Supporting Information

for

Influence of perylenediimide-pyrene supramolecular interactions on the stability of DNA-based hybrids

Christian B. Winiger, Simon M. Langenegger, Oleg Khorev and Robert Häner*

Address: Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland

*Corresponding author

E-mail: Robert Häner - robert.haener@dcb.unibe.ch

Detailed experimental procedures and supplementary spectroscopic data

Table of Contents

1. General procedures	S 2
2. HPLC purification	S 3
3. Mass spectrometry of oligomers 1–7	S 7
4. UV-vis absorption spectra of oligomers 1–6	S 8
5. UV-vis absorption spectra of hybrids 1*2-1*6	S 8
6. UV-vis melting curves of the single strands and hybrids	S 9
7. UV–vis melting curves of hybrid 1 * 7 with non-complementary DNA sequences	S12
8. References	S12

1. General procedures

All reagents and solvents were purchased from commercial suppliers and used without further purification. Water was taken from a MilliQ system. UV-vis spectra were measured on a Cary 100 Bio spectrophotometer. Fluorescence and excitation spectra were measured on a Cary Eclipse spectrofluorimeter. Mass-spectrometric data of the oligomers were obtained on Thermo Fisher LTQ Orbitrap XL using Nano Electrospray Ionization (NSI) in water/acetonitrile/triethylamine solution. The phosphoramidite building blocks perylenediimide (E) and 1,8-dialkynylpyrene (Y) were synthesized according to published procedures [1,2]. The oligomers 1–7 were prepared on an Applied Biosystems 394 DNA/RNA synthesizer. A standard cyanoethyl phosphoramidite coupling protocol was used beginning with nucleoside-loaded controlled pore glass (CPG) and Universal 3-CPG supports from Glen Research. Commercially available natural nucleoside phosphoramidites were dissolved in CH₃CN to yield 0.1 M solutions. The 1,8-dialkynylpyrene phosphoramidite was dissolved in 1,2-dichloroethane (0.1 M) and the perylenediimide phosphoramidite in dichloromethane (0.08 M). For the activation of the perylenediimide phosphoramidite a solution of 5-(ethylthio)-1H-tetrazole (ETT) in THF (0.3 M) was used. The CPG-bound oligonucleotides were cleaved and deprotected by treatment with 28–30% NH₄OH at 55 °C for 16 h. The supernatant was collected and the residue was washed three times with 1 mL EtOH/H₂O 1:1. Oligonucleotides synthesized on the Universial 3-CPG were cleaved using an adapted version (conc. aq. ammonia/methanol 1:2 v/v) of the provided cleavage and deprotection protocol (GlenResearch). After lyophilisation, the crude oligonucleotides were purified by reversed phase HPLC (Merck LiChroCART 250-4; LiChrospher 100, RP-18, 5 µm). A gradient starting with 0% up to 100% CH₃CN in 0.1 M aqueous triethylammonium acetate was set at a flow rate of 1.0 mL/min. The conditions for the HPLC purification are specified in the section 2 (see below). The purified oligonucleotides were dissolved in 1 mL H₂O. The concentration of the oligomers was determined using the pyrene band $\varepsilon_{370 \text{ nm}} = 36000 \text{ M}^{-1} \text{cm}^{-1}$ and the PDI band $\varepsilon_{545 \text{ nm}} =$ $23500 \text{ M}^{-1} \text{ cm}^{-1}$.

The PAGE experiments were performed using a 20% polyacrylamide/Bis solution (19:1, 5% C), prepared from a 40% stock solution (SERVA), and a 10% loading gel. The gel was run for 1 h 40 min at 4 °C, 170 V, 6 mA, 2 W. Around 150 pmol of oligomer was loaded in 10 mM sodium phosphate buffer and 100 mM NaCl. The samples were visualized using a Stains-all solution.

The graphical illustrations were prepared as follows: The electrostatic potential was visualized by ViewerLite 5.0 after geometry optimization (HyperChem 8.0 MM+). The schematic representations of the hybrids were obtained using HyperChem 8.0.

2. HPLC purification

The analytical runs were performed with the following time program.

Time (min)	% acetonitrile	
0.01	0	
1.0	0	
2.0	0	
22.0	70	
23.0	100	
32.0	100	
33.0	0	
37.0	0	

Table S1: Time program used for analytical runs for the oligomers.

 Table S2: Elution times and % acetonitrile for the oligomers purified.

Oligomer	Elution time (min)	% acetonitrile
1	20.9	66.6
2	21.1	67
3	17.0	53.75
4	15.0	47.41
5	14.62	45.84
6	15.3	48.3
7	15.4	48.49

Figure S1: HPLC trace of oligomer 1 eluting at 20.9 min at 66.6% acetonitrile.

Figure S2: HPLC trace of oligomer 2 eluting at 21.1 min at 67% acetonitrile.

Figure S3: HPLC trace of oligomer 3 eluting at 17.0 min at 53.75% acetonitrile.

Figure S4: HPLC trace of oligomer 4 eluting at 15.0 min at 47.41% acetonitrile.

Figure S5: HPLC trace of oligomer 5 eluting at 14.62 min at 45.84% acetonitrile.

Figure S6: HPLC trace of oligomer 6 eluting at 15.3 min at 48.3% acetonitrile.

Figure S7: HPLC trace of oligomer 7 eluting at 15.4 min at 48.49% acetonitrile.

Oligomer	Sequence	Calculated	Found
1	5' GCG TTA YYY Y	3407.6	3405.68
2	5' YYY YTA ACG C	3376.6	3374.68
3	5' YEY YTA ACG C	3544.6	3545.0
4	5' EYE Y TA ACG C	3712.6	3714.0
5	5' EEE Y TA ACG C	3880.7	3880.7
6	5' EEE E TAACG C	4048.7	4050.0
7	5' GCG TTA EEE E	4079.7	4080.0

3. Mass spectrometry of oligomers 1–7

Figure S8: The samples were measured at 2.5 μ M single strand oligomer in 10 mM sodium phosphate buffer, pH 7.2 and 100 mM NaCl at 20 °C.

5. UV-vis absorption spectra of hybrids 1*2-1*6

Figure S9: UV–vis absorption spectra of hybrids **1*2–1*6**. Conc. 2.5 μM each single strand in 10 mM sodium phosphate buffer, pH 7.2 and 100 mM NaCl at 20 °C.

6. UV-vis melting curves of the single strands and hybrids

Melting temperature experiments were carried out on a Varian-Cary-100 Bio spectrophotometer. A Cary probe temperature controller and Varian WinUV software were used. Samples were measured at a concentration of 2.5 μ M (each single strand) in 10 mM sodium phosphate, pH 7.2 and 100 mM NaCl. The $T_{\rm m}$ was recorded in a cooling (ramp 1) – heating (ramp 2) – cooling (ramp 3) mode using 0.3 °C/min, monitoring at 260 nm unless otherwise stated. Calculation of the $T_{\rm m}$ was performed by fitting the melting curve with a polynomial fit (m = 9) and taking the first derivative. The 2nd ramp is evaluated.

Figure S10: Temperature-dependent absorbance of the oligomer single strands1–7.

Figure S11: Temperature-dependent absorbance of the oligomer hybrids 1*2–1*6 and controls 7*2 and 7*6.

7. UV-vis melting curves of hybrid 1*7 with non-complementary DNA sequences

The temperature-dependent absorbance of the two oligomers with a non-complementary DNA sequence does not produce a sigmoidal melting curve and the hyperchromicity is rather low, indicating that no duplex is formed.

Figure S12: Temperature-dependent absorbance of the oligomer hybrid **1*7**. The $T_{\rm m}$ was recorded in a cooling (ramp 1) – heating (ramp 2) – cooling (ramp 3) mode using 0.3 °C/min, monitoring at 260 nm.

8. References

[1] H. Bittermann, D. Siegemund, V. L. Malinovskii, R. Häner, *J.Am.Chem.Soc.* **2008**, *130*, 15285–15287.

[2] N. Rahe, C. Rinn, T. Carell, Chem. Commun. 2003, 2120-2121.