Supporting Information

for
 Rational design of cyclopropane-based chiral
 PHOX ligands for intermolecular asymmetric Heck
 reaction

Marina Rubina ${ }^{1}$, William M. Sherrill ${ }^{1}$, Alexey Yu. Barkov ${ }^{2}$ and Michael Rubin*1

Address: ${ }^{1}$ Department of Chemistry, University of Kansas, 1251 Wescoe Hall
Drive, Lawrence, KS 66045-7582, USA and ${ }^{2}$ Department of Chemistry, Ural
Federal University, pr. Lenina 51, 620000 Ekaterinburg, Russian Federation

Email: Michael Rubin - mrubin@ku.edu
*Corresponding author

Detailed experimental procedures of chiral ligands L2, L5, and L6

Table of Contents:

General Information S2
Synthesis of chiral phosphine ligands S3
Spectral charts S5

General Information

NMR spectra were recorded on a Bruker Avance DPX-400 instrument, equipped with a quadruple-band gradient probe (H/C/P/F QNP) or a Bruker Avance DRX-500 with a dual carbon/proton cryoprobe (CPDUL). ${ }^{13} \mathrm{C}$ and ${ }^{31} \mathrm{P}$ NMR spectra were registered with broad-band decoupling. The (+) and (-) designations represent positive and negative intensities of signals in ${ }^{13} \mathrm{C}$ DEPT-135 experiments.

GC-MS analyses were performed on a Shimadzu GC-2010 gas chromatograph interfaced to a Shimadzu GCMS 2010S mass selective detector, and equipped with an AOC-20i auto-injector and an AOC-20S auto-sampler tray (150 vials). $30 \mathrm{~m} \times 0.25 \mathrm{~mm} \times 0.25 \mu \mathrm{~m}$ capillary column, SHR5XLB, polydimethylsiloxane, $5 \% \mathrm{Ph}$ was employed. Helium (99.96%), additionally purified by passing consecutively through a CRS oxygen/moisture/hydrocarbon trap (\#202839) and VICI oxygen/moisture trap (P100-1), was used as a carrier gas. The same model of gas chromatograph, equipped with the same auto-injector, FID detector, and J\&W CyclosilB column ($30 \mathrm{~m} \times 0.25 \mathrm{~mm} \times$ $0.25 \mu \mathrm{~m}$) or J\&W CyclodexB column ($30 \mathrm{~m} \times 0.25 \mathrm{~mm} \times 0.25 \mu \mathrm{~m}$) was employed for chiral GC analyses. Hydrogen gas was used as both carrier gas and FID fuel; zero-grade air and zero-grade nitrogen were used as an oxidant and make-up gas, respectively, for the FID. All these gases were purified by passing through CRS \#202839 traps.

Glassware employed in moisture-free syntheses was flame-dried in vacuum prior to use. Water was purified by dual stage deionization, followed by dual stage reverse osmosis. Anhydrous hexane, dichloromethane, and tetrahydrofuran were obtained by passing degassed HPLC-grade commercially available solvents consecutively through two columns filled with activated alumina (Innovative Technology). Anhydrous triethylamine was obtained by distillation of ACS-grade commercially available materials over calcium hydride in a nitrogen atmosphere. Glacial acetic acid was purchased form Acros Organics and used as received. Palladium complexes were obtained from Strem Chemicals. Preparations of starting materials, (4R)-2-[(1S,2S)-2-bromo-1-methylcyclopropyl]-4-phenyl-4,5-dihydro-1,3-oxazole (19) and (4S)-2-[(1S,2S)-2-bromo-1-methylcyclopropyl]-4-phenyl-4,5-dihydro-1,3-oxazole (24), as well as chiral ligands L1, L3 and L4 were previously disclosed in our preliminary communication. ${ }^{1}$ The same reference contains crystallographic data for $\mathrm{PdCl}_{2}(\mathbf{L} \mathbf{1})$ and $\mathrm{PdCl}_{2}(\mathbf{L} \mathbf{4})$ complexes.

[^0]
Synthesis of Chiral Phosphine Ligands

(4R)-2-[(1S,2S)-2-(Diphenylphosphino)-1-me-thylcyclopropyl]-4-phenyl-4,5-dihydro-1,3-oxazole (L2): To a stirred at $-80^{\circ} \mathrm{C}$ solution of ($4 R$)-

2-[(1S,2S)-2-bromo-1-methylcyclopropyl]-4-phenyl-4,5-dihydro-1,3-oxazole (19) (733 mg, 2.62 mmol) in anhydrous THF (10 mL) was added dropwise a solution of $n-\mathrm{BuLi}$ in hexane $(2.5 \mathrm{M}$, $1.2 \mathrm{~mL}, 3.0 \mathrm{mmol}$). The mixture was allowed to warm up to $-30^{\circ} \mathrm{C}$ (within 0.5 h), after which diphenylchlorophosphine ($556 \mu \mathrm{~L}, 684 \mathrm{mg}, 3.1 \mathrm{mmol}$) was added dropwise, and the resulting mixture was stirred for 30 min at room temperature. The mixture was quenched with saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(30 \mathrm{~mL})$, and extracted with ether ($3 \times 15 \mathrm{~mL}$). The combined ethereal phases were washed with brine, dried with MgSO_{4} and concentrated. ${ }^{2}$ Purification of the final product by preparative column chromatography was performed in a nitrogen-filled glove box using degassed silica gel and $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}(40: 1)$ as an eluent. Yield $200 \mathrm{mg}(0.52 \mathrm{mmol}, 20 \%)$.
${ }^{1} \mathrm{H}$ NMR (400.13 MHz, $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right) ~ \delta ~ 7.72-7.68(\mathrm{~m}, 2 \mathrm{H}), 7.67-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.15(\mathrm{~m}$, $11 \mathrm{H}), 5.15(\mathrm{t}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{dd}, J=10.1 \mathrm{~Hz}, 8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{dd}, J=9.6 \mathrm{~Hz}$, $8.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.99\left(\mathrm{ddd},{ }^{2} J_{\mathrm{PH}}=13.1 \mathrm{~Hz}, J=7.1 \mathrm{~Hz}, 4.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.62\left(\mathrm{~d},{ }^{4} J_{\mathrm{PH}}=1.5 \mathrm{~Hz}\right)$, $1.48\left(\mathrm{ddd},{ }^{3} J_{\mathrm{PH}}=6.3 \mathrm{~Hz}, J=9.1 \mathrm{~Hz}, 7.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 0.94\left(\mathrm{ddd},{ }^{3} J_{\mathrm{PH}}=7.3 \mathrm{~Hz}, J=9.1 \mathrm{~Hz}\right.$, $4.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100.67 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 169.0\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=3.7 \mathrm{~Hz}\right), 143.2$, $140.8(\mathrm{~d}$, $\left.{ }^{1} J_{\mathrm{CP}}=12.5 \mathrm{~Hz}\right), 140.3\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=13.2 \mathrm{~Hz}\right), 133.6\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=19.8 \mathrm{~Hz},+, 2 \mathrm{C}\right), 132.2\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}\right.$ $=17.6 \mathrm{~Hz},+, 2 \mathrm{C}), 128.8\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=9.5 \mathrm{~Hz},+, 2 \mathrm{C}\right), 128.70(+), 128.65(+), 128.6(+, 2 \mathrm{C})$, $128.1\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=9.5 \mathrm{~Hz},+, 2 \mathrm{C}\right), 127.3(+), 127.2(+, 2 \mathrm{C}), 74.5(-), 70.4(+), 26.9\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=\right.$ $12.4 \mathrm{~Hz},+), 23.0\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=1.5 \mathrm{~Hz},+\right), 22.3\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=6.6 \mathrm{~Hz}\right), 19.1\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=11.0 \mathrm{~Hz},-\right)$;
${ }^{31} \mathrm{P}$ NMR ($161.98 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta-9.23 ; \alpha_{\mathrm{D}}{ }^{25}-84.7^{\circ}$ (c 1.15, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); HRMS (TOF ES) Calculated for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{NOPNa}(\mathrm{M}+\mathrm{Na}) 408.1493$, Found 408.1483 (2.5 ppm).

(4S)-2-[(1S,2S)-2-(Dicyclohexylphosphino)-1-methylcyclopropyl]-4-phenyl-4,5-dihydro-1,3oxazole (L5): was prepared in a similar manner from $590 \mathrm{mg}(2.10 \mathrm{mmol})$ of ($4 S$)-2-[(1S,2S)-2-bromo-1-methylcyclopropyl]-4-phenyl-4,5-di-hydro-1,3-oxazole (24) and $539 \mathrm{mg}(2.32 \mathrm{mmol}$, 1.1 equiv) of dicyclohexylchlorophosphine. Purification of the final product by preparative column chromatography was performed in a nitrogen-filled glove box using degassed silica gel and $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}$ (100:1) as an eluent. Yield $228 \mathrm{mg}(0.57 \mathrm{mmol}, 27 \%)$.

[^1]${ }^{1} \mathrm{H}$ NMR (400.13 MHz, $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 7.49(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.19$ $(\mathrm{d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{dd}, J=10.0 \mathrm{~Hz}, 8.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{dd}, J=10.8 \mathrm{~Hz}, 8.3 \mathrm{~Hz}$, $1 \mathrm{H}), 3.93(\mathrm{t}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.11-1.70(\mathrm{~m}, 12 \mathrm{H}), 1.59(\mathrm{~s}, 3 \mathrm{H}), 1.54-1.31(\mathrm{~m}, 10 \mathrm{H})$, 1.02-0.92 (m, 2H), 0.84-0.78 (m, 1H); ${ }^{13} \mathrm{C}$ NMR $\left(100.67 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 169.6\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=\right.$ $2.9 \mathrm{~Hz}), 143.9,128.6(+, 2 C), 127.44(+), 127.40(+), 127.3(+), 74.6(-), 70.5(+), 35.1$ $\left(\mathrm{d},{ }^{1} J_{\mathrm{CP}}=13.9 \mathrm{~Hz},+\right), 34.7\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=11.7 \mathrm{~Hz},+\right), 31.2\left(\mathrm{~d}, J_{\mathrm{CP}}=16.1 \mathrm{~Hz},-\right), 30.9\left(\mathrm{~d}, J_{\mathrm{CP}}=\right.$ $17.6 \mathrm{~Hz},-), 29.6\left(\mathrm{~d}, J_{\mathrm{CP}}=8.9 \mathrm{~Hz},-\right), 29.5\left(\mathrm{~d}, J_{\mathrm{CP}}=6.6 \mathrm{~Hz},-\right), 27.9-27.6(\mathrm{~m},-, 5 \mathrm{C}), 27.0$ $\left(\mathrm{d}, J_{\mathrm{CP}}=2.9 \mathrm{~Hz},-\right), 23.0(+), 22.2\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=22.0 \mathrm{~Hz},+\right), 20.0\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=7.3 \mathrm{~Hz}\right), 18.6(\mathrm{~d}$, $\left.{ }^{2} J_{\mathrm{CP}}=7.3 \mathrm{~Hz},-\right),{ }^{31} \mathrm{P}$ NMR $\left(161.98 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta-4.02 ; \alpha_{\mathrm{D}}{ }^{25}-116.7^{\circ}\left(\mathrm{c} 1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; HRMS (TOF ES) Calculated for $\mathrm{C}_{25} \mathrm{H}_{37} \mathrm{NOP}(\mathrm{M}+\mathrm{H})$ 398.2613, Found 398.2604 (2.3 ppm).

(4S)-2-[(1S,2S)-2-(Diphenylphosphino)-1-methylcyclopropyl]-4-phenyl-4,5-dihydro-1,3oxazole (L6): was prepared in a similar manner from $666 \mathrm{mg}(2.38 \mathrm{mmol})$ of ($4 S$)-2-[(1S,2S)-2-bromo-1-methylcyclopropyl]-4-phenyl-4,5-di-hydro-1,3-oxazole (24). Purification of the final product by preparative column chromatography was performed in a nitrogen-filled glove box using degassed silica gel and $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}$ ($40: 1$) as an eluent. Yield 354 mg ($0.92 \mathrm{mmol}, 39 \%$).
${ }^{1} \mathrm{H}$ NMR (400.13 MHz, $\mathrm{C}_{6} \mathrm{D}_{6}$) δ 7.73-7.64 (m, 4H), 7.44-7.42 (m, 2H), 7.31-7.15 (m, 9 H), 5.07 (dd, $J=10.1 \mathrm{~Hz}, 8.3 \mathrm{~Hz}, 1 \mathrm{H}$), $4.27(\mathrm{dd}, J=10.1 \mathrm{~Hz}, 8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.85$ (ps.-t, $J=8.3 \mathrm{~Hz}, 8.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.98\left(\mathrm{ddd},{ }^{2} J_{\mathrm{PH}}=12.9 \mathrm{~Hz}, J=6.8 \mathrm{~Hz}, 4.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.58(\mathrm{~d}$, $\left.{ }^{4} J_{\mathrm{PH}}=1.5 \mathrm{~Hz}, 3 \mathrm{H}\right), 1.46\left(\mathrm{ddd},{ }^{3} J_{\mathrm{PH}}=6.1 \mathrm{~Hz}, J=9.1 \mathrm{~Hz}, 6.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 0.93\left(\mathrm{ddd},{ }^{3} J_{\mathrm{PH}}=\right.$ $7.3 \mathrm{~Hz}, J=9.1 \mathrm{~Hz}, 4.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100.67 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 169.1\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=\right.$ $3.7 \mathrm{~Hz}), 143.5,141.0\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=11.7 \mathrm{~Hz}\right), 140.1\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=12.4 \mathrm{~Hz}\right), 133.6\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=\right.$ $19.8 \mathrm{~Hz},+, 2 \mathrm{C}), 132.2\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=17.6 \mathrm{~Hz},+, 2 \mathrm{C}\right), 128.8\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=8.8 \mathrm{~Hz},+, 2 \mathrm{C}\right), 128.7$ $\left(\mathrm{d},{ }^{3} J_{\mathrm{CP}}=10.3 \mathrm{~Hz},+2 \mathrm{C}\right), 128.7(+), 128.6(+, 2 \mathrm{C}), 128.1(+), 127.4(+, 2 \mathrm{C}), 127.3(+)$, $74.7(-), 70.4(+), 26.8\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=11.7 \mathrm{~Hz},+\right), 22.9\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=1.5 \mathrm{~Hz},+\right), 22.4\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=\right.$ $7.3 \mathrm{~Hz}), 18.9\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=11.0 \mathrm{~Hz},-\right) ;{ }^{31} \mathrm{P}$ NMR ($161.98 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta-9.03 ; \alpha_{\mathrm{D}}{ }^{25}-178.7^{0}$ (c $1.25, \mathrm{CH}_{2} \mathrm{Cl}_{2}$); HRMS (TOF ES) calculated for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{NOP}(\mathrm{M}+\mathrm{H}) 386.1674$, found 386.1680 (1.6 ppm).

[^0]: (1) Rubina, M.; Sherrill, W. M.; Rubin, M. Organometallics 2008, 27, 6393-6395.

[^1]: (2) Since the material is moderately sensitive to air in solution, the work up should be performed within $10-15 \mathrm{~min}$ to avoid substantial oxidation.

