Supporting information

for

Synthesis of isoprenoid bisphosphonate ethers through C–P bond formations: Potential inhibitors of geranylgeranyl diphosphate synthase

Xiang Zhou¹, Jacqueline E. Reilly², Kathleen A. Loerch¹, Raymond J. Hohl^{2,3}, and David F. Wiemer*^{1,2,§}

Address: ¹Department of Chemistry, University of Iowa, Iowa City, Iowa 52242-1294, USA, ²Department of Pharmacology, University of Iowa, Iowa City, Iowa 52242-1294, USA and ³Department of Internal Medicine, University of Iowa, Iowa City, Iowa 52242-1294, USA

Email: David F. Wiemer - <u>david-wiemer@uiowa.edu</u>

*Corresponding author

Experimental procedures, characterization data, and ¹H and ¹³C NMR spectra are provided for all new compounds

Supplemental Table of Contents

General experimental procedures	S 4
Representative procedure for monophosphonate ether formation (8)	S 4
Bisphosphonate ether 9	S5
Representative procedure for bisphosphonate ether alkylation (10)	S5
Bisphosphonate salt 11	S 6
Bisphosphonate salt 6	S 6
Monophosphonate ether 12	S 6
Representative procedure for monophosphonate ether phosphonylation (13)	S 7
Bisphosphonate salt 14	S 7
Bisphosphonate ester 15	S 8
Bisphosphonate salt 16	S 8
Bisphosphonate ester 17	S 8
Bisphosphonate salt 18	S 9
Bisphosphonate ester 19	S 9
Representative procedure for hydrolysis of bisphosphonate esters (20)	S 9
Synthesis of monophosphonate ether 21	S10
Synthesis of bisphosphonate ether 22	S10
Synthesis of tetraethyl bisphosphonate ether 23	S11
Synthesis of bisphosphonate salt 24	S11
Procedure for the enzyme assays	S12
References	S12
¹ H NMR for compound 8 (300 MHz)	S13
¹³ C NMR for compound 8 (75 MHz)	S14
¹ H NMR for compound 9 (300 MHz)	S15
¹³ C NMR for compound 9 (75 MHz)	S16
¹ H NMR for compound 10 (300 MHz)	S17
¹³ C NMR for compound 10 (75 MHz)	S18
¹ H NMR for compound 11 (300 MHz)	S19
¹³ C NMR for compound 11 (75 MHz)	S20
¹ H NMR for compound 6 (300 MHz)	S21
13 C NMR for compound 6 (125 MHz)	S22
¹ H NMR for compound 12 (300 MHz)	S23
¹³ C NMR for compound 12 (75 MHz)	S24
¹ H NMR for compound 13 (300 MHz)	S25
¹³ C NMR for compound 13 (75 MHz)	S26
¹ H NMR for compound 14 (300 MHz)	S27
13 C NMR for compound 14 (100 MHz)	S28
¹ H NMR for compound 15 (400 MHz)	S29
13 C NMR for compound 15 (100 MHz)	S30
¹ H NMR for compound 16 (500 MHz)	S31
13 C NMR for compound 16 (125 MHz)	S32
¹ H NMR for compound 17 (500 MHz)	S33
13 C NMR for compound 17 (125 MHz)	S34
¹ H NMR for compound 18 (500 MHz)	S35
· · · · · · · · · · · · · · · · · · ·	~ ~ ~ ~

¹³ C NMR for compound 18 (125 MHz)	S 36
¹ H NMR for compound 19 (300 MHz)	S37
¹³ C NMR for compound 19 (75 MHz)	S38
¹ H NMR for compound 20 (500 MHz)	S39
13 C NMR for compound 20 (125 MHz)	S40
¹ H NMR for compound 21 (500 MHz)	S41
13 C NMR for compound 21 (125 MHz)	S42
¹ H NMR for compound 22 (400 MHz)	S43
13 C NMR for compound 22 (100 MHz)	S44
¹ H NMR for compound 23 (400 MHz)	S45
13 C NMR for compound 23 (100 MHz)	S46
¹ H NMR for compound 24 (500 MHz)	S47
¹³ C NMR for compound 24 (125 MHz)	S48

General experimental procedures. Tetrahydrofuran was freshly distilled from sodium/benzophenone, while methylene chloride was distilled from calcium hydride prior to use. All other reagents and solvents were purchased from commercial sources and used without further purification. All reactions in nonaqueous solvents were conducted in flame-dried glassware under a positive pressure of argon and with magnetic stirring. The NMR spectra were obtained at 300, 400, or 500 MHz for ¹H, and 75, 100, or 125 MHz for ¹³C, with internal standards of (CH₃)₄Si (¹H, 0.00) or CDCl₃ (¹H, 7.27; ¹³C, 77.2 ppm) for non-aqueous samples or D₂O (¹H, 4.80) and 1,4-dioxane (¹³C, 66.7 ppm) for aqueous samples. The ³¹P chemical shifts were reported in ppm relative to 85% H₃PO₄ (external standard). High resolution mass spectra were obtained at the University of Iowa Mass Spectrometry Facility. Silica gel (60 Å, 0.040–0.063 mm) was used for flash chromatography.

Monophosphonate ether 8. Diethyl hydroxymethylphosphonate (**7**, 1 mL, 6.8 mmol) was added dropwise to a solution of NaH (60% dispersion in mineral oil, 300 mg, 7.5 mmol) in THF (7 mL) in an ice bath, followed by addition of 15-crown-5 (0.1 mL, 1 M in THF). After 30 minutes, geranyl bromide (1.62 g, 7.5 mmol) was added to the reaction mixture and it was allowed to react at room temperature overnight. Once the reaction was complete based on analysis of the ³¹P NMR spectrum, saturated NH₄Cl was added. The resulting residue was extracted with Et₂O, the organic extracts were combined, dried (Na₂SO₄), concentrated in vacuo, and purified by column chromatography (5% EtOH in hexane) to afford the desired product **8** as a colorless oil (1.27 g, 62%): ¹H NMR (300 MHz, CDCl₃) δ 5.31 (t, *J* = 6.5 Hz, 1H), 5.08 (t, *J* = 4.9 Hz, 1H), 4.25–4.09 (m, 6H), 3.74 (d, *J*_{HP} = 8.6 Hz, 2H), 2.17–1.98 (m, 4H), 1.68 (s, 6H) 1.60

S4

(s, 3H), 1.35 (t, J = 7.3 Hz, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 141.7, 131.5, 123.6,

119.6, 69.0 (d, $J_{CP} = 12.7$ Hz), 62.9 (d, $J_{CP} = 166.0$ Hz), 62.1 (d, $J_{CP} = 6.1$ Hz, 2C), 39.4, 26.0, 25.5, 17.4, 16.3, 16.2 (2C); ³¹P NMR (121 MHz, CDCl₃) δ 22.0.

Bisphosphonate ether 9. Prepared according to the general procedure given for compound **13**: yield, 44%; colorless oil; ¹H NMR (300 MHz, CDCl₃) δ 5.26 (t, *J* = 7.0 Hz, 1H), 5.01 (t, *J* = 6.7 Hz, 1H), 4.27 (t, *J* = 7.5 Hz, 2H), 4.23–4.10 (m, 8H), 3.95 (t, *J_{HP}* = 17.6 Hz, 1H), 2.09–1.93 (m, 4H), 1.63 (s, 3H), 1.63 (s, 3H), 1.60 (s, 3H), 1.28 (t, *J* = 7.3 Hz, 12H); ¹³C NMR (75 MHz, CDCl₃) δ 142.1, 131.0, 123.2, 119.0, 70.1 (t, *J_{CP}* = 157.9 Hz), 69.2 (t, *J_{CP}* =5.1 Hz), 62.7 (t, *J_{CP}* = 4.1 Hz, 2C), 62.5 (t, *J_{CP}* = 3.2 Hz, 2C), 39.1, 25.7, 25.0, 17.0, 15.9 (t, *J_{CP}* = 2.4 Hz, 2C), 15.8 (t, *J_{CP}* = 2.7 Hz, 2C), 15.8; ³¹P NMR (121 MHz, CDCl₃) δ 16.1; HRMS (ES⁺, *m/z*) calcd for (M+Na)⁺ C₁₉H₃₈O₇P₂Na: 463.1991; found: 463.1972.

Bisphosphonate ether 10. Compound **9** (325 mg, 0.74 mmol) was added into a solution of NaH (60% dispersion in mineral oil, 50 mg, 1.25 mmol) in THF (3 mL), 15-crown-5 (0.1 mL, 1M in THF) was added, and the reaction mixture was allowed to stir for 30 minutes. Geranyl bromide (300 mg, 1.38 mmol) was then added and the reaction was allowed to stir at room temperature overnight. Reaction progress was monitored by analysis of the ³¹P NMR spectrum. Once it was complete, water was added to quench the reaction. The resulting solution was then extracted with EtOAc and washed with brine. The organic layer was dried (Na₂SO₄) and concentrated in vacuo, and the residue was purified by column chromatography (5% EtOH in hexane) to afford compound **10** as a colorless oil (220 mg, 51%): ¹H NMR (300 MHz, CDCl₃) δ 5.50 (t, *J* = 6.7 Hz, 1H), 5.34 (t, *J* = 5.6 Hz, 1H), 5.16–5.05 (m, 2H), 4.37 (d, *J* = 6.8 Hz, 2H), 4.30–4.17 (m, 8H), 2.98–

2.82 (m, 2H), 2.16–1.98 (m, 8H), 1.68 (s, 12H), 1.61 (s, 6H), 1.35 (t, J = 6.9 Hz, 6H), 1.35 (t, J = 6.9 Hz, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 139.6, 136.7, 131.4, 131.2, 124.3, 123.9, 120.8, 117.8 (t, $J_{CP} = 7.9$ Hz), 80.7 (t, $J_{CP} = 151.0$ Hz), 63.2 (t, $J_{CP} = 3.6$ Hz 3C), 62.9 (t, $J_{CP} = 3.7$ Hz, 2C), 40.0, 39.5, 30.0, 26.6, 26.3, 25.6 (2C), 17.6 (2C), 16.5 (t, $J_{CP} =$ 3.0 Hz, 2C), 16.4 (t, $J_{CP} = 2.5$ Hz, 2C), 16.4, 16.3; ³¹P NMR (121 MHz, CDCl₃) δ 19.0; HRMS (ES⁺, m/z) calcd for (M+Na)⁺ C₂₉H₅₄O₇NaP₂: 599.3243; found: 599.3244. **Bisphosphonate salt 11**. Prepared according to the general procedure given for compound **20**: yield, 17%; white solid; ¹H NMR (300 MHz, D₂O) δ 5.49 (t, J = 6.6 Hz, 1H), 5.29–5.21 (m, 1H), 4.32 (d, J = 7.1 Hz, 2H), 3.67 (t, $J_{HP} = 15.2$ Hz, 1H), 2.25–2.08 (m, 4H), 1.74 (s, 3H), 1.72 (s, 3H), 1.66 (s, 3H); ¹³C NMR (75 MHz, D₂O) δ 142.1, 133.8, 124.3, 120.8, 75.7 (t, $J_{CP} = 130.3$ Hz), 69.8, 39.0, 25.8, 24.9, 17.0, 15.8; ³¹P NMR (121 MHz, D₂O) δ 14.1; HRMS (ES⁺, m/z) calcd for (M-H)⁺ C₁₁H₂₁O₇P₂: 327.0763; found: 327.0748.

Bisphosphonate salt 6. Prepared according to the general procedure given for compound **20**: yield, 20%; white solid; ¹H NMR (500 MHz, D₂O) δ 5.65 (t, J = 6.5 Hz, 1H), 5.39 (t, J = 6.2 Hz, 1H), 5.27–5.18 (m, 2H), 4.32 (d, J = 6.9 Hz, 2H), 2.88 (td, $J_{HP} = 14.1$ Hz, J = 6.5 Hz, 2H), 2.19–2.12 (m, 4H), 2.11–2.05 (m, 4H), 1.70 (s, 6H), 1.69 (s, 6H), 1.65 (s, 3H), 1.64 (s, 3H); ¹³C NMR (125 MHz, D₂O) δ 141.2, 137.1, 133.7, 133.5, 125.2, 124.7, 121.3, 119.7 (t, $J_{CP} = 7.8$ Hz), 79.5 (t, $J_{CP} = 131.8$ Hz), 62.7 (t, $J_{CP} = 6.5$ Hz), 39.4, 38.9, 28.7, 26.1, 25.7, 25.0, 18.5, 17.1, 17.1, 15.9, 15.6; ³¹P NMR (201 MHz, D₂O) 17.5; HRMS (ES⁻, *m*/*z*) calcd for (M-H)⁻ C₂₁H₃₇O₇P₂: 463.2015; found: 463.2021. **Monophosphonate ether 12**. Yield, 77%; colorless oil; ¹H NMR (300 MHz, CDCl₃) δ 5.36–5.28 (m, 1H), 4.23–4.11 (m, 4H), 4.10 (d, J = 7.1 Hz, 2H), 3.74 (d, $J_{HP} = 8.4$ Hz,

2H), 1.76 (s, 3H), 1.70 (s, 3H), 1.35 (t, J = 7.0 Hz, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 137.8, 119.6, 68.6 (d, $J_{CP} = 12.0$ Hz), 62.7 (d, $J_{CP} = 166.8$ Hz), 61.7 (d, $J_{CP} = 6.1$ Hz, 2C), 25.2, 17.4, 15.9 (d, $J_{CP} = 5.1$ Hz, 2C); ³¹P NMR (121 MHz, CDCl₃) δ 21.7.

Bisphosphonate ether 13 [1]. A solution of *n*-butyllithium in hexanes (8.8 mL, 21.2 mmol) was added to a solution of diisopropylamine (2.75 mL, 19.5 mmol) in THF (16 mL) at -78 °C and the reaction was allowed to stir for 30 minutes. Ether 12 (2 g, 8.5 mmol) was then added to the reaction mixture dropwise (over 90 minutes), allowed to react for one additional hour, and then followed by the careful addition of diethyl chlorophosphate (2.9 mL, 19.5 mmol). After it was allowed to warm to room temperature slowly and to stir overnight, the reaction was quenched by addition of water. The aqueous layer was extracted with EtOAc, and the combined organic layers were dried (Na₂SO₄) and concentrated in vacuo. The resulting residue was purified by column chromatography (5% EtOH in hexane) to afford the desired product 13 as a colorless oil (1.39 g, 44%): ¹H NMR (300 MHz, CDCl₃) δ 5.34 (t, J = 7.2 Hz, 1H), 4.36–4.08 (m, 8H), 4.32 (d, J = 7.1 Hz, 2H), 4.03 (t, $J_{HP} = 17.5$ Hz, 1H), 1.77 (s, 3H), 1.72 (s, 3H), 1.37 (t, J= 7.3 Hz, 12H); ¹³C NMR (75 MHz, CDCl₃) δ 139.1, 119.3, 70.1 (t, J_{CP} = 156.9 Hz), 69.4 (t, J_{CP} = 5.2 Hz), 62.9 (t, J_{CP} = 2.6 Hz, 2C), 62.7 (t, J_{CP} = 3.2 Hz, 2C), 25.4, 17.6, 16.1 (t, $J_{CP} = 2.9$ Hz, 2C), 16.0 (t, $J_{CP} = 3.6$ Hz, 2C); ³¹P NMR (121 MHz, CDCl₃) δ 16.2; HRMS (ES⁺, m/z) calcd for (M+Na)⁺ C₁₄H₃₀O₇NaP₂: 395.1365; found: 395.1395. **Bisphosphonate salt 14**. Yield, 73%; white solid; ¹H NMR (300 MHz, D_2O) δ 5.38 (t, J = 6.7 Hz, 1H), 4.25 (d, J = 7.2 Hz, 2H), 3.67 (t, J_{HP} = 16.2 Hz, 1H), 1.74 (s, 3H), 1.68 (s, 3H); ¹³C NMR (100 MHz, D₂O) δ 140.2, 119.9, 74.1 (t, J_{CP} = 140.6 Hz), 69.8, 25.1, 17.5; ³¹P NMR (121 MHz, D₂O) δ 13.9; HRMS (ES⁻, *m*/*z*) calcd for (M-H)⁻C₆H₁₃O₇P₂: 259.0137; found: 259.0145.

Bisphosphonate ester 15. Yield, 37%; colorless oil; ¹H NMR (300 MHz, CDCl₃) δ 5.48 (t, *J* = 6.2 Hz, 1H), 5.31 (t, *J* = 6.7 Hz, 1H), 5.16–5.04 (m, 1H), 4.33 (d, *J* = 6.8 Hz, 2H), 4.30–4.10 (m, 8H), 2.89 (td, *J_{HP}* = 14.5 Hz, *J* = 6.4 Hz, 2H), 2.15–1.96 (m, 4H), 1.72 (s, 3H), 1.68 (s, 3H), 1.67 (s, 3H), 1.65 (s, 3H), 1.60 (s, 3H), 1.34 (t, *J* = 7.0 Hz, 6H), 1.34 (t, *J* = 6.8 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 136.8, 136.5, 131.4, 124.4, 121.2, 117.9 (t, *J_{CP}* = 8.1 Hz), 80.8 (t, *J_{CP}* = 150.6 Hz), 63.4 (t, *J_{CP}* =3.2 Hz), 63.4 (t, *J_{CP}* =4.5 Hz, 2C), 63.0 (t, *J_{CP}* = 3.6 Hz, 2C), 40.1, 30.2, 26.7, 25.8, 25.8, 18.2, 17.7, 16.6 (t, *J_{CP}* = 2.4 Hz, 2C), 16.6 (t, *J_{CP}* = 3.0 Hz, 2C), 16.5; ³¹P NMR (121 MHz, CDCl₃) δ 19.1; HRMS (ES⁺, *m*/*z*) calcd for (M+H)⁺ C₂₄H₄₇O₇P₂: 509.2797; found: 509.2803.

Bisphosphonate salt 16. Yield, 33%; white solid; ¹H NMR (500 MHz, D₂O) δ 5.65 (t, *J* = 6.3 Hz, 1H), 5.39 (t, *J* = 6.6 Hz, 1H), 5.25 (t, *J* = 6.0 Hz, 1H), 4.31 (d, *J* = 7.0 Hz, 2H), 2.87 (td, *J*_{HP} = 13.3 Hz, *J* = 6.4 Hz, 2H), 2.20–2.12 (m, 2H), 2.11-2.05 (m, 2H), 1.75 (s, 3H), 1.70 (s, 6H), 1.69 (s, 3H), 1.65 (s, 3H); ¹³C NMR (125 MHz, D₂O) δ 138.7, 137.1, 133.6, 124.7, 121.1, 119.7 (t, *J*_{CP} = 7.8 Hz), 79.5 (t, *J*_{CP} = 131.7 Hz), 62.7 (t, *J*_{CP} = 6.0 Hz), 39.3, 28.9, 26.0, 25.0, 24.9, 17.5, 17.1, 15.5; ³¹P NMR (201 MHz, D₂O) δ 17.5; HRMS (ES⁻, *m*/*z*) calcd for (M-H)⁻ C₁₆H₂₉O₇P₂: 395.1389; found: 395.1400.

Bisphosphonate ester 17. Yield, 29%; colorless oil; ¹H NMR (500 MHz, CDCl₃) δ 5.45 (t, *J* = 6.5 Hz, 1H), 5.31 (tt, *J* = 6.9 HZ, *J*_{HP} = 1.4 Hz, 1H), 4.33 (d, *J* = 6.7 Hz, 2H), 4.28–4.18 (m, 8H), 2.87 (td, *J*_{HP} = 14.7 Hz, *J* = 6.8 Hz, 2H), 1.73 (s, 6H), 1.67 (s, 3H), 1.65 (s, 3H), 1.34 (t, *J* = 7.6 Hz, 6H), 1.34 (t, *J* = 7.2 Hz, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 136.6, 133.3, 121.2, 118.1 (t, *J*_{CP} = 7.8 Hz), 80.8 (t, *J*_{CP} = 150.5 Hz), 63.5 (t, *J*_{CP} = 5.2

Hz), 63.3 (t, $J_{CP} = 3.2$ Hz, 2C), 63.1 (t, $J_{CP} = 3.7$ Hz, 2C), 30.4, 26.1, 25.8, 18.2, 18.1, 16.6 (t, $J_{CP} = 2.6$ Hz, 4C); ³¹P NMR (201 MHz, CDCl₃) δ 19.0; HRMS (ES⁺, *m/z*) calcd for (M+Na)⁺ C₁₉H₃₈O₇NaP₂: 463.1991; found: 463.1989.

Bisphosphonate salt 18. Yield, 87%; white solid; ¹H NMR (500 MHz, D₂0) δ 5.70 (s, 1H), 5.39 (t, *J* = 5.9 HZ, 1H), 4.30 (d, *J* = 6.7 Hz, 2H), 2.82 (td, *J_{HP}* = 12.4 Hz, *J* = 5.7 Hz, 2H), 1.75 (s, 3H) 1.74 (s, 3H), 1.69 (s, 3H), 1.68 (s, 3H); ¹³C NMR (125 MHz, D₂O) δ 137.9, 132.7, 121.7, 121.5 (t, *J_{CP}* = 7.7 Hz), 80.4 (t, *J_{CP}* = 127.1 Hz), 62.4 (t, *J_{CP}* = 5.5 Hz), 30.3, 25.3, 25.1, 17.5, 17.4; ³¹P NMR (201 MHz, D₂O) δ 17.7; HRMS (ES⁻, *m/z*) calcd for (M-H)⁻ C₁₁H₂₁O₇P₂: 327.0763; found: 327.0780.

Bisphosphonate ester 19. Yield, 30%; colorless oil; ¹H NMR (300 MHz, CDCl₃) δ 5.45 (t, *J* = 6.9 Hz, 1H), 5.33 (t, *J* = 6.5 Hz, 1H), 5.13–5.04 (m, 1H), 4.37 (d, *J* = 6.5 Hz, 2H), 4.30–4.16 (m, 8H), 2.88 (td, *J*_{HP} = 14.2 Hz, *J* = 6.5 Hz, 2H), 2.15–1.97 (m, 4H), 1.73 (s, 3H), 1.68 (s, 3H), 1.66 (s, 6H), 1.61 (s, 3H), 1.35 (t, *J* = 6.9 Hz, 6H), 1.34 (t, *J* = 7.3 Hz, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 139.7, 133.2, 131.6, 124.0, 120.8, 118.0 (t, *J*_{CP} = 7.5 Hz), 80.7 (t, *J*_{CP} = 150.9 Hz), 63.3 (t, *J*_{CP} = 5.9 Hz), 63.3 (t, *J*_{CP} = 3.2 Hz, 2C), 63.0 (t, *J*_{CP} = 3.0 Hz, 2C), 39.5, 30.2, 26.4, 26.0, 25.7, 18.1, 17.7, 16.5 (t, *J*_{CP} = 3.2 Hz, 4C), 16.5; ³¹P NMR (121 MHz, CDCl₃) δ 19.0; HRMS (ES⁺, *m*/*z*) calcd for (M+Na)⁺ C₂₄H₄₆O₇P₂Na: 531.2617; found: 531.2619.

Bisphosphonate salt 20. 2,4,6-Collidine (0.22 mL, 1.67 mmol) was added to an ice cold solution of bisphosphonate **19** (85 mg, 0.17 mmol) in CH_2Cl_2 (5 mL) followed by the addition of excess TMSBr (0.27 mL, 2.00 mmol). The reaction was allowed to warm slowly to rt and allowed to stir overnight. Once the reaction was complete based on analysis of the ³¹P NMR spectrum, the volatile materials were removed in vacuo. The

resulting residue was washed with toluene and concentrated repeatedly to remove any remaining TMSBr. It was treated with NaOH (0.27 mL 5M NaOH, 2 mL H₂O) for 10 minutes and then the water was removed on a lyophilizer to obtain the crude salt. This material was precipitated from water by addition of acetone to obtain the desired product, the salt **20** as a white solid (77 mg, 94%): ¹H NMR (500 MHz, D₂O) δ 5.84 (s, 1H), 5.39 (t, *J* = 6.8 Hz, 1H), 5.22–5.17 (m, 1H), 4.17 (d, *J* = 7.0 Hz, 2H), 2.89–2.79 (m, 2H), 2.16– 2.03 (m, 4H), 1.72 (s, 3H), 1.69 (s, 3H), 1.68 (s, 3H), 1.65 (s, 3H), 1.62 (s, 3H); ¹³C NMR (125 MHz, D₂O) δ 140.6, 133.7, 131.4, 124.2, 123.1 (t, *J_{CP}* = 6.4 Hz), 122.4, 82.4 (t, *J_{CP}* = 134.7 Hz), 61.1 (t, *J_{CP}* = 6.2 Hz), 39.1, 29.7, 25.9, 25.4, 25.0, 17.4, 17.1, 15.6; ³¹P NMR (201 MHz, D₂O) δ 17.8; HRMS (ES⁻, *m/z*) calcd for (M-H)⁻ C₁₆H₂₉O₇P₂: 395.1389; found: 395.1388.

Monophosphonate ether 21. Yield, 34%; colorless oil; ¹H NMR (500 MHz, CDCl₃) δ 5.10–5.05 (m, 1H), 4.20–4.12 (m, 4H), 3.75 (dd, $J_{HP} = 8.7$ Hz, J = 1.9 Hz, 2H), 3.63–3.57 (m, 2H), 2.05–1.89 (m, 2H), 1.70–1.53 (m, 2H), 1.66 (s, 3H), 1.59 (s, 3H), 1.43–1.28 (m, 2H), 1.34 (t, J = 7.4 Hz, 6H), 1.23–1.12 (m, 1H), 0.90 (d, J = 6.7 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 130.1, 124.0, 71.2 (d, $J_{CP} = 11.5$ Hz), 64.3 (d, $J_{CP} = 165.6$ Hz), 61.4 (d, $J_{CP} = 5.7$ Hz, 2C), 36.4, 35.7, 28.6, 24.9, 24.7, 18.7, 16.8, 15.7 (d, $J_{CP} = 5.4$ Hz, 2C); ³¹P NMR (201 MHz, CDCl₃) δ 21.0; HRMS (ES⁺, m/z) calcd for (M+H)⁺ C₁₅H₃₂O₄P: 307.2038; found: 307.2044.

Bisphosphonate ether 22. Yield, 53%; colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 5.12–5.05 (m, 1H), 4.30–4.20 (m, 8H), 3.91 (t, *J_{HP}* = 17.6 Hz, 1H), 3.85–3.75 (m, 2H), 2.06–1.88 (m, 2H), 1.73–1.49 (m, 2H), 1.67 (s, 3H), 1.60 (s, 3H), 1.47–1.25 (m, 2H), 1.36 (t, *J* = 7.0 Hz, 12H), 1.23–1.12 (m, 1H), 0.91 (d, *J* = 6.7 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 130.5, 124.3, 73.2 (t, J_{CP} = 157.0 Hz), 73.0 (t, J_{CP} =4.6 Hz), 62.9 (t, J_{CP} = 3.1 Hz), 62.8 (t, J_{CP} = 3.3 Hz), 62.7 (t, J_{CP} = 3.5 Hz), 62.7 (t, J_{CP} = 3.2 Hz), 36.7, 36.4, 28.8, 25.2, 25.0, 19.0, 17.2, 16.1 (t, J_{CP} = 3.6 Hz, 2C), 16.0 (t, J_{CP} = 3.1 Hz, 2C); ³¹P NMR (121 MHz, CDCl₃) δ 15.8; HRMS (ES⁺, m/z) calcd for (M+H)⁺ C₁₉H₄₁O₇P₂: 443.2328; found: 443.2325.

Tetraethyl bisphosphonate ether 23. Yield, 45%; colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 5.46 (t, *J* = 6.3 Hz, 1H), 5.15–5.05 (m, 2H), 4.29–4.16 (m, 8H), 3.87–3.78 (m, 2H), 2.79 (td, J_{HP} = 14.8 Hz, *J* = 6.6 Hz, 2H), 2.14–1.90 (m, 6H), 1.76–1.52 (m, 4H), 1.68 (s, 3H), 1.65 (s, 3H), 1.60 (s, 3H), 1.60 (s, 3H), 1.40–1.30 (m, 15H), 1.22–1.12 (m, 1H), 0.89 (d, *J* = 6.5 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 136.8, 131.3, 131.1, 124.9, 124.4, 117.8 (t, J_{CP} = 7.9 Hz), 81.0 (t, J_{CP} = 150.4 Hz), 84.7 (t, J_{CP} = 5.5 Hz), 63.3 (t, J_{CP} = 2.9 Hz), 63.3 (t, J_{CP} = 3.6 Hz), 62.9 (t, J_{CP} = 3.2 Hz), 62.9 (t, J_{CP} = 4.3 Hz), 40.0, 37.4 (2C), 29.9, 29.4, 26.7, 25.7 (2C), 25.5, 19.6, 17.7, 17.6, 16.6 (t, J_{CP} = 3.3 Hz, 2C), 16.4; ³¹P NMR (121 MHz, CDCl₃) δ 19.2; HRMS (ES⁺, *m/z*) calcd for (M+H)⁺ C₂₉H₃₇O₇P₂: 579.3580; found: 579.3573.

Bisphosphonate salt 24. Yield, 17%; white solid; ¹H NMR (500 MHz, D₂0) δ 5.73 (t, *J* = 5.5 Hz, 1H), 5.28–5.22 (m, 2H), 3.85–3.73 (m, 2H), 2.87–2.75 (m, 2H), 2.20–1.95 (m, 6H), 1.71 (s, 3H), 1.70 (s, 3H), 1.67 (s, 3H), 1.65 (s, 3H), 1.64 (s, 3H), 1.61–1.45 (m, 2H), 1.44–1.31 (m, 2H), 1.22–1.12 (m, 1H), 0.89 (d, *J* = 6.4 H, 3H); ¹³C NMR (125 MHz, D₂O) δ 136.0, 133.5, 133.1, 125.5, 124.9, 121.6, 80.0 (t, *J_{CP}* = 126.5 Hz), 64.9, 39.5, 37.3, 36.9, 29.4, 26.2, 25.0 (3C), 24.9, 19.2, 17.1, 17.0, 15.5; ³¹P NMR (201 MHz, D₂O) δ 17.7; HRMS (ES⁻, *m/z*) calcd for (M-H)⁻ C₂₁H₃₉O₇P₂: 465.2171; found: 465.2168.

FDPS and GGDPS enzyme assays. The enzymes FDPS and GGDPS were kindly provided by Dr. James E. Dunford. Both the FDPS and GGPDS assays were implemented with a method modified from Dunford et al. [2]. Enzymes were diluted to $2 \mu g/mL$ (10 mM HEPES, pH 7.5, 500 mM NaCl, 5% glycerol, 1 mM TCEP, and 5 $\mu g/mL$ BSA) and pre incubated with inhibitors in the reaction buffer (50 mM Tris, pH 7.7, 2 mM MgCl₂, 0.5 mM TCEP, and 50 $\mu g/mL$ BSA) for 10 min at room temperature. Both FDPS and GGDPS enzyme assay reactions were initiated by the simultaneous addition of either 10 μ M GPP or 10 μ M FPP and ¹⁴C-IPP and were allowed to proceed at 37 °C for 3 min and 15 min respectively, at which point no more than 20% of the substrate was used. Reactions were terminated by the addition of 200 μ L saturated NaCl and isoprenoids were extracted with 1 mL saturated butanol. Incorporated ¹⁴C was detected by liquid scintillation counting.

References.

(1) Biller, S. A.; Sofia, M. J.; Abt, J. W.; Delange, B.; Dickson, J. K.; Forster, C.; Gordon, E. M.; Harrity, T.; Magnin, D. R.; Marretta, J.; Rich, L. C.; Ciosek, C. P. *ACS Symp. Ser.* **1992**, *497*, 65-80.

(2) Dunford, J. E.; Thompson, K.; Coxon, F. P.; Luckman, S. P.; Hahn, F. M.; Poulter, C. D.; Ebetino, F. H.; Rogers, M. J. *J. Pharmacol. Exp. Ther.* **2001**, *296*, 235-242.

300 MHz ¹H NMR Spectrum of Compound 8.

75 MHz ¹³C NMR Spectrum of Compound 8.

300 MHz ¹H NMR Spectrum of Compound 9.

75 MHz ¹³C NMR Spectrum of Compound 9.

300 MHz ¹H NMR Spectrum of Compound **10**.

75 MHz ¹H NMR Spectrum of Compound **10**.

300 MHz ¹H NMR Spectrum of Compound **11**.

75 MHz ¹H NMR Spectrum of Compound **11**.

300 MHz ¹H NMR Spectrum of Compound **6**.

125 MHz ¹³C NMR Spectrum of Compound **6**.

300 MHz ¹H NMR Spectrum of Compound **12**.

75 MHz ¹³C NMR Spectrum of Compound **12.**

300 MHz ¹H NMR Spectrum of Compound **13**.

75 MHz ¹³C NMR Spectrum of Compound **13**.

300 MHz ¹H NMR Spectrum of Compound 14.

100 MHz ¹³C NMR Spectrum of Compound **14**.

400 MHz ¹H NMR Spectrum of Compound **15**.

100 MHz ¹³C NMR Spectrum of Compound **15**.

500 MHz ¹H NMR Spectrum of Compound **16**.

125 MHz ¹³C NMR Spectrum of Compound **16**.

500 MHz ¹H NMR Spectrum of Compound **17**.

125 MHz ¹³C NMR Spectrum of Compound **17**.

500 MHz ¹H NMR Spectrum of Compound **18**.

125 MHz ¹³C NMR Spectrum of Compound **18**.

300 MHz ¹H NMR Spectrum of Compound **19**.

75 MHz ¹³C NMR Spectrum of Compound **19**.

500 MHz ¹H NMR Spectrum of Compound **20**.

125 MHz ¹³C NMR Spectrum of Compound **20**.

500 MHz ¹H NMR Spectrum of Compound **21**.

125 MHz ¹³C NMR Spectrum of Compound **21**.

400 MHz ¹H NMR Spectrum of Compound **22**.

100 MHz ¹H NMR Spectrum of Compound **22**.

400 MHz ¹H NMR Spectrum of Compound **23**.

100 MHz ¹³C NMR Spectrum of Compound **23**.

500 MHz ¹H NMR Spectrum of Compound **24**.

125 MHz ¹³C NMR Spectrum of Compound **24**.