \mu \mathrm{~mol})$ previously dissolved in anhydrous $\mathrm{MeOH}(4 \mathrm{~mL})$. Deprotected hexamer 9 was obtained as a white solid ($78.0 \mathrm{mg}, 70.6 \mu \mathrm{~mol}$) in a 95% yield.
${ }^{1} \mathbf{H}$ NMR ($\left.\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{D}_{2} \mathbf{O}\right) \delta(\mathrm{ppm}) 8.03\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{\mathrm{ar}}\right), 8.00\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{\text {triazole }}\right), 4.85\left(\mathrm{~m}, 3 \mathrm{H}, H_{1}\right), 4.68-4.49$ $\left(\mathrm{m}, 12 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{C}_{\text {triazole }}+\mathrm{N}_{\text {triazole }} \mathrm{CH}_{2}\right), 3.80-3.55\left(\mathrm{~m}, 18 \mathrm{H}, H_{2}+H_{6}+H_{4}+H_{3}+H_{5}\right), 3.40\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{OCNHCH}_{2}\right)$, $2.24\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right) .{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta(\mathrm{ppm}) 168.6(\mathrm{CONH}), 144.2\left(C_{\text {triazole }}\right), 135.0$ $\left(C_{\text {arom }}\right), 129.3\left(C H_{\text {arom }}\right), 125.8\left(\mathrm{CH}_{\text {triazole }}\right)$, $100.0\left(C_{1}\right)$, $73.6\left(C_{5}\right)$, $71.1\left(C_{3}\right), 70.6\left(C_{2}\right), 67.3\left(C_{4}\right), 61.5\left(C_{6}\right), 60.7$ $\left(\mathrm{OCH}_{2}\right), 49.1\left(\mathrm{CH}_{2} \mathrm{~N}_{\text {triazole }}\right), 38.1\left(\mathrm{OCHNCH}_{2}\right), 29.3\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)$. HRMS (${ }^{+}$TOF-HRMS) m/z: calculated for $\mathrm{C}_{45} \mathrm{H}_{66} \mathrm{~N}_{12} \mathrm{O}_{21}[\mathrm{M}+\mathrm{H}]^{+}: 1111.4538$, found: $1111.4533(\Delta=-0.52 \mathrm{ppm})$; $[\mathrm{M}+\mathrm{Na}]^{+}: 1133.4358$, found: 1133.4347 ($\Delta=-0.93 \mathrm{ppm})$.

Synthesis of peracetylated nonavalent derivative (11): Derivative 11 was synthesized according to Procedure A with nonapropargylated core $\mathbf{1 0}(20.0 \mathrm{mg}, 23.2 \mu \mathrm{~mol}, 1.00$ equiv), mannoside $\mathbf{3}$ (108.9 mg , $261.0 \mu \mathrm{~mol}, 11.25$ equiv), sodium ascorbate ($12.4 \mathrm{mg}, 62.7 \mu \mathrm{~mol}$, 2.70 equiv), and $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(15.7 \mathrm{mg}$, $62.7 \mu \mathrm{~mol}, 2.70$ equiv) in a $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}$ mixture ($3 \mathrm{~mL}, 1: 1$). Column chromatography on silica ($\mathrm{DCM} / \mathrm{MeOH}$ 98:2 to 94:6) afforded the desired compound $\mathbf{1 1}(88.0 \mathrm{mg}, 19.1 \mu \mathrm{~mol}, 83 \%)$ as a colorless oil.
$\mathbf{R}_{\mathbf{f}}=0.19$ (95:5 DCM/MeOH). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}$) $\delta(\mathrm{ppm}) 8.18\left(\mathrm{br} \mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{\mathrm{ar}}\right), 7.77(\mathrm{~s}, 9 \mathrm{H}$, $\mathrm{CH}_{\text {triazole }}$), $7.17(\mathrm{~m}, 3 \mathrm{H}, \mathrm{N} H), 5.28-5.15\left(\mathrm{~m}, 27 \mathrm{H}, H_{2}, H_{3}, H_{4}\right), 4.80\left(\mathrm{br} \mathrm{s}, 9 \mathrm{H}, H_{1}\right), 4.64-4.53(\mathrm{~m}, 36 \mathrm{H}$, $\left.\mathrm{OCH}_{2} \mathrm{C}_{\text {triazole }}+\mathrm{N}_{\text {triazole }} \mathrm{CH}_{2}\right), 4.20-3.98\left(\mathrm{~m}, 27 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2}+H_{6 \mathrm{a}}\right), 3.90-3.85\left(\mathrm{~m}, 27 \mathrm{H}, H_{6 \mathrm{~b}}+\mathrm{NHC}_{\mathrm{q}} \mathrm{CH}_{2} \mathrm{O}\right)$, $3.59\left(\mathrm{~m}, 9 \mathrm{H}, H_{5}\right), 2.09,2.05,2.01,1.96\left(4 \mathrm{~s}, 108 \mathrm{H}, \mathrm{COCH}_{3}\right) .{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(75 \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta(\mathrm{ppm}) 170.6$, 169.9, 169.6, 169.7 $\left(\mathrm{COCH}_{3}\right)$, $166.3(\mathrm{CONH})$, $144.8\left(C_{\text {triazole }}\right)$, $135.5\left(C_{\text {arom }}\right), 128.5\left(\mathrm{CH}_{\text {arom }}\right), 124.0\left(C \mathrm{H}_{\text {triazole }}\right)$, $97.3\left(C_{1}\right), 69.0\left(C_{2}\right), 68.8\left(C_{3}\right), 68.7\left(C_{5}\right), 68.4\left(\mathrm{NHC}_{\mathrm{q}} C \mathrm{H}_{2} \mathrm{O}\right), 66.1\left(C_{6}\right), 65.5\left(C_{4}\right), 64.4\left(\mathrm{OCH}_{2} \mathrm{C}_{\text {triazole }}\right), 62.2$ $\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 60.5\left(C_{q}\right), 49.5\left(\mathrm{CH}_{2} \mathrm{~N}_{\text {triazole }}\right), 20.8,20.7,20.6,20.6\left(\mathrm{COCH}_{3}\right)$. HRMS (${ }^{+}$ESI-MS) m/z: calculated for $\mathrm{C}_{192} \mathrm{H}_{258} \mathrm{~N}_{30} \mathrm{O}_{102}[\mathrm{M}+2 \mathrm{H}]^{2+}: 2308.8035$, found: 2308.7995 ($\Delta=-1.73 \mathrm{ppm}$).

Synthesis of de- \boldsymbol{O}-acetylated nonavalent derivative (12): A solution of sodium methoxide (1 M in MeOH , $150 \mu \mathrm{~L}$) was added to a solution of acetylated precursor $\mathbf{1 1}(70.0 \mathrm{mg}, 15.2 \mu \mathrm{~mol})$ in $\mathrm{MeOH}(2.5 \mathrm{~mL})$. The reaction mixture was stirred at room temperature for 24 h . The pH was adjusted to 7 with addition of ionexchange resin (Amberlite IR $120 \mathrm{H}^{+}$). After filtration, the solvent was removed under vacuum with rotary evaporator and the residue was lyophilized to furnish desired de- O-acetylated compound $\mathbf{1 2}$ (47.0 mg , $15.2 \mu \mathrm{~mol}, 99 \%$) as a white solid.
${ }^{1} \mathbf{H}$ NMR ($\left.\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{D}_{2} \mathbf{O}\right) \delta(\mathrm{ppm}) 8.02\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{CH}_{\mathrm{ar}}+\mathrm{CH}_{\text {triazole }}\right), 4.74\left(\mathrm{~m}, 9 \mathrm{H}, H_{1}\right), 4.62-4.56(\mathrm{~m}, 36 \mathrm{H}$, $\mathrm{OCH}_{2} \mathrm{C}_{\text {triazole }}+\mathrm{N}_{\text {triazole }} \mathrm{CH}_{2}$), 4.05-4.01 (m, $\left.9 \mathrm{H}, \mathrm{OCHHCH} \mathrm{O}_{2} \mathrm{~N}\right), 3.89-3.78\left(\mathrm{~m}, 36 \mathrm{H}, \mathrm{OCHHCH} 2 \mathrm{~N}+\mathrm{H}_{2}+\right.$ $\left.\mathrm{NHC}_{\mathrm{q}} \mathrm{CH}_{2} \mathrm{O}\right), 3.71-3.53\left(\mathrm{~m}, 36 \mathrm{H}, H_{6}+H_{4}+H_{3}\right), 3.02\left(\mathrm{~m}, 9 \mathrm{H}, H_{5}\right) .{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(75 \mathbf{~ M H z}, \mathbf{D}_{2} \mathbf{O}\right) \delta(\mathrm{ppm})$
$169.0(C \mathrm{ONH}), 144.7\left(C_{\text {triazole }}\right), 135.8\left(C_{\text {arom }}\right), 129.7\left(C \mathrm{H}_{\text {arom }}\right), 126.1\left(C H_{\text {triazole }}\right), 100.2\left(C_{1}\right), 73.4\left(C_{5}\right), 71.1$ $\left(C_{3}\right), 70.5\left(C_{2}\right), 67.9\left(\mathrm{NHC}_{\mathrm{q}} C \mathrm{H}_{2} \mathrm{O}\right), 67.0\left(C_{4}\right), 66.1\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 64.2\left(\mathrm{OCH}_{2} \mathrm{C}_{\text {triazole }}\right), 61.4\left(C_{\mathrm{q}}\right), 61.3\left(\mathrm{C}_{6}\right)$, $50.7\left(\mathrm{CH}_{2} \mathrm{~N}_{\text {triazole }}\right)$. HRMS (${ }^{+}$TOF-HRMS) m/z: calculated for $\mathrm{C}_{120} \mathrm{H}_{16} \mathrm{~N}_{30} \mathrm{O}_{66}[\mathrm{M}+2 \mathrm{H}]^{2+}$: 1552.6132 , found: $1552.6119(\Delta=-0.08 \mathrm{ppm})$.

Synthesis of nonapropargylated derivative (14): To a solution of phloroglucinol (13, $10.0 \mathrm{mg}, 79.3 \mu \mathrm{~mol}$, 1.00 equiv) in anhydrous DMF (3 mL) was added under nitrogen anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}$ (previously heated at $250{ }^{\circ} \mathrm{C}$ under vaccum, 39.5 mg , $285 \mu \mathrm{~mol}, 3.60$ equiv). After 10 min of vigorous stirring, tripropargylated synthon 14 ($93.0 \mathrm{mg}, 285 \mu \mathrm{~mol}, 3.60$ equiv) was added into the solution under inert atmosphere and the reaction mixture was allowed to stir at $65{ }^{\circ} \mathrm{C}$ for 39 h . In the end, the dark-brown heterogeneous reaction was poured in 30 mL of EtOAc and organics were washed with a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(2 \times$ 30 mL) then water ($2 \times 20 \mathrm{~mL}$) and brine (10 mL). The organic phase was then dried over MgSO_{4} and concentrated under reduced pressure. Column chromatography on silica (EtOAc/hexane 40:60 to 50:50) afforded the desired compound $15(32.0 \mathrm{mg}, 33.8 \mu \mathrm{~mol}, 43 \%)$ as a colorless oil.
$\mathbf{R}_{\mathbf{f}}=0.27(1: 1 \mathrm{EtOAc} / \mathrm{Hexane}) .{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta(\mathrm{ppm}) 6.85(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NH}), 6.17\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{\mathrm{ar}}\right)$, $4.36\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CONH}\right), 4.16\left(\mathrm{~m}, 18 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{C} \equiv \mathrm{CH}\right), 3.87\left(\mathrm{br} \mathrm{s}, 18 \mathrm{H}, \mathrm{HNC}_{\mathrm{q}} \mathrm{CH}_{2} \mathrm{O}\right), 2.48(\mathrm{~m}, 9 \mathrm{H}$, $\left.\mathrm{OCH}_{2} \mathrm{C} \equiv \mathrm{CH}\right) .{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{7 5} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta(\mathrm{ppm}) 167.3(\mathrm{CONH}), 159.0\left(C_{\mathrm{ar}} \mathrm{OCH}_{2}\right), 95.8\left(\mathrm{CH}_{\mathrm{ar}}\right), 79.4$ $\left(\mathrm{OCH}_{2} \mathrm{C} \equiv \mathrm{CH}\right)$, $74.9\left(\mathrm{OCH}_{2} \mathrm{C} \equiv \mathrm{CH}\right), 68.3\left(\mathrm{HNC}_{\mathrm{q}} \mathrm{CH}_{2} \mathrm{O}\right), 67.5\left(\mathrm{OCH}_{2} \mathrm{CONH}\right)$, $59.2\left(\mathrm{C}_{\mathrm{q}}\right)$, $58.6\left(\mathrm{OCH}_{2} \mathrm{C} \equiv \mathrm{CH}\right)$. HRMS (${ }^{+}$TOF-HRMS) m/z: calculated for $\mathrm{C}_{51} \mathrm{H}_{57} \mathrm{~N}_{3} \mathrm{O}_{15}[\mathrm{M}+\mathrm{H}]^{+}$: 952.3862, found: 952.3843 ($\Delta=-2.10$ $\mathrm{ppm}) ;[\mathrm{M}+\mathrm{Na}]^{+}: 974.3682$, found: $974.3662(\Delta=-2.05 \mathrm{ppm})$.

Synthesis of peracetylated derivative (16): 16 was synthesized according to Procedure \mathbf{A} with nonapropargylated core $\mathbf{1 5}(20.0 \mathrm{mg}, 21.0 \mu \mathrm{~mol}, 1.00$ equiv), mannoside $\mathbf{3}(98.6 \mathrm{mg}, 236.0 \mu \mathrm{~mol}$, 11.25 equiv), sodium ascorbate ($11.2 \mathrm{mg}, 56.7 \mu \mathrm{~mol}$, 2.70 equiv), and $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(14.2 \mathrm{mg}, 56.7 \mu \mathrm{~mol}$, 2.70 equiv) in a $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}$ mixture ($3 \mathrm{~mL}, 1: 1$). Column chromatography on silica ($\mathrm{DCM} / \mathrm{MeOH} 98: 2$ to 94:6) afforded the desired compound $\mathbf{1 6}(86.0 \mathrm{mg}, 18.3 \mu \mathrm{~mol}, 87 \%)$ as a colorless oil.
$\mathbf{R}_{\mathbf{f}}=0.24(93: 7 \mathrm{DCM} / \mathrm{MeOH}) .{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\left.\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta(\mathrm{ppm}) 7.70\left(\mathrm{br} \mathrm{s}, 9 \mathrm{H}, \mathrm{CH}_{\text {triazole }}\right), 7.05(\mathrm{br} \mathrm{s}$, $3 \mathrm{H}, \mathrm{N} H$), 6.22 (br s, $3 \mathrm{H}, \mathrm{C} H_{\mathrm{ar}}$), $5.26-5.17\left(\mathrm{~m}, 27 \mathrm{H}, H_{2}, H_{3}, H_{4}\right.$), 4.79 (br s, $9 \mathrm{H}, H_{1}$), 4.60 (br s, 36 H , $\mathrm{OCH}_{2} \mathrm{C}_{\text {triazole }}+\mathrm{N}_{\text {triazole }} \mathrm{CH}_{2}$), 4.18 (br s, $6 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CONH}$), 4.16-3.91 (m, $27 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2}+H_{6 \mathrm{a}}$), $3.90-3.84$ $\left(\mathrm{m}, 27 \mathrm{H}, \mathrm{H}_{6 \mathrm{~b}}+\mathrm{NHC}_{\mathrm{q}} \mathrm{CH}_{2} \mathrm{O}\right), 3.60\left(\mathrm{~m}, 9 \mathrm{H}, H_{5}\right), 2.11,2.07,2.02,1.96\left(4 \mathrm{~s}, 108 \mathrm{H}, \mathrm{COCH}_{3}\right) .{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}(75$ $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta(\mathrm{ppm}) 170.5,169.8,169.8,169.5,\left(\mathrm{COCH}_{3}\right), 167.5(\mathrm{CONH}), 158.9\left(C_{\text {ar }} \mathrm{OCH}_{2}\right), 144.6$ $\left(C_{\text {triazole }}\right), 123.9\left(C H_{\text {triazole }}\right), 97.3\left(C_{1}\right), 95.4\left(\mathrm{CH}_{\text {ar }}\right), 69.0\left(C_{2}\right), 68.8\left(C_{3}\right), 68.7\left(C_{5}\right), 68.5\left(\mathrm{NHC}_{\mathrm{q}} C \mathrm{H}_{2} \mathrm{O}\right), 67.2$ $\left(\mathrm{OCH}_{2} \mathrm{CONH}\right)$, $66.1\left(C_{6}\right), 65.5\left(C_{4}\right), 64.3\left(\mathrm{OCH}_{2} \mathrm{C}_{\text {triazole }}\right), 62.0\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 59.6\left(C_{\mathrm{q}}\right), 49.5\left(\mathrm{CH}_{2} \mathrm{~N}_{\text {triazole }}\right)$,
20.7, 20.6, 20.6, $20.6\left(\mathrm{COCH}_{3}\right)$. HRMS (${ }^{+}$TOF-HRMS) m/z: calculated for $\mathrm{C}_{195} \mathrm{H}_{264} \mathrm{~N}_{30} \mathrm{O}_{105}[\mathrm{M}+3 \mathrm{H}]^{3+}$: 1569.5486, found: $1569.5458(\Delta=-1.82 \mathrm{ppm}) ;[\mathrm{M}+2 \mathrm{H}]^{2+}: 2353.8193$, found: $2353.8088(\Delta=-4.48 \mathrm{ppm})$.

Synthesis of de- \boldsymbol{O}-acetylated nonavalent derivative (17): Derivative 17 was synthesized according to Procedure B with compound $16(45.0 \mathrm{mg}, 9.56 \mu \mathrm{~mol})$ previously dissolved in anhydrous $\mathrm{MeOH}(3 \mathrm{~mL})$. Deprotected nonamer 17 was obtained as a white solid ($27.0 \mathrm{mg}, 8.45 \mu \mathrm{~mol}$) in a 90% yield.
${ }^{1} \mathbf{H}$ NMR ($\left.\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{D}_{\mathbf{2}} \mathbf{O}\right) \delta(\mathrm{ppm}) 7.97\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{CH}_{\text {triazole }}\right), 6.15\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH} H_{\mathrm{ar}}\right), 4.77\left(\mathrm{~s}, 9 \mathrm{H}, H_{1}\right), 4.61-4.46$ $\left(\mathrm{m}, 42 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{C}_{\text {triazole }}+\mathrm{N}_{\text {triazole }} \mathrm{CH}_{2}+\mathrm{OCH}_{2} \mathrm{CONH}\right)$), $4.06-4.01\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{OCHHCH}_{2} \mathrm{~N}\right), 3.90-3.56(\mathrm{~m}, 72 \mathrm{H}$, $\left.\mathbf{C H H C H}_{2} \mathrm{~N}+\mathrm{H}_{2}+\mathrm{NHC}_{\mathrm{q}} \mathrm{CH}_{2} \mathrm{O}+H_{6}+H_{4}+H_{3}\right), 3.06\left(\mathrm{~m}, 9 \mathrm{H}, H_{5}\right) .{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{7 5} \mathbf{~ M H z}, \mathbf{D}_{2} \mathbf{O}\right) \delta(\mathrm{ppm})$ $170.5(\mathrm{CONH}), 159.7\left(C_{\mathrm{ar}} \mathrm{OCH}_{2}\right)$, $144.7\left(C_{\text {triazole }}\right), 126.0\left(\mathrm{CH}_{\text {triazole }}\right), 100.2\left(C_{1}\right), 96.1\left(\mathrm{CH}_{\mathrm{ar}}\right), 73.4\left(C_{5}\right)$, 71.1 $\left(C_{3}\right), 70.6\left(C_{2}\right), 68.4\left(\mathrm{NHC}_{\mathrm{q}} C \mathrm{H}_{2} \mathrm{O}\right), 67.5\left(\mathrm{OCH}_{2} \mathrm{CONH}\right), 67.0\left(C_{4}\right), 66.1\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}\right), 64.2\left(\mathrm{OCH}_{2} \mathrm{C}_{\text {triazole }}\right)$, $61.3\left(C_{6}\right), 60.5\left(C_{q}\right), 50.7\left(\mathrm{CH}_{2} \mathrm{~N}_{\text {triazole }}\right)$. HRMS (${ }^{+}$TOF-HRMS) m/z: calculated for $\mathrm{C}_{123} \mathrm{H}_{192} \mathrm{~N}_{30} \mathrm{O}_{69}[\mathrm{M}+3 \mathrm{H}]^{3+}$: 1065.4219, found: 1065.4221 ($\Delta=0.23 \mathrm{ppm})$.

Synthesis of bromoacylated dendron (18): 18 was synthesized according to Procedure A with tripropargylated synthon $\mathbf{1 4}(140.0 \mathrm{mg}, 393.0 \mu \mathrm{~mol}, 1.00$ equiv), mannoside $\mathbf{3}(616 \mathrm{mg}, 1.48 \mathrm{mmol}$, 3.75 equiv), sodium ascorbate ($70.0 \mathrm{mg}, 354 \mu \mathrm{~mol}$, 0.90 equiv), and $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(88.4 \mathrm{mg}, 354 \mu \mathrm{~mol}$, 0.90 equiv) in a $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}$ mixture ($6 \mathrm{~mL}, 1: 1$). Column chromatography on silica ($\mathrm{DCM} / \mathrm{MeOH} 99: 1$ to 96:4) afforded the desired compound $\mathbf{1 8}(594 \mathrm{mg}, 369.4 \mu \mathrm{~mol}, 94 \%)$ as a white solid.
$\mathbf{R}_{\mathbf{f}}=0.47$ (94:6 DCM/MeOH). m.p. $=68-72^{\circ} \mathbf{C}$ (not corrected). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta(\mathrm{ppm}) 7.68$ (br s, $3 \mathrm{H}, \mathrm{C} H_{\text {triazole }}$), 6.89 (br s, $1 \mathrm{H}, \mathrm{N} H$), $5.24-5.18\left(\mathrm{~m}, 9 \mathrm{H}, H_{2}, H_{3}, H_{4}\right), 4.80\left(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}, H_{1}\right)$, 4.61-4.58 (br s, $12 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{C}_{\text {triazole }}+\mathrm{N}_{\text {triazole }} \mathrm{CH}_{2}$), 4.17-4.00 (m, $11 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2}+H_{6 \mathrm{a}}+\mathrm{BrCH}_{2} \mathrm{CONH}$), 3.94-3.78 (m, 9H, $\left.H_{6 \mathrm{~b}}+\mathrm{NHC}_{\mathrm{q}} \mathrm{CH}_{2} \mathrm{O}\right), 3.60\left(\mathrm{~m}, 3 \mathrm{H}, H_{5}\right), 2.12,2.08,2.03,1.98\left(4 \mathrm{~s}, 36 \mathrm{H}, \mathrm{COCH}_{3}\right) .{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}) 170.5,169.9,169.9,169.5,\left(\mathrm{COCH}_{3}\right), 165.6(\mathrm{CONH}), 145.0\left(C_{\text {triazole }}\right)$, $123.7\left(\mathrm{CH}_{\text {triazole }}\right)$, $97.4\left(C_{1}\right), 69.1\left(C_{2}\right), 68.9\left(C_{3}\right), 68.8\left(C_{5}\right), 68.4\left(\mathrm{NHC}_{\mathrm{q}} C \mathrm{CH}_{2} \mathrm{O}\right), 66.2\left(C_{6}\right), 65.6\left(C_{4}\right), 64.6$ $\left(\mathrm{OCH}_{2} \mathrm{C}_{\text {triazole }}\right), 62.1\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 60.2\left(C_{q}\right), 49.6\left(\mathrm{CH}_{2} \mathrm{~N}_{\text {triazole }}\right), 29.7\left(\mathrm{CH}_{2} \mathrm{Br}\right), 20.8,20.7$, 20.6, 20.6 $\left(\mathrm{COCH}_{3}\right)$ IR $\left(\mathrm{cm}^{-1}\right)$ 2956, 2937, 2361, 2337, 1751, 1734, 1540, 1370, 1218, 1045, 759. HRMS ${ }^{+}$TOFHRMS) m/z: calculated for $\mathrm{C}_{63} \mathrm{H}_{87} \mathrm{BrN}_{10} \mathrm{O}_{34}[\mathrm{M}+2 \mathrm{H}]^{2+}: 804.2358$, found: $804.2356(\Delta=-0.18 \mathrm{ppm}) ;[\mathrm{M}+\mathrm{H}]$ ${ }^{+}: 1607.4642$, found: $1607.4620(\Delta=-1.36 \mathrm{ppm}) ;[\mathrm{M}+\mathrm{Na}]^{+}: 1629.4462$, found: $1629.4448(\Delta=-0.84 \mathrm{ppm})$.

Synthesis of azidoacylated dendron (19): To a stirring solution of brominated trivalent dendron $\mathbf{1 8}$ ($121.0 \mathrm{mg}, 75.2 \mu \mathrm{~mol}, 1.00$ equiv) in dry DMF (1.5 mL) was added under a nitrogen atmosphere sodium azide ($7.3 \mathrm{mg}, 112 \mu \mathrm{~mol}, 1.50$ equiv). After stirring overnight at room temperature, the solvent was removed under vaccum. EtOAc (20 mL) was added and the resulting solution was poured in a separatory funnel
containing 20 mL of EtOAc and 30 mL of a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$. Organics were washed with $(2 \times 30 \mathrm{~mL})$ of saturated $\mathrm{NH}_{4} \mathrm{Cl}_{\mathrm{aq}}$, water $(2 \times 30 \mathrm{~mL})$ and brine $(20 \mathrm{~mL})$. The organic phase was then dried over MgSO_{4} and concentrated under reduced pressure to furnish the desired compound $\mathbf{1 9}$ (110 mg , $69.9 \mu \mathrm{~mol}, 93 \%$) as a white solid.
$\mathbf{R}_{\mathbf{f}}=0.47$ (94:6 DCM/MeOH). m.p. $=62-65^{\circ} \mathbf{C}$ (not corrected). ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{\mathbf{3}}\right) \delta(\mathrm{ppm}) 7.68$ (br s, $3 \mathrm{H}, \mathrm{C} H_{\text {triazole }}$), 6.69 (br s, $1 \mathrm{H}, \mathrm{N} H$), $5.27-5.18\left(\mathrm{~m}, 9 \mathrm{H}, H_{2}, H_{3}, H_{4}\right), 4.80\left(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}, H_{1}\right)$, 4.61-4.58 (br s, 12H, OCH C_{2} triazole $+\mathrm{N}_{\text {triazole }} \mathrm{CH}_{2}$), 4.23-4.00 (m, $11 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2}+H_{6 \mathrm{a}}+\mathrm{N}_{3} \mathrm{CH}_{2} \mathrm{CONH}$), 3.90-3.81 (m, 9H, $\left.H_{6 \mathrm{~b}}+\mathrm{NHC}_{\mathrm{q}} \mathrm{CH}_{2} \mathrm{O}\right), 3.60\left(\mathrm{~m}, 3 \mathrm{H}, H_{5}\right), 2.12,2.08,2.03,1.98\left(4 \mathrm{~s}, 36 \mathrm{H}, \mathrm{COCH}_{3}\right) .{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR ($75 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\delta(\mathrm{ppm}) 170.4,169.9,169.8,169.5,\left(\mathrm{COCH}_{3}\right), 166.7(\mathrm{CONH}), 144.9\left(C_{\text {triazole }}\right)$, $123.7\left(\mathrm{CH}_{\text {triazole }}\right)$, $97.4\left(C_{1}\right), 69.0\left(C_{2}\right), 68.8\left(C_{3}\right), 68.8\left(C_{5}\right), 68.4\left(\mathrm{NHC}_{\mathrm{q}} \mathrm{CH}_{2} \mathrm{O}\right), 66.1\left(C_{6}\right), 65.6\left(C_{4}\right), 64.5$ $\left(\mathrm{OCH}_{2} \mathrm{C}_{\text {triazole }}\right), 62.1\left(\mathrm{OCH}_{2} \mathrm{CH}_{2}\right), 59.9\left(C_{q}\right), 52.5\left(\mathrm{CH}_{2} \mathrm{~N}_{3}\right), 49.5\left(\mathrm{CH}_{2} \mathrm{~N}_{\text {triazole }}\right), 20.7,20.7,20.6,20.6$ $\left(\mathrm{COCH}_{3}\right)$.IR $\left(\mathrm{cm}^{-1}\right) 2934,2361,2338,2107\left(\mathrm{~N}_{3}\right), 1751,1734,1540,1373,1218,1045,761$. HRMS ${ }^{+}$TOFHRMS) m/z: calculated for $\mathrm{C}_{63} \mathrm{H}_{87} \mathrm{~N}_{13} \mathrm{O}_{34}[\mathrm{M}+\mathrm{H}]^{+}: 1570.5551$, found: $1570.5543(\Delta=-0.51 \mathrm{ppm}) ;[\mathrm{M}+\mathrm{Na}]^{+}$: 1592.5371, found: $1592.5366(\Delta=-0.31 \mathrm{ppm})$.

Synthesis of peracetylated nonavalent derivative (20): Derivative 20 was synthesized according to Procedure A with tripropargylated core $2(3.9 \mathrm{mg}, 12.1 \mu \mathrm{~mol}, 1.00$ equiv), trimannosylated dendron 19 ($75.0 \mathrm{mg}, 47.8 \mu \mathrm{~mol}$, 3.90 equiv), sodium ascorbate ($6.5 \mathrm{mg}, 33 \mu \mathrm{~mol}$, 2.70 equiv), and $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ ($8.2 \mathrm{mg}, 33 \mu \mathrm{~mol}, 0.90$ equiv) in a $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}$ mixture ($4 \mathrm{~mL}, 1: 1$). Column chromatography on silica (DCM/MeOH 98:2 to 90:10) afforded the desired compound $\mathbf{2 0}$ ($52.0 \mathrm{mg}, 10.2 \mu \mathrm{~mol}, 84 \%$) as a colorless oil. $\mathbf{R}_{\mathbf{f}}=0.25(92: 8 \mathrm{DCM} / \mathrm{MeOH}) .{ }^{\mathbf{1}} \mathbf{H}$ NMR ($\mathbf{3 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta(\mathrm{ppm}) 8.37\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{\mathrm{ar}}\right), 8.00(\mathrm{br} \mathrm{s}, 3 \mathrm{H}$, $\mathrm{N} H), 7.78\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C} H_{\text {int-triazole }}\right), 7.69\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C} H_{\text {ext-triazole }}\right), 6.94\left(\mathrm{br} \mathrm{s}, 3 \mathrm{H}, \mathrm{N} H_{\text {int }}\right), 5.24-5.17\left(\mathrm{~m}, 27 \mathrm{H}, H_{2}, H_{3}\right.$, $\left.H_{4}\right), 4.98\left(\mathrm{br} \mathrm{s}, 6 \mathrm{H}, \mathrm{N}_{\text {triazole }} \mathrm{CH} \mathrm{H}_{2} \mathrm{CONH}\right), 4.80\left(\mathrm{~s}_{\text {app }}, 9 \mathrm{H}, H_{1}\right), 4.64-4.52\left(\mathrm{~m}, 42 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{C}_{\text {triazole }}+\mathrm{N}_{\text {triazole }} \mathrm{CH}_{2}+\right.$ $\mathrm{NHCH}_{2} \mathrm{C}_{\text {triazole }}$), 4.19-3.87 (m, 54H, $\left.\mathrm{OCH}_{2}+H_{6}+\mathrm{NHC}_{\mathrm{q}} \mathrm{CH}_{2} \mathrm{O}\right), 3.63-3.62\left(\mathrm{~m}, 9 \mathrm{H}, H_{5}\right), 2.11,2.08,2.01$, $1.96\left(4 \mathrm{~s}, 108 \mathrm{H}, \mathrm{COCH}_{3}\right) .{ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\}$ NMR $\left(75 \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta(\mathrm{ppm}) 170.5,170.0,169.9,169.5\left(\mathrm{COCH}_{3}\right)$, $165.8(\mathrm{CONH})$, $165.1(\mathrm{CONH})$, $144.8\left(C_{\text {ext-triazole }}\right), 144.7\left(C_{\text {int-triazole }}\right), 134.7\left(C_{\text {arom }}\right), 128.7\left(\mathrm{CH}_{\text {arom }}\right), 124.1$ $\left(C \mathrm{H}_{\text {int-triazole }}\right), 123.4\left(C \mathrm{H}_{\text {ext-triazole }}\right), 97.4\left(C_{1}\right), 69.0\left(C_{2}\right), 68.9\left(C_{3}\right), 68.7\left(C_{5}\right), 68.3\left(\mathrm{NHC}_{\mathrm{q}} \mathrm{CH}_{2} \mathrm{O}\right), 66.1\left(C_{6}\right)$, $65.5\left(C_{4}\right), 64.5\left(\mathrm{OCH}_{2} \mathrm{C}_{\text {triazole }}\right), 62.1\left(\mathrm{OCH}_{2}\right), 60.3\left(C_{\mathrm{q}}\right), 52.4\left(\mathrm{~N}_{\text {triazole }} \mathrm{CH}_{2} \mathrm{CONH}\right), 49.5\left(\mathrm{CH}_{2} \mathrm{~N}_{\text {triazole }}\right), 35.5$ $\left(\mathrm{HNCH}_{2} \mathrm{C}_{\text {triazole }}\right)$, 20.8, 20.7, 20.6, $20.6\left(\mathrm{COCH}_{3}\right)$. HRMS (${ }^{+}$TOF-HRMS) m/z: calculated for $\mathrm{C}_{207} \mathrm{H}_{276} \mathrm{~N}_{42} \mathrm{O}_{105}$ $[\mathrm{M}+2 \mathrm{H}]^{2+}: 2515.8847$, found: $2515.8845(\Delta=-0.08 \mathrm{ppm}) ;[\mathrm{M}+3 \mathrm{H}]^{3+}: 1677.5922$, found: $1677.5936(\Delta=$ 0.79 ppm).

Synthesis of de- \boldsymbol{O}-acetylated nonavalent derivative (21): Derivative 21 was synthesized according to Procedure B with $20(40.0 \mathrm{mg}, 7.95 \mu \mathrm{~mol})$ previously dissolved in anhydrous $\mathrm{MeOH}(3 \mathrm{~mL})$. After
filtration, the solvent was removed under vacuum with rotary evaporator and the residue was lyophilized to furnish desired de- O-acetylated nonamer 21 as a white solid ($28.0 \mathrm{mg}, 7.95 \mu \mathrm{~mol}$) in a 99% yield.
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathbf{D}_{\mathbf{2}} \mathbf{O}$) $\delta(\mathrm{ppm}) 8.27\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{\mathrm{ar}}\right), 7.96\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{C} H_{\text {triazole }}\right.$), 5.15 (br s, 6 H , $\mathrm{N}_{\text {triazole }} \mathrm{CH}_{2} \mathrm{CONH}$), $4.72\left(\mathrm{~s}, 9 \mathrm{H}, H_{1}\right), 4.66\left(\mathrm{~s}, 6 \mathrm{H} \mathrm{OCNHCH} \mathrm{C}_{\text {triazole }}\right), 4.57-4.51\left(\mathrm{~m}, 36 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{C}_{\text {triazole }}+\right.$ $\mathrm{N}_{\text {triazole }} \mathrm{CH}_{2}$), 4.06-4.01 (m, 9H, OCHHCH N), 3.83-3.80 (m, 18H, OCHHCH $\mathrm{O}_{2} \mathrm{~N}+\mathrm{H}_{2}$), 3.69-3.54 (m,54H, $\left.\mathrm{NHC}_{\mathrm{q}} \mathrm{CH}_{2} \mathrm{O}+H_{6}+H_{4}+H_{3}\right), 3.01\left(\mathrm{~m}, 9 \mathrm{H}, H_{5}\right) .{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{1 5 0} \mathbf{~ M H z}, \mathbf{D}_{2} \mathbf{O}\right) \delta(\mathrm{ppm}) 168.4(\mathrm{CONH})$, $167.6(C \mathrm{ONH}), 145.2\left(C_{\text {ext-triazole }}\right), 144.5\left(C_{\text {int-triazole }}\right), 135.0\left(C_{\text {arom }}\right), 129.8\left(\mathrm{CH}_{\text {arom }}\right), 126.1\left(C H_{\text {int-triazole }}\right), 126.0$ $\left(C H_{\text {ext-triazole }}\right), 100.2\left(C_{1}\right), 73.4\left(C_{5}\right), 71.1\left(C_{3}\right), 70.6\left(C_{2}\right), 67.8\left(\mathrm{NHC}_{q} C \mathrm{H}_{2} \mathrm{O}\right), 67.0\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}_{\text {triazole }}\right), 66.1$ $\left(C_{4}\right), 64.1\left(\mathrm{OCH}_{2} \mathrm{C}_{\text {triazole }}\right), 61.3\left(C_{6}\right), 60.9\left(C_{q}\right), 52.4\left(\mathrm{~N}_{\text {triazole }} \mathrm{CH}_{2} \mathrm{CONH}\right), 50.7\left(\mathrm{CH}_{2} \mathrm{~N}_{\text {triazole }}\right), 35.7$ ($\mathrm{OCHNCH} \mathrm{H}_{2} \mathrm{C}_{\text {triazole }}$). HRMS (${ }^{+}$ESI-HRMS) m/z: calculated for $\mathrm{C}_{135} \mathrm{H}_{204} \mathrm{~N}_{42} \mathrm{O}_{69}[\mathrm{M}+3 \mathrm{H}]^{3+}$: 1173.4655 , found: $1173.4671(\Delta=1.44 \mathrm{ppm}) ;[\mathrm{M}+3 \mathrm{Na}]^{3+}: 1195.4474$, found: $1195.4490(\Delta=1.31 \mathrm{ppm})$.

Synthesis of peracetylated 27-mer derivative (22): Derivative 22 was synthesized according to Procedure A with nonapropargylated core $\mathbf{1 0}(4.6 \mathrm{mg}, 5.38 \mu \mathrm{~mol}, 1.00$ equiv), trimannosylated dendron 19 (95.0 mg , $60.5 \mu \mathrm{~mol}$, 11.25 equiv), sodium ascorbate ($2.9 \mathrm{mg}, 15 \mu \mathrm{~mol}$, 2.70 equiv), and $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ (3.6 mg , $15 \mu \mathrm{~mol}, 0.90$ equiv) in a $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}$ mixture ($3 \mathrm{~mL}, 1: 1$). Column chromatography on silica ($\mathrm{DCM} / \mathrm{MeOH}$ 98:2 to $90: 10$) afforded the desired compound $22(50.0 \mathrm{mg}, 3.33 \mu \mathrm{~mol}, 63 \%)$ as a yellowish oil.
$\mathbf{R}_{\mathbf{f}}=0.72(90: 10 \mathrm{DCM} / \mathrm{MeOH}) .{ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathbf{6 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \delta(\mathrm{ppm}) 8.27(\mathrm{~m}, 3 \mathrm{H}, \mathbf{C H}$ ar $), 7.79\left(\mathrm{~s}, 9 \mathrm{H}, \mathbf{C} H_{\text {int- }}\right.$ triazole $), 7.75\left(\mathrm{~s}, 27 \mathrm{H}, \mathrm{CH}_{\text {ext-riazole }}\right), 7.34-7.31(\mathrm{~m}, 12 \mathrm{H}, \mathrm{N} H), 5.23-5.18\left(\mathrm{~m}, 81 \mathrm{H}, H_{2}, H_{3}, H_{4}\right), 5.05(\mathrm{br} \mathrm{s}, 18 \mathrm{H}$, $\left.\mathrm{N}_{\text {triazole }} \mathrm{CH}_{2} \mathrm{CONH}\right), 4.81\left(\mathrm{~s}_{\text {app }}, 27 \mathrm{H}, H_{1}\right), 4.62-4.53\left(\mathrm{~m}, 126 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{C}_{\text {triazole }}+\mathrm{N}_{\text {triazole }} \mathrm{CH}_{2}\right), 4.20-3.64(\mathrm{~m}$, $\left.207 \mathrm{H}, \mathrm{OCH}_{2}+\mathrm{H}_{6}+\mathrm{NHC}_{\mathrm{q}} \mathrm{CH}_{2} \mathrm{O}+H_{5}\right), 2.11,2.08,2.01,1.96\left(4 \mathrm{~s}, 324 \mathrm{H}, \mathrm{COCH}_{3}\right) .{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR (150 $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right) \delta(\mathrm{ppm}) 170.6,170.5,170.0,169.9,169.9,169.7,169.6\left(\mathrm{COCH}_{3}\right), 168.4(\mathrm{CONH}), 165.4$ $(C O N H), 144.9+144.8\left(C_{\text {ext-triazole }}\right), 144.5\left(C_{\text {int-triazole }}\right), 135.6\left(C_{\text {arom }}\right), 128.6\left(\mathrm{CH}_{\text {arom }}\right), 124.9\left(C H_{\text {int-triazole }}\right), 124.0$ $\left(C \mathrm{H}_{\text {ext-riazole }}\right), 97.5\left(C_{1}\right), 69.1\left(C_{2}\right), 69.0\left(C_{3}\right), 68.7\left(C_{5}\right), 68.4\left(\mathrm{NHC}_{\mathrm{q}} C \mathrm{CH}_{2} \mathrm{O}\right), 66.2\left(C_{6}\right), 65.6\left(C_{4}\right), 64.5$ $\left(\mathrm{OCH}_{2} \mathrm{C}_{\text {triazole }}\right), 62.1\left(\mathrm{OCH}_{2}\right), 60.4\left(C_{q}\right), 52.4\left(\mathrm{~N}_{\text {triazole }} \mathrm{CH}_{2} \mathrm{CONH}\right), 49.5\left(\mathrm{CH}_{2} \mathrm{~N}_{\text {triazole }}\right), 20.8,20.8,20.7,20.7$ $\left(\mathrm{COCH}_{3}\right)$. MS ($\left.{ }^{+} \mathrm{TOF}-\mathrm{MS}\right) \mathrm{m} / \mathrm{z}$: calculated for $\mathrm{C}_{615} \mathrm{H}_{834} \mathrm{~N}_{120} \mathrm{O}_{318}[\mathrm{M}+\mathrm{H}]^{+}: 14995.8$, found: 14995.9.

Synthesis of de- O-acetylated 27-mer derivative (23): Derivative 23 was synthesized according to Procedure B with $22(30.0 \mathrm{mg}, 2.00 \mu \mathrm{~mol})$ previously dissolved in anhydrous $\mathrm{MeOH}(3 \mathrm{~mL})$. After filtration, the solvent was removed under vacuum with rotary evaporator and the residue was lyophilized to yield the fully deprotected 27 -mer $\mathbf{2 3}$ as a white solid ($17.0 \mathrm{mg}, 1.63 \mu \mathrm{~mol}$) in a 82% yield.
${ }^{1} \mathbf{H}$ NMR ($\left.\mathbf{6 0 0} \mathbf{~ M H z}, \mathbf{D}_{2} \mathbf{O}\right) \delta(\mathrm{ppm}) 8.06\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{C} H_{\mathrm{ar}}\right), 7.97\left(\mathrm{~s}, 27 \mathrm{H}, \mathrm{C} H_{\text {ext-triazole }}\right), 7.96\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C} H_{\text {int-triazole }}\right)$, 5.14 (br s, $18 \mathrm{H}, \mathrm{N}_{\text {triazole }} \mathrm{CH}_{2} \mathrm{CONH}$), $4.75\left(\mathrm{~s}, 27 \mathrm{H}, \mathrm{H}_{1}\right), 4.59-4.51\left(\mathrm{~m}, 126 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{C}_{\text {triazole }}+\mathrm{N}_{\text {triazole }} \mathrm{CH}_{2}\right)$, 4.05-4.03 (m, 27H, OCHHCH $\left.{ }_{2} \mathrm{~N}\right), 3.83-3.80\left(\mathrm{~m}, 72 \mathrm{H}, \mathrm{OCHHCH}_{2} \mathrm{~N}+\mathrm{H}_{2}+\mathrm{NHC}_{q} \mathrm{CH}_{2} \mathrm{O}_{\text {int }}\right), 3.71-3.57(\mathrm{~m}$,
$162 \mathrm{H}, \mathrm{NHC}_{\mathrm{q}} \mathrm{CH}_{2} \mathrm{O}_{\mathrm{ext}}+H_{6}+H_{4}+H_{3}$), $3.01\left(\mathrm{~m}, 27 \mathrm{H}, H_{5}\right) .{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(\mathbf{1 5 0} \mathbf{~ M H z}, \mathbf{D}_{2} \mathbf{O}\right) \delta(\mathrm{ppm}) 168.8$ $\left(C O N H_{\text {int }}\right), 167.5\left(C O N H_{\text {ext }}\right), 144.7\left(C_{\text {ext-triazole }}\right), 144.6\left(C_{\text {int-triazole }}\right), 135.7\left(C_{\text {arom }}\right), 129.7\left(C H_{\text {arom }}\right), 127.0\left(C H_{\text {int }}\right.$ triazole $), 126.1\left(\mathrm{CH}_{\text {ext-triazole }}\right), 100.2\left(C_{1}\right), 73.5\left(C_{5}\right), 71.1\left(C_{3}\right), 70.6\left(C_{2}\right), 68.2\left(\mathrm{NHC}_{\mathrm{q}} \mathrm{CH}_{2} \mathrm{O}\right), 68.0\left(\mathrm{NHC}_{\mathrm{q}} C \mathrm{H}_{2} \mathrm{O}\right)$, $67.0\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}_{\text {triazole }}\right), 66.1\left(C_{4}\right), 64.2\left(\mathrm{OCH}_{2} \mathrm{C}_{\text {triazole }}\right), 61.3\left(C_{6}\right), 60.9\left(C_{q}\right), 52.9\left(\mathrm{~N}_{\text {triazole }} \mathrm{CH}_{2} \mathrm{CONH}\right), 50.7$ $\left(\mathrm{CH}_{2} \mathrm{~N}_{\text {triazole }}\right)$, 35.7 ($\mathrm{OCHNCH}_{2} \mathrm{C}_{\text {triazole }}$). HRMS (${ }^{+}$TOF-HRMS) m / z : calculated for $\mathrm{C}_{399} \mathrm{H}_{204} \mathrm{~N}_{120} \mathrm{O}_{210}$ $[\mathrm{M}+7 \mathrm{H}]^{7+}: 1494.6002$, found: $1494.5951(\Delta=-3.43 \mathrm{ppm})$.

NMR, IR, and mass spectra

Figure S1: ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{4}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$.

Figure S2: ${ }^{13} \mathrm{C}$ NMR spectrum of compound $4\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$.

Formula	Compound name	Mass	Peak RT (min)	Peak area	Description
C66H84N12O33	--	1572.52637	0.21	2.87273 E 6	--

Species	Abundance (counts)	lon Mass	Measured Mass	Error (mDa)	Error (ppm)	Ret. Time Error (min)
$[\mathrm{M}+\mathrm{H}]+$	27482.99	1573.53365	1573.53226	-1.39237	-0.88	-
$[\mathrm{M}+\mathrm{Na}]+$	77859.75	1595.51559	1595.51514	-0.45717	-0.29	-

Figure S3: HRMS analysis (${ }^{+}$TOF) for compound 4.

Figure S4: ${ }^{1} \mathrm{H}$ NMR spectrum of compound $5\left(\mathrm{D}_{2} \mathrm{O}, 300 \mathrm{MHz}\right)$.

Figure S5: ${ }^{13} \mathrm{C}$ NMR spectrum of compound $5\left(\mathrm{D}_{2} \mathrm{O}, 75 \mathrm{MHz}\right)$.
-TOF MS: 0.153 10 0.278 min from YC-125. witt Agilont

E.TOF MS . 0.153 to 0.27 B min from YC-125 witl Agient

Tasyat mes	*1541.3607	2alu	
Twterance:	+7.000n	F\%	
Emunti 1 ype:	ELammat		
tan man of risolitas 200			
Nin tee:	-8, 5000	Nas buer	+200.0000
Elactron statas O			
min of clargear 3			
Node satcoct	n/A		
alat prition!	H/A		
rile same!	IC-115wite		

	ELarenta	Natn Member:	Max minber
\pm	c	$?$	30
\pm	In	3	10
3	\%	0	12
4	-	0	21
\pm	Ha	5	1

	rormia	Calculatal wis (axu)	nos error	rent error	Imar
1		1271.35851.	-0.12905	-0.11224	12, 5
2	c4t sist mat 021	1031-23122	-2.43431	-2.32210	21.9
3		1591<39284	-4.15175	-1.a0¢420	22.3
4	csie sist ull 0.02	2203.3a621	4, 576.35	4.22471	25-9

Figure S6: HRMS analysis (${ }^{+}$TOF) for compound 5.

Figure S7: ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{8}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right)$.

Figure S8: ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{8}\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right)$.

Figure S9: MS analysis (${ }^{+}$TOF) for compound 8.

Figure S10: ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{9}\left(\mathrm{D}_{2} \mathrm{O}, 300 \mathrm{MHz}\right)$.

Figure S11: ${ }^{13} \mathrm{C}$ NMR spectrum of compound $9\left(\mathrm{D}_{2} \mathrm{O}, 75 \mathrm{MHz}\right)$.

Formula	Compound name	Mass	Peak RT (min)	Peak area	Description
C45H66N12O21	-	1110.44655	0.18	3.89733 E 5	-

Species	Abundance (counts)	Ion Mass	Measured Mass	Error (mDa)	Error (ppm)	Ret. Time Error (min)
$[\mathrm{M}+\mathrm{H}]+$	5408,33	1111.45382	1111.45325	-0.57258	-0.52	-
$[\mathrm{M}+\mathrm{Na}]_{+}$	12232.50	1133.43577	1133.43472	-1.05035	-0.93	-

Figure S12: HRMS analysis (${ }^{+}$TOF) for compound 9.

Figure S13: ${ }^{1} \mathrm{H}$ NMR spectrum of compound $11\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$.

Figure S14: COSY spectrum of compound $11\left(\mathrm{CDCl}_{3}\right)$.

Figure S15: ${ }^{13} \mathrm{C}$ NMR spectrum of compound $11\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$.

Figure S16: DEPT 135 spectrum for compound 11.

Figure S17: HSQC spectrum for compound 11.

MS Zoomed Spectrum

MS Spectrum Peak List

Ion	Ion Formula	Abund	Expe. $\boldsymbol{m} / \boldsymbol{z}$	Calc. m / z	Diff(ppm)
		717775.9	134.11783		
$(\mathrm{M}+2 \mathrm{H})+2$	C 192 H 260 N 300102	574.8	2308.79947	2308.80346	-1.73

Figure S18: HRMS spectrum (${ }^{+}$ESI) for compound 11.

Figure S19: ${ }^{1} \mathrm{H}$ NMR spectrum of compound $12\left(\mathrm{D}_{2} \mathrm{O}, 300 \mathrm{MHz}\right)$.

Figure S20: COSY spectrum for compound 12.

Figure S21: ${ }^{13} \mathrm{C}$ NMR spectrum of compound $12\left(\mathrm{D}_{2} \mathrm{O}, 75 \mathrm{MHz}\right)$.

Figure S22: HSQC spectrum for compound 12.

Figure S23: HRMS spectrum (${ }^{+}$TOF) for compound 12.

Figure S24: ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{1 5}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$.

Figure S25: ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{1 5}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$.

Formula	Compound name	Mass	Peak RT (min)	Peak area	Description
C51H57N3015	-	951.37897	0.12	$4.67661 \mathrm{E7}$	-

Specles	Abundance (counts)	Ion Mass	Measured Mass	Error (mDa)	Error (ppm)	Ret. Time Error (min)
$[\mathrm{M}+\mathrm{H}]+$	492252.28	952.38624	952.38425	-1.99839	-2.10	-
$[\mathrm{M}+\mathrm{Na}]+$	128015.10	974.36819	974.36619	-1.99496	-2.05	-

Figure S26: HRMS (${ }^{+}$TOF) spectra and report for compound 15.

Figure S27: ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{1 6}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$.

Figure S28: ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{1 6}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$.

	Elestace			ruis Muriber	Max Munber:	
1	c		155		195	
2	${ }^{H}$	t	200		400	
3	\%		34		34	
4	0	*	105		105	

MS Spectrum Peak List

Ion	Ion Formula	Abund	Expe. $\boldsymbol{m} / \boldsymbol{z}$	Ca/c. $\boldsymbol{m} / \boldsymbol{z}$	Diff(ppm)
		716610.1	134.11769		
$(\mathrm{M}+2 \mathrm{H})+2$	C 195 H 266 N 300105	477.8	2353.80877	2353.81931	-4.48

Figure S29: HRMS (${ }^{+}$TOF (up) and ${ }^{+}$ESI (bottom)) and reports for compound 16.

Figure S30: ${ }^{1} \mathrm{H}$ NMR spectrum of compound $17\left(\mathrm{D}_{2} \mathrm{O}, 300 \mathrm{MHz}\right)$.

Figure S31: ${ }^{13} \mathrm{C}$ NMR spectrum of compound $17\left(\mathrm{D}_{2} \mathrm{O}, 75 \mathrm{MHz}\right)$.

Formula	Compound name	Mass	Peak RT (min)	Peak area	Description
C123H192N30069	--	3193.24374	0.19	1.42094 E 4	--

Species	Abundance (counts)	Ion Mass	Measured Mass	Error (mDa)	Error (ppm)	Ret. Time Error (min)
$[\mathrm{M}+3 \mathrm{H}] 3+$	1361.61	1065.42185	1065.42210	0.24650	0.23	

Figure S32: HRMS (${ }^{+}$TOF) spectrum for compound 17.

Figure S33: ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{1 8}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$.

Figure S34: ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{1 8}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$.

Figure S35: IR spectrum of compound 18.

Formula	Compound name	Mass	Peak RT $($ min $)$	Peak area	Description
C63H87BrN10034	-	1606.45695	0.18	5.45742 E 5	-

Species	Abundance (counts)	lon Mass	Measured Mass	Error (mDa)	Error (ppm)	Ret. Time Error (min)
$[\mathrm{M}+2 \mathrm{H})^{2+}$	14787.14	804.23575	804.23581	-0.14428	-0.18	-
$[\mathrm{M}+\mathrm{H}]+$	2036.89	1607.48423	1607.46204	-2.19006	-1.36	-
$[\mathrm{M}+\mathrm{Na}]+$	4716.23	1629.44617	1629.44480	-1.37214	-0.84	-

Figure S36: HRMS (${ }^{+}$TOF) spectrum and report for compound 18.

Figure S37: ${ }^{1} \mathrm{H}$ NMR spectrum of compound $19\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$.

Figure S38: COSY spectrum of compound 19.

Figure S39: ${ }^{13} \mathrm{C}$ NMR spectrum of compound $19\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$.

Figure S40: IR spectrum of compound 19.

Formula	Compound name	Mass	PeakRT(min)	Peakarea	Descriptlon
C63HB7N13034	-	1568.54784	0.19	$3.68551 \mathrm{E7}$	-

Species	Abundance (counts)	Ion Mass	Measured Mass	Error.(mDa)	Error (ppm)	Ret. Time Error(min)
$[\mathrm{M}+\mathrm{H}]+$	1300659.76	1570.55511	1570.55432	-0.79404	-0.51	-
$[\mathrm{M}+\mathrm{Na}]+$	1666530.91	1592.53706	1592.53657	-0.49272	-0.31	

Figure S41: HRMS (${ }^{+}$TOF) trace and report for compound 19.

Figure S42: ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{2 0}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right)$.

Figure S43: COSY spectrum of compound 20.

Figure S44: ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{2 0}\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right)$.

MS Spectrum

MS Zoomed Spectrum

MS Spectrum Peak List

Ion	Ion Formula	Abund	Expe. $\boldsymbol{m} / \boldsymbol{z}$	Ca/c. $\boldsymbol{m} / \boldsymbol{z}$	Diff(ppm)
$(\mathrm{M}+5 \mathrm{H})+5$	C207H281N42O105	16249.9	1006.96133	1006.95825	3.06
$(\mathrm{M}+4 \mathrm{H})+4$	C207H280N42O105	56590.4	1258.44891	1258.44599	2.32
$(\mathrm{M}+3 \mathrm{H})+3$	C207H279N42O105	60597.4	1677.59355	1677.59223	0.79
$(\mathrm{M}+2 \mathrm{H})+2$	C 207 H 278 N 42 O 105	4401.5	2515.88451	2515.8847	-0.08

Figure S45: HRMS (${ }^{+}$ESI) spectrum and report for compound 20.

Figure S46: ${ }^{1} \mathrm{H}$ NMR spectrum of compound $21\left(\mathrm{D}_{2} \mathrm{O}, 600 \mathrm{MHz}\right)$.

Figure S47: COSY spectrum (zoom) of compound 21.

Figure S48: ${ }^{13} \mathrm{C}$ NMR spectrum of compound $21\left(\mathrm{D}_{2} \mathrm{O}, 150 \mathrm{MHz}\right)$.

MS Spectrum

MS Zoomed Spectrum

MS Spectrum Peak List

Ion	lon Formula	Abund	Expe. $\boldsymbol{m} / \boldsymbol{z}$	Ca/c. $\boldsymbol{m} / \boldsymbol{z}$	Diff(ppm)
$(\mathrm{M}+4 \mathrm{H})+4$	C135H208N42O69	43132.3	880.3535	880.35091	2.95
$(\mathrm{M}+4 \mathrm{Na})+4$	C135H204N42Na4O69	21932.4	902.33583	902.33285	3.3
$(\mathrm{M}+3 \mathrm{H})+3$	C135H207N42O69	45279.6	1173.46714	1173.46545	1.44
$(\mathrm{M}+3 \mathrm{Na})+3$	C135H204N42Na3O69	42774.8	1195.44896	1195.4474	1.31
$(\mathrm{M}+2 \mathrm{H})+2$	C135H206N42O69	5484.3	1759.69044	1759.69454	-2.33
$(\mathrm{M}+2 \mathrm{Na})+2$	C135H204N42Na2O69	8555.1	1781.67369	1781.67648	-1.57

Figure S49: HRMS (${ }^{+}$ESI) spectrum of compound 21.

Figure S50: ${ }^{1} \mathrm{H}$ NMR spectrum of compound $22\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right)$.

Figure S51: COSY spectrum of compound 22.

Figure S52: ${ }^{13} \mathrm{C}$ NMR spectrum of compound $22\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right)$.

Figure S53: MS (${ }^{+}$TOF) spectrum of compound 22.

Figure S54: ${ }^{1} \mathrm{H}$ NMR spectrum of compound $23\left(\mathrm{D}_{2} \mathrm{O}, 600 \mathrm{MHz}\right)$.

Figure S55: COSY spectrum of compound 23.

Figure S56: ${ }^{13} \mathrm{C}$ NMR spectrum of compound $23\left(\mathrm{D}_{2} \mathrm{O}, 150 \mathrm{MHz}\right)$.

Figure S57: HRMS (${ }^{+}$TOF) spectrum of compound 23 (+ zoom).

NMR diffusion experiments

The measurement of the diffusion rate (D) allows calculating the solvodynamic diameter of a molecule. ${ }^{1}$
The dendrimers are considered as spherical molecular objects, and characterized by an apparent diffusion coefficient D. The application of the Stokes-Einstein equation gives an estimate of the diameter of the molecule.

Stokes-Einstein equation:

$$
D=\mathrm{K}_{\mathrm{B}} \mathrm{~T} / 6 \pi \eta r_{s}
$$

D : Diffusion rate ($\mathrm{m}^{2} \cdot \mathrm{~s}^{-1}$); K_{B} : Boltzmann's constant ($k_{\mathrm{B}}=1.38 \times 10^{-23} \mathrm{~m}^{2} \cdot \mathrm{~kg} \cdot \mathrm{~s}^{-2} \cdot \mathrm{~K}^{-1}$); T: Temperature (K) ($T=298.15 \mathrm{~K}$); η : solvent viscosity in $\mathrm{Pa} \mathrm{s} ; r_{\mathrm{s}}$: Solvodynamic radius of the species.

[^0]
[^0]: ${ }^{1}$ Diaz, M. D.; Berger, S. Carbohydr. Res. 2000, 329, 1-5.

