Supporting Information

for

Synthesis and solvodynamic diameter measurements of closely related mannodendrimers for the study of multivalent carbohydrate–protein interactions

Yoann M. Chabre, Alex Papadopoulos, Alexandre A. Arnold and René Roy*

Address: Pharmaqam, Department of Chemistry, Université du Québec à Montréal, P. O. Box 8888, Succ. Centre-ville, Montréal, Québec, Canada H3C 3P8

Email: René Roy* - roy.rene@uqam.ca

*Corresponding author

Experimental procedures, characterization data, NMR, IR and mass spectra and

NMR diffusion experiments

Contents

1.	Experimental procedures and data	S 2
2.	NMR, IR, and mass spectra	S 11
3.	NMR diffusion experiments	S49

Experimental procedures and data

All reactions in organic medium were performed in standard oven-dried glassware under an inert atmosphere of nitrogen using freshly distilled solvents. CH_2Cl_2 was distilled from CaH_2 and DMF from ninhydrin, and kept over molecular sieves. Solvents and reagents were deoxygenated when necessary by purging with nitrogen. Water used for lyophilization of final dendrimers was nanopure grade, purified through Barnstead NANOPure II Filter with Barnstead MegOhm-CM Sybron meter. All reagents were used as supplied without prior purification unless otherwise stated, and obtained from Sigma–Aldrich Chemical Co. Ltd. Reactions were monitored by analytical thin layer chromatography using silica gel 60 F254 precoated plates (E. Merck) and compounds were visualized by 254 nm light, a mixture of iodine/silica gel and/or mixture of ceric ammonium molybdate solution (100 mL H_2SO_4 , 900 mL H_2O , 25 g (NH_4)₆ Mo_7O_2 ₄ H_2O , 10 g $Ce(SO_4)_2$) and subsequent development by gentle warming with a heat-gun. Purifications were performed by flash column chromatography using silica gel from Silicycle (60 Å, 40–63 µm) with the indicated eluent.

NMR, IR spectroscopies and MS spectrometry

¹H NMR and ¹³C NMR spectra were recorded at 300 or 600 MHz and 75 or 150 MHz, respectively, on a Bruker spectrometer (300 MHz) and Varian spectrometer (600 MHz). All NMR spectra were measured at 25 °C in indicated deuterated solvents. Proton and carbon chemical shifts (δ) are reported in ppm and coupling constants (*J*) are reported in Hertz (Hz). The resonance multiplicity in the ¹H NMR spectra are described as "s" (singlet), "d" (doublet), "t" (triplet), and "m" (multiplet) and broad resonances are indicated by "br". Residual protic solvent of CDCl₃ (¹H, δ 7.27 ppm; ¹³C, δ 77.0 ppm (central resonance of the triplet)), D₂O (¹H, δ 4.79 ppm and 30.89 ppm for CH₃ of acetone for ¹³C spectra of de-*O*-acetylated compounds), MeOD (¹H, δ 3.31 ppm and ¹³C, δ 49.0 ppm. 2D Homonuclear correlation ¹H-¹H COSY together with 2D heteronuclear correlation ¹H-¹³C HSQC experiments were used to confirm NMR peak assignments.

Fourier transform infrared (FTIR) spectra were obtained with Thermo-scientific, Nicolet model 6700 equipped with ATR. The absorptions are given in wavenumbers (cm^{-1}). The intensity of the bands is described as s (strong), m (medium) or w (weak). Melting points were measured on an Electrothermal MEL-TEMP apparatus and are uncorrected.

Accurate mass measurements (HRMS) were performed on a LC–MSD-ToF instrument from Agilent Technologies in positive electrospray (ES) mode. Low-resolution mass spectra were performed on the same apparatus or on a LCQ Advantage ion trap instrument from Thermo Fisher Scientific in positive electrospray mode (Mass Spectrometry Laboratory (Université de Montréal), or Plateforme analytique pour molécules organiques (Université du Québec à Montréal), Québec, Canada). Either protonated molecular ions $[M + nH]^{n+}$ or adducts $[M + nX]^{n+}$ (X = Na, K, NH₄) were used for empirical formula confirmation.

General procedures

<u>Procedure A</u>: multiple CuAAc couplings on polypropargylated cores

To a solution of polypropargylated core (1.00 equiv) and complementary azido synthon (1.25 equiv/propargyl) in a THF/H₂O mixture (1:1) were added sodium ascorbate (0.30 equiv/propargyl) and CuSO₄·5H₂O (0.30 equiv/propargyl). The reaction mixture was stirred at 50 °C for 3 h then at room temperature for an additional 16 h period. EtOAc (10 mL) was added and the resulting solution was poured in a separatory funnel containing 25 mL of EtOAc and 30 mL of a saturated aqueous solution of NH₄Cl. Organics were washed with (2 × 25 mL) of saturated NH₄Cl_{aq}, water (2 × 20 mL) and brine (10 mL). The organic phase was then dried over MgSO₄ and concentrated under reduced pressure. Column chromatography on silica (DCM/MeOH 100:0 to 90:10) afforded the desired glycocluster.

<u>Procedure B</u>: Zemplén de-O-acetylation procedure for insoluble derivatives

The acetylated compound was dissolved in anhydrous MeOH and a solution of sodium methoxide (1 M in MeOH, 5 μ L every 20 minutes until precipitation) was added. An additional 100 μ L was then injected and the heterogeneous reaction mixture was stirred at room temperature for 24 h. The solvent was then removed with a Pasteur pipette and a mixture of anhydrous MeOH/DCM (4:1, 5 mL) was added to the residual white foam. A vigorous agitation was maintained for an additional 15 min period. After removal of the solvents with a Pasteur pipette, the residue was dissolved in H₂O (3 mL), and the pH was adjusted to 6–7 with addition of ion-exchange resin (Amberlite IR 120 H⁺). After filtration, the solvent was removed under vacuum with rotary evaporator, lyophilized to yield the fully deprotected glycocluster.

Synthesis of peracetylated trivalent derivative (4): Derivative 4 was synthesized according to Procedure A with tripropargylated core 2 (15.4 mg, 47.9 μ mol, 1.00 equiv), mannoside 3 (75.0 mg, 180 μ mol, 3.75 equiv), sodium ascorbate (8.5 mg, 43 μ mol, 0.90 equiv) and CuSO₄·5H₂O (10.8 mg, 43.1 μ mol, 0.90 equiv) in a THF/H₂O mixture (4 mL, 1:1). Column chromatography on silica (DCM/MeOH 98:2 to 94:6) afforded the desired compound 4 (42.0 mg, 26.8 μ mol, 56%) as a white solid.

R_f = 0.16 (94:6 DCM/MeOH); **m.p.** = 103-106^oC (*not corrected*). ¹**H NMR (300 MHz, CDCl**₃) δ (ppm) 8.21 (m, 6H, CH_{ar} + NH), 7.74 (s, 3H, $CH_{triazole}$), 5.23–5.17 (m, 9H, H_2 , H_3 , H_4), 4.81 (s_{app}, 3H, H_1), 4.67–4.60 (m, 12H, HNC $H_2C_{triazole}$ + N_{triazole}C H_2), 4.21–3.89 (m, 12H, OC H_2 + H_6), 3.62–3.60 (m, 3H, H_5), 2.11, 2.08, 2.01, 1.96 (4s, 36H, COC H_3).¹³C{¹H} **NMR (75 MHz, CDCl**₃) δ (ppm) 170.7, 170.1, 170.0, 169.7 (COCH₃), 165.9 (CONH), 145.0 ($C_{triazole}$), 134.6 (C_{arom}), 128.5 (CH_{arom}), 123.4 ($CH_{triazole}$), 97.3 (C_1), 69.2 (C_2), 68.9 (C_3), 68.8 (C_5), 66.1 (C_6), 65.7 (C_4), 62.2 (OCH₂), 49.7 ($CH_2N_{triazole}$), 35.5 (HNCH₂C_{triazole}), 20.8, 20.7, 20.6, 20.6 (COCH₃). **HRMS** (⁺TOF-HRMS) m/z: calculated for C₆₆H₈₄N₁₂O₃₃ [M+H]⁺: 1573.5337, found: 1573.5327 (Δ = -0.88 ppm); [M+Na]⁺: 1595.5156, found: 1595.5151 (Δ = -0.29 ppm). Synthesis of trivalent derivative (5): A solution of sodium methoxide (1 M in MeOH, 50 μ L) was added to a solution of acetylated precursor **4** (30.0 mg, 19.1 μ mol) in MeOH (2.5 mL). The reaction mixture was stirred at room temperature for 24 h. The pH was adjusted to 6–7 with addition of ion-exchange resin (Amberlite IR 120 H⁺). After filtration, the solvent was removed under vacuum with rotary evaporator and the residue was lyophilized to furnish desired de-*O*-acetylated compound **5** (19.0 mg, 17.9 μ mol, 94%) as a white solid.

¹H NMR (300 MHz, D₂O) δ (ppm) 8.27 (s, 3H, CH_{ar}), 8.01 (s, 3H, CH_{triazole}), 4.74 (m, 3H, H₁), 4.63–4.59 (m, 12H, HNCH₂C_{triazole}+ N_{triazole}CH₂), 4.05–4.01 (m, 3H, CHHCH₂N), 3.88–3.79 (m, 6H, CHHCH₂N + H₂), 3.63–3.47 (m, 12H, H₆ + H₄ + H₃), 2.90–2.86 (m, 3H, H₅). ¹³C{¹H} NMR (75 MHz, D₂O) δ (ppm) 168.4 (CONH), 144.6 (C_{triazole}), 134.5 (C_{arom}), 129.3 (CH_{arom}), 124.7 (CH_{triazole}), 99.5 (C₁), 72.8 (C₅), 70.5 (C₃), 69.9 (C₂), 66.4 (C₄), 65.5 (OCH₂), 60.7 (C₆), 50.1 (CH₂N_{triazole}), 35.1 (HNCH₂C_{triazole}). HRMS (⁺TOF-HRMS) m/z: calculated for C₄₂H₆₀N₁₂O₂₁ [M+Na]⁺: 1091.3888, found: 1091.3888 (Δ = -0.11 ppm).

Synthesis of peracetylated trivalent derivative (8): To a solution of triazido core **6** (50.0 mg, 109 μ mol, 1.00 equiv) and mannoside **7** (158 mg, 409 μ mol, 3.75 equiv) in a THF/H₂O mixture (6 mL, 1:1) were added sodium ascorbate (19.4 mg, 98.1 μ mol, 0.90 equiv) and CuSO₄·5H₂O (24.5 mg, 98.1 μ mol, 0.90 equiv). The reaction mixture was stirred at 50 °C for 3 h then at room temperature for an additional 16 h period. EtOAc (10 mL) was added and the resulting solution was poured in a separatory funnel containing 35 mL of EtOAc and 30 mL of a saturated aqueous solution of NH₄Cl. Organics were washed with (2 × 25 mL) of saturated NH₄Cl_{aq}, water (2 × 20 mL) and brine (10 mL). The organic phase was then dried over MgSO₄ and concentrated under reduced pressure. Column chromatography on silica (DCM/MeOH 98:2 to 94:6) afforded the desired compound **8** (138 mg, 86.0 μ mol, 79%) as a viscous oil.

R_f = 0.34 (95:5 DCM/MeOH). ¹**H NMR (600 MHz, CDCl₃)** δ (ppm) 8.27 (s, 3H, CH_{ar}), 7.79 (s, 3H, CH_{triazole}), 7.72 (t, J = 5.3 Hz, 3H, NH), 5.29–5.19 (m, 9H, H_2 , H_3 , H_4), 4.92 (s_{app}, 3H, H_1), 4.77–4.62 (2×d, J = 12.4 Hz, 6H, OCH₂), 4.54 (t, J = 6.4 Hz, 6H, N_{triazole}CH₂), 4.28 (dd, J = 12.4 Hz, J = 5.4 Hz, 3H, H_{6b}), 4.11–4.03 (m, 6H, $H_5 + H_{6a}$), 3.55 (m, 6H, NHCH₂), 2.28 (m, 6H, CH₂CH₂CH₂), 2.12, 2.10, 2.02, 1.96 (4s, 36H, COCH₃).¹³C{¹H} NMR (150 MHz, CDCl₃) δ (ppm) 170.8, 170.1, 170.0, 169.7 (COCH₃), 166.1 (CONH), 143.5 (C_{triazole}), 134.9 (C_{arom}), 128.5 (CH_{arom}), 123.9 (CH_{triazole}), 96.7 (C₁), 69.3 (C₂), 69.0 (C₃), 68.7 (C₅), 65.9 (C₆), 62.3 (C₄), 60.7 (OCH₂), 48.3 (CH₂N_{triazole}), 37.5 (NHCH₂), 29.9 (CH₂CH₂CH₂), 20.9, 20.8, 20.7, 20.7 (COCH₃). MS (⁺TOF-MS) m/z: calculated for C₆₉H₉₀N₁₂O₃₃ [M+H]⁺: 1615.6, found: 1615.6.

Synthesis of trivalent derivative (9): Derivative **9** was synthesized according to **Procedure B** with compound **8** (120.0 mg, 74.3 μmol) previously dissolved in anhydrous MeOH (4 mL). Deprotected hexamer **9** was obtained as a white solid (78.0 mg, 70.6 μmol) in a 95% yield.

¹**H** NMR (300 MHz, D₂O) δ (ppm) 8.03 (s, 3H, CH_{ar}), 8.00 (s, 3H, CH_{triazole}), 4.85 (m, 3H, H₁), 4.68–4.49 (m, 12H, OCH₂C_{triazole}+ N_{triazole}CH₂), 3.80–3.55 (m, 18H, H₂ + H₆ + H₄ + H₃ + H₅), 3.40 (m, 6H, OCNHCH₂), 2.24 (m, 6H, CH₂CH₂CH₂).¹³C{¹H} NMR (75 MHz, CDCl₃) δ (ppm) 168.6 (CONH), 144.2 (C_{triazole}), 135.0 (C_{arom}), 129.3 (CH_{arom}), 125.8 (CH_{triazole}), 100.0 (C₁), 73.6 (C₅), 71.1 (C₃), 70.6 (C₂), 67.3 (C₄), 61.5 (C₆), 60.7 (OCH₂), 49.1 (CH₂N_{triazole}), 38.1 (OCHNCH₂), 29.3 (CH₂CH₂CH₂). HRMS (⁺TOF-HRMS) m/z: calculated for C₄₅H₆₆N₁₂O₂₁ [M+H]⁺: 1111.4538, found: 1111.4533 (Δ = -0.52 ppm); [M+Na]⁺: 1133.4358, found: 1133.4347 (Δ = -0.93 ppm).

Synthesis of peracetylated nonavalent derivative (11): Derivative 11 was synthesized according to Procedure A with nonapropargylated core 10 (20.0 mg, 23.2 μ mol, 1.00 equiv), mannoside 3 (108.9 mg, 261.0 μ mol, 11.25 equiv), sodium ascorbate (12.4 mg, 62.7 μ mol, 2.70 equiv), and CuSO₄·5H₂O (15.7 mg, 62.7 μ mol, 2.70 equiv) in a THF/H₂O mixture (3 mL, 1:1). Column chromatography on silica (DCM/MeOH 98:2 to 94:6) afforded the desired compound 11 (88.0 mg, 19.1 μ mol, 83%) as a colorless oil.

R_f = 0.19 (95:5 DCM/MeOH). ¹**H NMR (300 MHz, CDCl₃)** δ (ppm) 8.18 (br s, 3H, *CH*_{ar}), 7.77 (s, 9H, *CH*_{triazole}), 7.17 (m, 3H, N*H*), 5.28–5.15 (m, 27H, *H*₂, *H*₃, *H*₄), 4.80 (br s, 9H, *H*₁), 4.64–4.53 (m, 36H, OC*H*₂C_{triazole} + N_{triazole}C*H*₂), 4.20–3.98 (m, 27H, OC*H*₂CH₂ + *H*_{6a}), 3.90–3.85 (m, 27H, *H*_{6b} + NHC_qC*H*₂O), 3.59 (m, 9H, *H*₅), 2.09, 2.05, 2.01, 1.96 (4s, 108H, COC*H*₃).¹³C{¹H} NMR (75 MHz, CDCl₃) δ (ppm) 170.6, 169.9, 169.6, 169.7 (COCH₃), 166.3 (CONH), 144.8 (*C*_{triazole}), 135.5 (*C*_{arom}), 128.5 (*C*H_{arom}), 124.0 (*C*H_{triazole}), 97.3 (*C*₁), 69.0 (*C*₂), 68.8 (*C*₃), 68.7 (*C*₅), 68.4 (NHC_qCH₂O), 66.1 (*C*₆), 65.5 (*C*₄), 64.4 (OCH₂C_{triazole}), 62.2 (OCH₂CH₂), 60.5 (*C*_q), 49.5 (*C*H₂N_{triazole}), 20.8, 20.7, 20.6, 20.6 (COCH₃). **HRMS** (*ESI-MS) m/z: calculated for C₁₉₂H₂₅₈N₃₀O₁₀₂ [M+2H]²⁺: 2308.8035, found: 2308.7995 (Δ = -1.73 ppm).

Synthesis of de-*O*-acetylated nonavalent derivative (12): A solution of sodium methoxide (1 M in MeOH, 150 μ L) was added to a solution of acetylated precursor **11** (70.0 mg, 15.2 μ mol) in MeOH (2.5 mL). The reaction mixture was stirred at room temperature for 24 h. The pH was adjusted to 7 with addition of ion-exchange resin (Amberlite IR 120 H⁺). After filtration, the solvent was removed under vacuum with rotary evaporator and the residue was lyophilized to furnish desired de-*O*-acetylated compound **12** (47.0 mg, 15.2 μ mol, 99%) as a white solid.

¹**H** NMR (300 MHz, D₂O) δ (ppm) 8.02 (m, 12H, CH_{ar} + CH_{triazole}), 4.74 (m, 9H, H₁), 4.62–4.56 (m, 36H, OCH₂C_{triazole} + N_{triazole}CH₂), 4.05–4.01 (m, 9H, OCHHCH₂N), 3.89–3.78 (m, 36H, OCHHCH₂N + H₂ + NHC_qCH₂O), 3.71–3.53 (m, 36H, H₆ + H₄ + H₃), 3.02 (m, 9H, H₅). ¹³C{¹H} NMR (75 MHz, D₂O) δ (ppm)

169.0 (CONH), 144.7 (C_{triazole}), 135.8 (C_{arom}), 129.7 (CH_{arom}), 126.1 (CH_{triazole}), 100.2 (C_1), 73.4 (C_5), 71.1 (C_3), 70.5 (C_2), 67.9 (NHC_qCH₂O), 67.0 (C_4), 66.1 (OCH₂CH₂N), 64.2 (OCH₂C_{triazole}), 61.4 (C_q), 61.3 (C_6), 50.7 (CH_2N_{triazole}). **HRMS** (⁺TOF-HRMS) m/z: calculated for C₁₂₀H1₈₆N₃₀O₆₆ [M+2H]²⁺: 1552.6132, found: 1552.6119 ($\Delta = -0.08$ ppm).

Synthesis of nonapropargylated derivative (14): To a solution of phloroglucinol (13, 10.0 mg, 79.3 µmol, 1.00 equiv) in anhydrous DMF (3 mL) was added under nitrogen anhydrous K_2CO_3 (previously heated at 250 °C under vaccum, 39.5 mg, 285 µmol, 3.60 equiv). After 10 min of vigorous stirring, tripropargylated synthon14 (93.0 mg, 285 µmol, 3.60 equiv) was added into the solution under inert atmosphere and the reaction mixture was allowed to stir at 65 °C for 39 h. In the end, the dark-brown heterogeneous reaction was poured in 30 mL of EtOAc and organics were washed with a saturated aqueous solution of NH₄Cl (2 × 30 mL) then water (2 × 20 mL) and brine (10 mL). The organic phase was then dried over MgSO₄ and concentrated under reduced pressure. Column chromatography on silica (EtOAc/hexane 40:60 to 50:50) afforded the desired compound 15 (32.0 mg, 33.8 µmol, 43%) as a colorless oil.

R_f = 0.27 (1:1 EtOAc/Hexane). ¹**H NMR (300 MHz, CDCl**₃) δ (ppm) 6.85 (s, 3H, N*H*), 6.17 (s, 3H, C*H*_{ar}), 4.36 (s, 6H, OC*H*₂CONH), 4.16 (m, 18H, OC*H*₂C≡CH), 3.87 (br s, 18H, HNC_qC*H*₂O), 2.48 (m, 9H, OCH₂C≡C*H*). ¹³C{¹**H**} **NMR (75 MHz, CDCl**₃) δ (ppm) 167.3 (CONH), 159.0 (C_{ar} OCH₂), 95.8 (*C*H_{ar}), 79.4 (OCH₂C≡CH), 74.9 (OCH₂C≡CH), 68.3 (HNC_qCH₂O), 67.5 (OCH₂CONH), 59.2 (C_{q}), 58.6 (OCH₂C≡CH). **HRMS** (⁺TOF-HRMS) m/z: calculated for C₅₁H₅₇N₃O₁₅ [M+H]⁺: 952.3862, found: 952.3843 (Δ = -2.10 ppm); [M+Na]⁺: 974.3682, found: 974.3662 (Δ = -2.05 ppm).

Synthesis of peracetylated derivative (16): 16 was synthesized according to Procedure A with nonapropargylated core 15 (20.0 mg, 21.0 μ mol, 1.00 equiv), mannoside 3 (98.6 mg, 236.0 μ mol, 11.25 equiv), sodium ascorbate (11.2 mg, 56.7 μ mol, 2.70 equiv), and CuSO₄·5H₂O (14.2 mg, 56.7 μ mol, 2.70 equiv) in a THF/H₂O mixture (3 mL, 1:1). Column chromatography on silica (DCM/MeOH 98:2 to 94:6) afforded the desired compound 16 (86.0 mg, 18.3 μ mol, 87%) as a colorless oil.

R_f = 0.24 (93:7 DCM/MeOH). ¹**H NMR (300 MHz, CDCl₃)** δ (ppm) 7.70 (br s, 9H, $CH_{triazole}$), 7.05 (br s, 3H, NH), 6.22 (br s, 3H, CH_{ar}), 5.26–5.17 (m, 27H, H_2 , H_3 , H_4), 4.79 (br s, 9H, H_1), 4.60 (br s, 36H, OCH₂C_{triazole} + N_{triazole}CH₂), 4.18 (br s, 6H, OCH₂CONH), 4.16–3.91 (m, 27H, OCH₂CH₂ + H_{6a}), 3.90–3.84 (m, 27H, H_{6b} + NHC_qCH₂O), 3.60 (m, 9H, H_5), 2.11, 2.07, 2.02, 1.96 (4s, 108H, COCH₃). ¹³C{¹H} NMR (75 MHz, CDCl₃) δ (ppm) 170.5, 169.8, 169.8, 169.5, (COCH₃), 167.5 (CONH), 158.9 (C_{ar} OCH₂), 144.6 ($C_{triazole}$), 123.9 ($CH_{triazole}$), 97.3 (C_1), 95.4 (CH_{ar}), 69.0 (C_2), 68.8 (C_3), 68.7 (C_5), 68.5 (NHC_qCH₂O), 67.2 (OCH₂CONH), 66.1 (C_6), 65.5 (C_4), 64.3 (OCH₂C_{triazole}), 62.0 (OCH₂CH₂), 59.6 (C_q), 49.5 (CH₂N_{triazole}), triazole),

20.7, 20.6, 20.6, 20.6 (COCH₃). **HRMS** (⁺TOF-HRMS) m/z: calculated for $C_{195}H_{264}N_{30}O_{105}$ [M+3H]³⁺: 1569.5486, found: 1569.5458 (Δ = -1.82 ppm); [M+2H]²⁺: 2353.8193, found: 2353.8088 (Δ = -4.48 ppm).

Synthesis of de-*O***-acetylated nonavalent derivative (17):** Derivative **17** was synthesized according to **Procedure B** with compound **16** (45.0 mg, 9.56 μmol) previously dissolved in anhydrous MeOH (3 mL). Deprotected nonamer **17** was obtained as a white solid (27.0 mg, 8.45 μmol) in a 90% yield.

¹**H** NMR (300 MHz, **D**₂**O**) δ (ppm) 7.97 (m, 9H, $CH_{triazole}$), 6.15 (s, 3H, CH_{ar}), 4.77 (s, 9H, H_1), 4.61–4.46 (m, 42H, OCH₂C_{triazole} + N_{triazole}CH₂ + OCH₂CONH)), 4.06–4.01 (m, 9H, OCHHCH₂N), 3.90–3.56 (m, 72H, CHHCH₂N + H_2 + NHC_qCH₂O + H_6 + H_4 + H_3), 3.06 (m, 9H, H_5). ¹³C{¹H} NMR (75 MHz, **D**₂O) δ (ppm) 170.5 (CONH), 159.7 (C_{ar} OCH₂), 144.7 ($C_{triazole}$), 126.0 (CH_{triazole}), 100.2 (C_1), 96.1 (CH_{ar}), 73.4 (C_5), 71.1 (C_3), 70.6 (C_2), 68.4 (NHC_qCH₂O), 67.5 (OCH₂CONH), 67.0 (C_4), 66.1 (OCH₂CH₂N), 64.2 (OCH₂C_{triazole}), 61.3 (C_6), 60.5 (C_q), 50.7 (CH₂N_{triazole}). HRMS (⁺TOF-HRMS) m/z: calculated for C₁₂₃H₁₉₂N₃₀O₆₉ [M+3H]³⁺: 1065.42219, found: 1065.4221 ($\Delta = 0.23$ ppm).

Synthesis of bromoacylated dendron (18): 18 was synthesized according to Procedure A with tripropargylated synthon 14 (140.0 mg, 393.0 μ mol, 1.00 equiv), mannoside 3 (616 mg, 1.48 mmol, 3.75 equiv), sodium ascorbate (70.0 mg, 354 μ mol, 0.90 equiv), and CuSO₄·5H₂O (88.4 mg, 354 μ mol, 0.90 equiv) in a THF/H₂O mixture (6 mL, 1:1). Column chromatography on silica (DCM/MeOH 99:1 to 96:4) afforded the desired compound 18 (594 mg, 369.4 μ mol, 94%) as a white solid.

R_f = 0.47 (94:6 DCM/MeOH). **m.p.** = 68-72°C (*not corrected*). ¹**H** NMR (300 MHz, CDCl₃) δ (ppm) 7.68 (br s, 3H, CH_{triazole}), 6.89 (br s, 1H, NH), 5.24–5.18 (m, 9H, H_2 , H_3 , H_4), 4.80 (d, J = 1.3 Hz, 1H, H_1), 4.61–4.58 (br s, 12H, OCH₂C_{triazole} + N_{triazole}CH₂), 4.17–4.00 (m, 11H, OCH₂CH₂ + H_{6a} + BrCH₂CONH), 3.94–3.78 (m, 9H, H_{6b} + NHC_qCH₂O), 3.60 (m, 3H, H_5), 2.12, 2.08, 2.03, 1.98 (4s, 36H, COCH₃). ¹³C{¹H} NMR (75 MHz, CDCl₃) δ (ppm) 170.5, 169.9, 169.9, 169.5, (COCH₃), 165.6 (CONH), 145.0 ($C_{triazole}$), 123.7 (CH_{triazole}), 97.4 (C_1), 69.1 (C_2), 68.9 (C_3), 68.8 (C_5), 68.4 (NHC_qCH₂O), 66.2 (C_6), 65.6 (C_4), 64.6 (OCH₂C_{triazole}), 62.1 (OCH₂CH₂), 60.2 (C_q), 49.6 (CH₂N_{triazole}), 29.7 (CH₂Br), 20.8, 20.7, 20.6, 20.6 (COCH₃).IR (cm⁻¹) 2956, 2937, 2361, 2337, 1751, 1734, 1540, 1370, 1218, 1045, 759. HRMS (⁺TOF-HRMS) m/z: calculated for C₆₃H₈₇BrN₁₀O₃₄ [M+2H]²⁺: 804.2358, found: 804.2356 (Δ = -0.18 ppm); [M+H] ⁺: 1607.4642, found: 1607.4620 (Δ = -1.36 ppm); [M+Na]⁺: 1629.4462, found: 1629.4448 (Δ = -0.84 ppm).

Synthesis of azidoacylated dendron (19): To a stirring solution of brominated trivalent dendron 18 (121.0 mg, 75.2 μ mol, 1.00 equiv) in dry DMF (1.5 mL) was added under a nitrogen atmosphere sodium azide (7.3 mg, 112 μ mol, 1.50 equiv). After stirring overnight at room temperature, the solvent was removed under vaccum. EtOAc (20 mL) was added and the resulting solution was poured in a separatory funnel

containing 20 mL of EtOAc and 30 mL of a saturated aqueous solution of NH₄Cl. Organics were washed with $(2 \times 30 \text{ mL})$ of saturated NH₄Cl_{aq}, water $(2 \times 30 \text{ mL})$ and brine (20 mL). The organic phase was then dried over MgSO₄ and concentrated under reduced pressure to furnish the desired compound **19** (110 mg, 69.9 µmol, 93%) as a white solid.

R_f = 0.47 (94:6 DCM/MeOH). **m.p.** = 62-65°C (*not corrected*). ¹**H NMR** (**300 MHz, CDCl**₃) δ (ppm) 7.68 (br s, 3H, $CH_{triazole}$), 6.69 (br s, 1H, NH), 5.27–5.18 (m, 9H, H_2 , H_3 , H_4), 4.80 (d, J = 1.3 Hz, 1H, H_1), 4.61–4.58 (br s, 12H, OCH₂C_{triazole} + N_{triazole}CH₂), 4.23–4.00 (m, 11H, OCH₂CH₂ + H_{6a} + N₃CH₂CONH), 3.90–3.81 (m, 9H, H_{6b} + NHC_qCH₂O), 3.60 (m, 3H, H_5), 2.12, 2.08, 2.03, 1.98 (4s, 36H, COCH₃).¹³C{¹H} **NMR (75 MHz, CDCl**₃) δ (ppm) 170.4, 169.9, 169.8, 169.5, (COCH₃), 166.7 (CONH), 144.9 ($C_{triazole}$), 123.7 ($CH_{triazole}$), 97.4 (C_1), 69.0 (C_2), 68.8 (C_3), 68.8 (C_5), 68.4 (NHC_qCH₂O), 66.1 (C_6), 65.6 (C_4), 64.5 (OCH₂C_{triazole}), 62.1 (OCH₂CH₂), 59.9 (C_q), 52.5 (CH₂N₃), 49.5 (CH₂N_{triazole}), 20.7, 20.7, 20.6, 20.6 (COCH₃).IR (cm⁻¹) 2934, 2361, 2338, 2107 (N₃), 1751, 1734, 1540, 1373, 1218, 1045, 761. **HRMS** (⁺TOF-HRMS) m/z: calculated for C₆₃H₈₇N₁₃O₃₄ [M+H]⁺: 1570.5551, found: 1570.5543(Δ = -0.51 ppm); [M+Na]⁺: 1592.5371, found: 1592.5366(Δ = -0.31 ppm).

Synthesis of peracetylated nonavalent derivative (20): Derivative 20 was synthesized according to **Procedure A** with tripropargylated core 2 (3.9 mg, 12.1 µmol, 1.00 equiv), trimannosylated dendron 19 (75.0 mg, 47.8 μ mol, 3.90 equiv), sodium ascorbate (6.5 mg, 33 μ mol, 2.70 equiv), and CuSO₄·5H₂O (8.2 mg, 33 µmol, 0.90 equiv) in a THF/H₂O mixture (4 mL, 1:1). Column chromatography on silica (DCM/MeOH 98:2 to 90:10) afforded the desired compound 20 (52.0 mg, 10.2 µmol, 84%) as a colorless oil. $\mathbf{R}_{f} = 0.25 \ (92:8 \ \text{DCM/MeOH})$. ¹H NMR (300 MHz, CDCl₃) δ (ppm) 8.37 (m, 3H, CH_{ar}), 8.00 (br s, 3H, NH), 7.78 (s, 3H, CH_{int-triazole}), 7.69 (s, 9H, CH_{ext-triazole}), 6.94 (br s, 3H, NH_{int}), 5.24-5.17 (m, 27H, H₂, H₃, H₄), 4.98 (br s, 6H, N_{triazole}CH₂CONH), 4.80 (s_{app}, 9H, H₁), 4.64–4.52 (m, 42H, OCH₂C_{triazole} + N_{triazole}CH₂ + NHC H_2C_{triazole} , 4.19–3.87 (m, 54H, OC $H_2 + H_6 + \text{NHC}_qCH_2O$), 3.63–3.62 (m, 9H, H_5), 2.11, 2.08, 2.01, 1.96 (4s, 108H, COCH₃). ¹³C{¹H} NMR (75 MHz, CDCl₃) δ (ppm) 170.5, 170.0, 169.9, 169.5 (COCH₃), 165.8 (CONH), 165.1 (CONH), 144.8 (Cext-triazole), 144.7 (Cint-triazole), 134.7 (Carom), 128.7 (CHarom), 124.1 (CH_{int-triazole}), 123.4 (CH_{ext-triazole}), 97.4 (C₁), 69.0 (C₂), 68.9 (C₃), 68.7 (C₅), 68.3 (NHC_qCH₂O), 66.1 (C₆), 65.5 (C₄), 64.5 (OCH₂C_{triazole}), 62.1 (OCH₂), 60.3 (C_a), 52.4 (N_{triazole}CH₂CONH), 49.5 (CH₂N_{triazole}), 35.5 (HNCH₂C_{triazole}), 20.8, 20.7, 20.6, 20.6 (COCH₃). HRMS (⁺TOF-HRMS) m/z: calculated for C₂₀₇H₂₇₆N₄₂O₁₀₅ $[M+2H]^{2+}$: 2515.8847, found: 2515.8845 ($\Delta = -0.08$ ppm); $[M+3H]^{3+}$: 1677.5922, found: 1677.5936 ($\Delta = -0.08$ ppm); $[M+3H]^{3+}$: 1677.5922, found: 1677.5936 ($\Delta = -0.08$ ppm); $[M+3H]^{3+}$: 1677.5922, found: 1677.5936 ($\Delta = -0.08$ ppm); $[M+3H]^{3+}$: 1677.5922, found: 1677.5936 ($\Delta = -0.08$ ppm); $[M+3H]^{3+}$: 1677.5922, found: 1677.5936 ($\Delta = -0.08$ ppm); $[M+3H]^{3+}$: 1677.5922, found: 1677.5936 ($\Delta = -0.08$ ppm); $[M+3H]^{3+}$: 1677.5922, found: 1677.5936 ($\Delta = -0.08$ ppm); $[M+3H]^{3+}$: 1677.5922, found: 1677.5936 ($\Delta = -0.08$ ppm); $[M+3H]^{3+}$: 1677.5922, found: 1677.5936 ($\Delta = -0.08$ ppm); $[M+3H]^{3+}$: 1677.5922, found: 1677.5936 ($\Delta = -0.08$ ppm); $[M+3H]^{3+}$: 1677.5922, found: 1677.5936 ($\Delta = -0.08$ ppm); $[M+3H]^{3+}$: 1677.5922, found: 1677.5936 ($\Delta = -0.08$ ppm); $[M+3H]^{3+}$: 1677.5922, found: 1677.5936 ($\Delta = -0.08$ ppm); $[M+3H]^{3+}$: 1677.5922, found: 1677.5936 ($\Delta = -0.08$ ppm); $[M+3H]^{3+}$: 1677.5922, found: 1677.5936 ($\Delta = -0.08$ ppm); $[M+3H]^{3+}$: 1677.5922, found: 1677.5936 ($\Delta = -0.08$ ppm); $[M+3H]^{3+}$: 1677.5922, found: 1677.5936 ($\Delta = -0.08$ ppm); $[M+3H]^{3+}$: 1677.5922, found: 1677.5936 ($\Delta = -0.08$ ppm); $[M+3H]^{3+}$: 1677.5922, found: 1677.5936 ($\Delta = -0.08$ ppm); $[M+3H]^{3+}$: 1677.5922, found: 1677.5936 ($\Delta = -0.08$ ppm); $[M+3H]^{3+}$: 1677.5922, found: 1677.5936 ($\Delta = -0.08$ ppm); $[M+3H]^{3+}$: 1677.5922, found: 1677.5936 ($\Delta = -0.08$ ppm); $[M+3H]^{3+}$: 1677.5922, found: 1677.5936 ($\Delta = -0.08$ ppm); $[M+3H]^{3+}$: 1677.5922, found: 1677.5936 ($\Delta = -0.08$ ppm); $[M+3H]^{3+}$: 1677.5922, found: 1677.5936 ($\Delta = -0.08$ ppm); $[M+3H]^{3+}$: 1677.5922, found: 1677.5928 ppm); 1677.5928 ppm]; [M+3H]^{3+}: 1677.5928 ppm]; 16 0.79 ppm).

Synthesis of de-O-acetylated nonavalent derivative (21): Derivative 21 was synthesized according to **Procedure B** with 20 (40.0 mg, 7.95 µmol) previously dissolved in anhydrous MeOH (3 mL). After

filtration, the solvent was removed under vacuum with rotary evaporator and the residue was lyophilized to furnish desired de-*O*-acetylated nonamer **21** as a white solid (28.0 mg, 7.95 µmol) in a 99% yield.

¹H NMR (600 MHz, D₂O) δ (ppm) 8.27 (m, 3H, CH_{ar}), 7.96 (m, 12H, CH_{triazole}), 5.15 (br s, 6H, N_{triazole}CH₂CONH), 4.72 (s, 9H, H₁), 4.66 (s, 6H OCNHCH₂C_{triazole}), 4.57–4.51 (m, 36H, OCH₂C_{triazole} + N_{triazole}CH₂), 4.06–4.01 (m, 9H, OCHHCH₂N), 3.83–3.80 (m, 18H, OCHHCH₂N + H₂), 3.69–3.54 (m, 54H, NHC_qCH₂O + H₆ + H₄ + H₃), 3.01 (m, 9H, H₅). ¹³C{¹H} NMR (150 MHz, D₂O) δ (ppm) 168.4 (CONH), 167.6 (CONH), 145.2 (C_{ext-triazole}), 144.5 (C_{int-triazole}), 135.0 (C_{arom}), 129.8 (CH_{arom}), 126.1 (CH_{int-triazole}), 126.0 (CH_{ext-triazole}), 100.2 (C₁), 73.4 (C₅), 71.1 (C₃), 70.6 (C₂), 67.8 (NHC_qCH₂O), 67.0 (OCH₂CH₂N_{triazole}), 66.1 (C₄), 64.1 (OCH₂C_{triazole}), 61.3 (C₆), 60.9 (C_q), 52.4 (N_{triazole}CH₂CONH), 50.7 (CH₂N_{triazole}), 35.7 (OCHNCH₂C_{triazole}). HRMS (⁺ESI-HRMS) m/z: calculated for C₁₃₅H₂₀₄N₄₂O₆₉ [M+3H]³⁺: 1173.4655, found: 1173.4671 (Δ = 1.44 ppm); [M+3Na]³⁺: 1195.4474, found: 1195.4490 (Δ = 1.31 ppm).

Synthesis of peracetylated 27-mer derivative (22): Derivative 22 was synthesized according to Procedure A with nonapropargylated core 10 (4.6 mg, 5.38 µmol, 1.00 equiv), trimannosylated dendron 19 (95.0 mg, 60.5 µmol, 11.25 equiv), sodium ascorbate (2.9 mg, 15 µmol, 2.70 equiv), and CuSO₄·5H₂O (3.6 mg, 15 µmol, 0.90 equiv) in a THF/H₂O mixture (3 mL, 1:1). Column chromatography on silica (DCM/MeOH 98:2 to 90:10) afforded the desired compound 22 (50.0 mg, 3.33 µmol, 63%) as a yellowish oil.

R_f = 0.72 (90:10 DCM/MeOH). ¹**H NMR (600 MHz, CDCl₃)** δ (ppm) 8.27 (m, 3H, *CH*_{ar}), 7.79 (s, 9H, *CH*_{int-triazole}), 7.75 (s, 27H, *CH*_{ext-triazole}), 7.34–7.31 (m, 12H, N*H*), 5.23–5.18 (m, 81H, *H*₂, *H*₃, *H*₄), 5.05 (br s, 18H, N_{triazole}*CH*₂CONH), 4.81 (s_{app}, 27H, *H*₁), 4.62–4.53 (m, 126H, OC*H*₂C_{triazole} + N_{triazole}*CH*₂), 4.20–3.64 (m, 207H, OC*H*₂ + *H*₆ + NHC_qC*H*₂O + *H*₅), 2.11, 2.08, 2.01, 1.96 (4s, 324H, COC*H*₃). ¹³C{¹H} NMR (150 MHz, CDCl₃) δ (ppm) 170.6, 170.5, 170.0, 169.9, 169.9, 169.7, 169.6 (COCH₃), 168.4 (CONH), 165.4 (CONH), 144.9 + 144.8 (*C*_{ext-triazole}), 144.5 (*C*_{int-triazole}), 135.6 (*C*_{arom}), 128.6 (*C*_{Harom}), 124.9 (*C*_{Hint-triazole}), 124.0 (*C*_{Hext-triazole}), 97.5 (*C*₁), 69.1 (*C*₂), 69.0 (*C*₃), 68.7 (*C*₅), 68.4 (NHC_qCH₂O), 66.2 (*C*₆), 65.6 (*C*₄), 64.5 (OCH₂C_{triazole}), 62.1 (OCH₂), 60.4 (*C*_q), 52.4 (N_{triazole}C*H*₂CONH), 49.5 (CH₂N_{triazole}), 20.8, 20.8, 20.7, 20.7 (COCH₃). MS (⁺TOF-MS) m/z: calculated for C₆₁₅H₈₃₄N₁₂₀O₃₁₈ [M+H] ⁺: 14995.8, found: 14995.9.

Synthesis of de-*O*-acetylated 27-mer derivative (23): Derivative 23 was synthesized according to **Procedure B** with 22 (30.0 mg, 2.00 μ mol) previously dissolved in anhydrous MeOH (3 mL). After filtration, the solvent was removed under vacuum with rotary evaporator and the residue was lyophilized to yield the fully deprotected 27-mer 23 as a white solid (17.0 mg, 1.63 μ mol) in a 82% yield.

¹**H** NMR (600 MHz, D₂O) δ (ppm) 8.06 (m, 3H, CH_{ar}), 7.97 (s, 27H, CH_{ext-triazole}), 7.96 (s, 9H, CH_{int-triazole}), 5.14 (br s, 18H, N_{triazole}CH₂CONH), 4.75 (s, 27H, H₁), 4.59–4.51 (m, 126H, OCH₂C_{triazole} + N_{triazole}CH₂), 4.05–4.03 (m, 27H, OCHHCH₂N), 3.83–3.80 (m, 72H, OCHHCH₂N + H₂ + NHC_qCH₂O_{int}), 3.71–3.57 (m,

162H, NHC_qCH₂O_{ext} + H₆ + H₄ + H₃), 3.01 (m, 27H, H₅). ¹³C{¹H} NMR (150 MHz, D₂O) δ (ppm) 168.8 (CONH_{int}), 167.5 (CONH_{ext}), 144.7 (C_{ext-triazole}), 144.6 (C_{int-triazole}), 135.7 (C_{arom}), 129.7 (CH_{arom}), 127.0 (CH_{int-triazole}), 126.1 (CH_{ext-triazole}), 100.2 (C₁), 73.5 (C₅), 71.1 (C₃), 70.6 (C₂), 68.2 (NHC_qCH₂O), 68.0 (NHC_qCH₂O), 67.0 (OCH₂CH₂N_{triazole}), 66.1 (C₄), 64.2 (OCH₂C_{triazole}), 61.3 (C₆), 60.9 (C_q), 52.9 (N_{triazole}CH₂CONH), 50.7 (CH₂N_{triazole}), 35.7 (OCHNCH₂C_{triazole}). HRMS (⁺TOF-HRMS) m/z: calculated for C₃₉₉H₂₀₄N₁₂₀O₂₁₀ [M+7H]⁷⁺: 1494.6002, found: 1494.5951 (Δ = -3.43 ppm).

NMR, IR, and mass spectra

Figure S2: ¹³C NMR spectrum of compound 4 (CDCl₃, 75 MHz).

Formula	Compound name	Mass	Peak RT (min)	Peak area	Description
C66H84N12O33		1572.52637	0.21	2.87273 E6	

Species	Abundance (counts)	Ion Mass	Measured Mass	Error (mDa)	Error (ppm)	Ret. Time Error (min)
[M+H]+	27482.99	1573.53365	1573.53226	-1.39237	-0.88	
[M+Na]+	77859.75	1595.51559	1595.51514	-0.45717	-0.29	

Figure S3: HRMS analysis (⁺TOF) for compound **4**.

Figure S4: ¹H NMR spectrum of compound 5 (D_2O , 300 MHz).

Figure S5: ¹³C NMR spectrum of compound 5 (D₂O, 75 MHz).

	rormila	calculated #/s (amu)	HOS RIVOR	FIR EFFOR	1000
1	C42 m60 m12 021 ma	1091.38881	-0.12905	78,11824	18.5
1	C44 359 312 021	1091.39122	-3.53431	-2.32210	21.5
3	C47 HEO NIO CLE HE	1091.39284	-f,15176	3.80410	22.5
4	C50 959 88 020	1091.38401	4,47635	4,22477	25.5

Figure S6: HRMS analysis (⁺TOF) for compound 5.

Figure S7: ¹H NMR spectrum of compound 8 (CDCl₃, 600 MHz).

Figure S9: MS analysis (⁺TOF) for compound **8**.

Figure S10: ¹H NMR spectrum of compound 9 (D₂O, 300 MHz).

Figure S11: ¹³C NMR spectrum of compound 9 (D₂O, 75 MHz).

Formula	Compound name	Mass	Peak RT (min)	Peak area	Description
C45H66N12O21		1110.44655	0.18	3.89733 E5	

Species	Abundance (counts)	Ion Mass	Measured Mass	Error (mDa)	Error (ppm)	Ret. Time Error (min)
[M+H]+	5408.33	1111.45382	1111.45325	-0.57258	-0.52	
[M+Na]+	12232.50	1133.43577	1133.43472	-1.05035	-0.93	

Figure S12: HRMS analysis (⁺TOF) for compound 9.

Figure S13: ¹H NMR spectrum of compound 11 (CDCl₃, 300 MHz).

Figure S14: COSY spectrum of compound 11 (CDCl₃).

Figure S17: HSQC spectrum for compound 11.

MS Spec	trum Pe	ak List
---------	---------	---------

Ion	Ion Formula	Abund	Expe. m/z	Calc. m/z	Diff(ppm)
		717775.9	134.11783		
(M+2H)+2	C192H260N30O102	574.8	2308.79947	2308.80346	-1.73

Figure S18: HRMS spectrum (⁺ESI) for compound **11**.

Figure S19: ¹H NMR spectrum of compound 12 (D₂O, 300 MHz).

Figure S20: COSY spectrum for compound 12.

Figure S21: ¹³C NMR spectrum of compound 12 (D₂O, 75 MHz).

Figure S22: HSQC spectrum for compound 12.

Figure S23: HRMS spectrum (⁺TOF) for compound 12.

Formula	Compound name	Mass	Peak RT (min)	Peak area	Description
C51H57N3O15	-	951.37897	0.12	4.67661 E7	

Species	Abundance (counts)	Ion Mass	Measured Mass	Error (mDa)	Error (ppm)	Ret. Time Error (min)
[M+H]+	492252.28	952.38624	952.38425	-1.99939	-2.10	-
[M+Na]+	128015.10	974.36819	974.36619	-1.99496	-2.05	-

Figure S26: HRMS (⁺TOF) spectra and report for compound 15.

Figure S27: ¹H NMR spectrum of compound 16 (CDCl₃, 300 MHz).

Figure S28: ¹³C NMR spectrum of compound 16 (CDCl₃, 75 MHz).

S29

Figure S29: HRMS (⁺TOF (up) and ⁺ESI (bottom)) and reports for compound 16.

Formula	Compound name	Mass	Peak RT (min)	Peak area	Description
C123H192N30O69		3193.24374	0.19	1.42094 E4	

Species	Abundance (counts)	Ion Mass	Measured Mass	Error (mDa)	Error (ppm)	Ret. Time Error (min)
[M+3H]3+	1361.61	1065.42185	1065.42210	0.24650	0.23	

Figure S32: HRMS (⁺TOF) spectrum for compound **17**.

Figure S34: ¹³C NMR spectrum of compound 18 (CDCl₃, 75 MHz).

Transmission / Wavenumber (cm-1)

Figure S35: IR spectrum of compound 18.

Formula	Compound name	Mass	Peak RT (min)	Peak area	Description
C63H87BrN10O34	-	1606.45695	0.18	5.45742 E5	-

Species	Abundance (counts)	Ion Mass	Measured Mass	Error (mDa)	Error (ppm)	Ret. Time Error (mln)
[M+2H]2+	14787.14	804.23575	804.23581	-0.14429	-0.18	-
[M+H]+	2036.89	1607.46423	1507.46204	-2.19006	-1.36	-
[M+Na]+	4716.23	1629.44617	1629.44480	-1.37214	-0.84	-

Figure S36: HRMS (⁺TOF) spectrum and report for compound 18.

Figure S37: ¹H NMR spectrum of compound 19 (CDCl₃, 300 MHz).

Figure S38: COSY spectrum of compound 19.

Transmission / Wavenumber (cm-1)

Figure S40: IR spectrum of compound 19.

Formula	Compound name	Mass	Peak RT (min)	Peak area	Description
C63H87N13O34	-	1569.54784	0.19	3.68551 E7	-

Species	Abundance (counts)	Ion Mass	Measured Mass	Error (mDa)	Error (ppm)	Ret. Time Error (min)
[M+H]+	1300659.76	1570.55511	1570.55432	-0.79404	-0.51	-
[M+Na]+	1666530.91	1592.53706	1592.53657	-0.49272	-0.31	-

Figure S41: HRMS (⁺TOF) trace and report for compound 19.

Figure S42: ¹H NMR spectrum of compound 20 (CDCl₃, 600 MHz).

Figure S43: COSY spectrum of compound 20.

MS	Spectrum	Peak	List

Ion	Ion Formula	Abund	Expe. m/z	Calc. m/z	Diff(ppm)
(M+5H)+5	C207H281N42O105	16249.9	1006.96133	1006.95825	3.06
(M+4H)+4	C207H280N42O105	56590.4	1258.44891	1258.44599	2.32
(M+3H)+3	C207H279N42O105	60597.4	1677.59355	1677.59223	0.79
(M+2H)+2	C207H278N42O105	4401.5	2515.88451	2515.8847	-0.08

Figure S45: HRMS (⁺ESI) spectrum and report for compound 20.

Figure S46: ¹H NMR spectrum of compound 21 (D₂O, 600 MHz).

Figure S47: COSY spectrum (zoom) of compound 21.

Figure S48: ¹³C NMR spectrum of compound 21 (D₂O, 150 MHz).

Ion	Ion Formula	Abund	Expe. m/z	Calc. m/z	Diff(ppm)
(M+4H)+4	C135H208N42O69	43132.3	880.3535	880.35091	2.95
(M+4Na)+4	C135H204N42Na4O69	21932.4	902.33583	902.33285	3.3
(M+3H)+3	C135H207N42O69	45279.6	1173.46714	1173.46545	1.44
(M+3Na)+3	C135H204N42Na3O69	42774.8	1195.44896	1195.4474	1.31
(M+2H)+2	C135H206N42O69	5484.3	1759.69044	1759.69454	-2.33
(M+2Na)+2	C135H204N42Na2O69	8555.1	1781.67369	1781.67648	-1.57

Figure S49: HRMS (⁺ESI) spectrum of compound 21.

Figure S50: ¹H NMR spectrum of compound 22 (CDCl₃, 600 MHz).

Figure S51: COSY spectrum of compound 22.

Figure S52: ¹³C NMR spectrum of compound 22 (CDCl₃, 150 MHz).

Figure S53: MS (⁺TOF) spectrum of compound 22.

Figure S54: ¹H NMR spectrum of compound 23 (D₂O, 600 MHz).

Figure S55: COSY spectrum of compound 23.

Figure S57: HRMS (⁺TOF) spectrum of compound 23 (+ zoom).

NMR diffusion experiments

The measurement of the diffusion rate (D) allows calculating the solvodynamic diameter of a molecule.¹

The dendrimers are considered as spherical molecular objects, and characterized by an apparent diffusion coefficient D. The application of the Stokes-Einstein equation gives an estimate of the diameter of the molecule.

Stokes-Einstein equation:

 $D = K_{\rm B}T / 6\pi\eta r_s$

D: Diffusion rate (m²·s⁻¹); K_B: Boltzmann's constant ($k_B = 1.38 \times 10^{-23} \text{ m}^2 \cdot \text{kg} \cdot \text{s}^{-2} \cdot \text{K}^{-1}$); *T*: Temperature (K) (*T* = 298.15 K); η : solvent viscosity in Pa s; r_s : Solvodynamic radius of the species.

¹ Diaz, M. D.; Berger, S. *Carbohydr. Res.* **2000**, *329*, 1–5.