Supporting Information File 1

for

Synthesis of rigid p-terphenyl-linked carbohydrate mimetics

Maja Kandziora and Hans-Ulrich Reissig*

Address: Freie Universität Berlin, Institut für Chemie und Biochemie, Takustraße 3, D14195 Berlin, Germany

Email: Hans-Ulrich Reissig - hans.reissig@chemie.fu-berlin.de

* Corresponding author

Experimental procedures

Table of contents:

- General information s2
- Additional experimental procedures and analytical data s4
- References s32

General information

Reactions were generally performed under inert atmosphere (argon) in flame-dried flasks. Solvents and reagents were added by syringe. Solvents were dried using standard procedures and were purified with a MB SPS-800-dry solvent system. Triethylamine was distilled from CaH_{2} and stored over KOH under argon atmosphere. Commercial available reagents were used as received without further purification unless otherwise stated. Products were purified by flash chromatography on silica gel (230-400 mesh, Merck or Fluka) or by size exclusion chromatography (Sephadex ${ }^{\text {TM }}$ LH-20, GE Healthcare). Unless otherwise stated, yields refer to analytical pure samples. Hydrogenolyses were performed with hydrogen from Air Liquide (Alphagaz 2). TLCanalyses were performed on silica gel coated aluminium plates purchased from Merck. Products were detected by UV-activity and by using staining reagents (Cer/molybdenum reagent, KMnO_{4} and ninhydrine). NMR spectra were recorded on BRUKER (AV 500, AV 700) and JEOL (ECP 500) instruments. Chemical shifts (δ) are listed in parts per million (ppm) and are reported relative to solvent residual signals: $\mathrm{CDCl}_{3}\left({ }^{1} \mathrm{H}: \delta=7.26 \mathrm{ppm}\right.$, $\left.{ }^{13} \mathrm{C}: \delta=77.16 \mathrm{ppm}\right), \mathrm{CD}_{3} \mathrm{OD}\left({ }^{1} \mathrm{H}: \delta=3.31 \mathrm{ppm},{ }^{13} \mathrm{C}: \delta=49.00 \mathrm{ppm}\right)$ or pyridine- $\mathrm{d}^{5}\left({ }^{1} \mathrm{H}: \delta\right.$ $\left.=8.74 \mathrm{ppm},{ }^{13} \mathrm{C}: \delta=150.35 \mathrm{ppm}\right)$. Integrals are in accordance with assignments; coupling constants (\mathcal{J}) are given in Hz . All ${ }^{13} \mathrm{C}$ NMR spectra are proton-decoupled. Multiplicity is indicated as follows: s (singlet), $\mathrm{sbr}_{\mathrm{br}}$ (broad singlet), d (doublet), t (triplet), q (quartet), dd (doublet of doublet), dt (doublet of triplet), td (triplet of doublet), m (multiplet), m_{c} (centered multiplet). For detailed peak assignments 2D spectra were measured (COSY and HMQC). The given ratios of diastereomers were calculated by comparison of the $2^{\prime}-\mathrm{H}$ peaks. IR spectra were measured with a Jasco spectrometer (FT/IR-4100 with DLATGS Detector). HRMS analyses were performed with Agilent 6210
(ESI-TOF, $10 \mu \mathrm{~L} / \mathrm{min}, 1.0$ bar, 4 kV) and Varian/Agilent Ionspec QFT-7 (ESI-FTICR, 4 $\mu \mathrm{L} / \mathrm{min}, 1.0$ bar, 4 kV) instruments. Elemental analyses were carried out with instruments from PerkinElmer (CHN-Analyzer 2400) and from Elementar (Vario, Vario EL, Vario EL III). Melting points were measured with a Reichert apparatus (Thermovar) and are uncorrected.

Additional experimental procedures and analytical data

The following compounds were prepared analogously to literature procedures: ester 1 [1], TMSE-allene 5 [2], N-benzylhydroxylamine [3], samarium(II) iodide [4] and 1,2-oxazine 10 [5].

(S)-1-[(R)-2-(4'-Bromophenyl)-1',3'-dioxolan-4-yl]ethane-1,2-diol (8)

Under an argon atmosphere, lithium aluminum hydride ($3.21 \mathrm{~g}, 84.6 \mathrm{mmol}$) was suspended in dry THF (525 mL) at $0^{\circ} \mathrm{C}$. Ester $7(21.6 \mathrm{~g}, 65.1 \mathrm{mmol})$, dissolved in dry THF (220 mL) , was dropwise added to the lithium aluminum hydride suspension. After 1 h stirring at rt , the solution was cooled to $0^{\circ} \mathrm{C}$ and slowly quenched with water (30 mL). Then, 20% aq. NaOH solution (22 mL) and water (37 mL) were added and the suspension was stirred for further 4 h at rt . The suspension was filtered through a pad of Celite ${ }^{\circledR}$. The filtrate was extracted with diethyl ether ($3 \times 500 \mathrm{~mL}$) and the combined organic layers were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent was removed in vacuo. The crude product was purified by column chromatography (silica gel, hexanes/EtOAc $1: 3)$ to yield 8 (18.8 g, quant.) as a colorless solid.

The obtained two diastereomers (d.r. 52:48) were not separated.

mp $81-83^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{22}-0.1\left(c 1.00, \mathrm{CH}_{3} \mathrm{OH}\right)$; signals with * refer to the major diastereomer: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.61\left(\mathrm{~s}_{\mathrm{br}}, 2 \mathrm{H}, \mathrm{OH}, \mathrm{OH}^{*}\right), 3.00,3.06\left(2 \mathrm{~s}_{\mathrm{br}}, 2 \mathrm{H}, \mathrm{OH}, \mathrm{OH}^{*}\right)$, 3.62-3.67 (m, 2 H, 1-H, 1-H*), 3.74-3.86 (m, 4 H, 1-H, 1-H*, 2-H, 2-H*), 4.00 (dd, J = 6.6,
8.3 Hz, $\left.1 \mathrm{H}, 4^{\prime}-\mathrm{H}^{*}\right), 4.07-4.18\left(\mathrm{~m}, 4 \mathrm{H}, 5^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}^{*}\right), 4.20\left(\mathrm{dd}, J=6.4,8.4 \mathrm{~Hz}, 1 \mathrm{H}, 4^{\prime}-\mathrm{H}\right)$, 5.72 (s, $\left.1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right), 5.88\left(\mathrm{~s}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}^{*}\right), 7.30-7.34\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}, \mathrm{Ar}^{*}\right), 7.49-7.52(\mathrm{~m}, 4 \mathrm{H}$, $\left.\mathrm{Ar}, \mathrm{Ar}^{*}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}): $\delta 63.5,63.6\left(2 \mathrm{t}, \mathrm{C}-1, \mathrm{C}-1^{*}\right), 67.4,67.5(2 \mathrm{~d}$, C-4', C-4**), 72.0, 72.2 (2 d, C-2, C-2*), 76.1, 76.7 (2 t, C-5', C-5**), 103.1, 103.3 (2 d, C-2', C-2 **), 123.4, 123.6 (2 s, Ar, Ar^{*}), 128.0, 128.2, 131.5, 131.6 (4 d, $\mathrm{Ar}^{2}, \mathrm{Ar}^{*}$), 135.9, 136.8 (2 s, Ar, Ar*) ppm; IR (ATR) $\tilde{v}: 3410-3035(\mathrm{O}-\mathrm{H}), 3090-3030(=\mathrm{C}-\mathrm{H}), 2955-2870$ (C-H), 1580 (Ar), 1250 (C-O) cm^{-1}; ESI-TOF (m / z): $[\mathrm{M}+\mathrm{Na}]^{+}$calcd. for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{BrO}_{4} \mathrm{Na}$, 310.9898; found, 310.9895; [2M +Na$]^{+}$calcd. for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{Br}_{2} \mathrm{O}_{8} \mathrm{Na}, 600.9881$; found, 600.9872; anal. calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{BrO}_{4}$ (289.1): C, 45.70; H, 4.53; found: C, 45.53; H , 4.50 .

(Z)-N-\{[(2S,4S)-2-(4-Bromophenyl)-1,3-dioxolan-4-yl]methylene\}-1-phenylmethanamine oxide (6a) and (Z)-N-\{[(2R,4S)-2-(4-bromophenyl)-1,3-dioxolan-4-yl]methyl-ene\}-1-phenylmethanamine oxide (6b)

Compound 8 (17.3 g, 59.9 mmol) was dissolved in a mixture of acetonitrile and water $(185 \mathrm{~mL}, 125 \mathrm{~mL})$ and sodium periodate $(23.1 \mathrm{~g}, 108 \mathrm{mmol})$ was added at $0^{\circ} \mathrm{C}$ in small portions. The suspension was stirred for 1 h at rt and the insoluble salts were filtered off. The filtrate was extracted with dichloromethane $(3 \times 300 \mathrm{~mL})$ and the combined organic layers were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent was removed in vacuo. The crude product was dissolved in dichloromethane (180 mL) and N-benzylhydroxylamine $(9.30 \mathrm{~g}, 75.5 \mathrm{mmol})$ and magnesium sulfate $(10.8 \mathrm{~g})$ were added. The suspension was stirred over night at rt, filtered and the solvent was removed in vacuo. The crude product was purified by column chromatography (silica gel, hexanes/EtOAc 1:1) to yield 6
($17.3 \mathrm{~g}, 80 \%$, d.r. $52: 48$) as a colorless solid. For analytical characterization small samples of pure diastereomers were obtained by a second column chromatography.

Diastereomer 6a:

melting range $105-109{ }^{\circ} \mathrm{C} ;[\mathrm{a}]_{\mathrm{D}}{ }^{22}-1.4\left(c \mathrm{c} .20, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.87$ (dd, $J=6.8,8.5 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 4.55(\mathrm{dd}, J=7.3,8.5 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 4.89\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right)$, 5.21-5.27 (m, $1 \mathrm{H}, 4-\mathrm{H}$), 5.84 ($\mathrm{s}, 1 \mathrm{H}, 2-\mathrm{H}$), 6.93 (d, J = $4.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{N}=\mathrm{CH}$), 7.29-7.32 (m, $2 \mathrm{H}, \mathrm{Ar}), 7.36-7.41$ (m, $5 \mathrm{H}, \mathrm{Ph}), 7.49-7.51$ (m, $2 \mathrm{H}, \mathrm{Ar)} \mathrm{ppm;}{ }^{13} \mathrm{C}$ NMR (125 MHz , CDCl_{3}): $\delta 68.8\left(\mathrm{t}, \mathrm{NCH}_{2}\right), 69.0(\mathrm{t}, \mathrm{C}-5), 72.3(\mathrm{~d}, \mathrm{C}-4), 103.3(\mathrm{~d}, \mathrm{C}-2), 123.5(\mathrm{~s}, \mathrm{Ar}), 128.0$, 129.1, 129.3, 129.5, 131.5 (5 d, Ph, Ar), 131.8, 136.0 (2 s, Ar, Ph), 138.0 (d, N=CH) ppm; IR (ATR) \tilde{v} : 3080-2830 (=C-H, C-H), 1600 (C=C, C=N), 1210 (C-O) cm ${ }^{-1}$; ESI-TOF (m/z): $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{BrNO}_{3} \mathrm{Na}$, 384.0211; found, 384.0191; [2M + Na] ${ }^{+}$calcd for $\mathrm{C}_{34} \mathrm{H}_{32} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{Na}, 747.0504$; found, 747.0484 ; anal. calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{BrNO}_{3}$ (362.2): C, 56.37; H, 4.45; N, 3.87; found: C, 56.38; H, 4.68; N, 4.07.

Diastereomer 6b:

melting range $109-114{ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}{ }^{22}+7.6$ (c 1.05, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR (500 MHz , CDCl_{3}): $\delta 4.08-4.12(\mathrm{~m}, 1 \mathrm{H}, 5-\mathrm{H}), 4.35(\mathrm{dd}, \mathrm{J}=7.9,8.4 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 4.85(\mathrm{~s}, 2 \mathrm{H}$, NCH_{2}), 5.23 (td, $\left.J=4.7,7.9 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}\right), 5.75(\mathrm{~s}, 1 \mathrm{H}, 2-\mathrm{H}), 6.84(\mathrm{~d}, \mathrm{~J}=4.7 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{N}=\mathrm{CH}$), 7.28-7.30 (m, $2 \mathrm{H}, \mathrm{Ar}$), 7.34-7.40 (m, $5 \mathrm{H}, \mathrm{Ph}$), 7.47-7.49 (m, $2 \mathrm{H}, \mathrm{Ar}$) ppm; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 68.9$ ($\mathrm{t}, \mathrm{NCH}_{2}$), 69.3 (t, C-5), 72.5 (d, C-4), 103.5 (d, C-2), 123.5 (s, Ar), 128.0, 129.0, 129.2, 129.3, 131.5 (5 d, Ar, Ph), 131.9, 135.6 (2 s, Ar, Ph),
138.2 (d, N=CH) ppm; IR (ATR): \tilde{v} 3070-2865 (=C-H, C-H), 1590 (C=C, C=N), 1155 (CO) cm^{-1}; ESI-TOF (m/z): $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{BrNO}_{3} \mathrm{Na}, 384.0211$; found, 384.0220; $[2 \mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{34} \mathrm{H}_{32} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{Na}, 747.0504$; found, 747.0510; anal. calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{BrNO}_{3}$ (362.2): $\mathrm{C}, 56.37$; $\mathrm{H}, 4.45$; N, 3.87; found: $\mathrm{C}, 56.51$; H, 4.29; N, 3.90 .
(3S)-2-Benzyl-3-[(2S,4S)-2-(4-bromophenyl)-1,3-dioxolan-4-yl]-4-[2-(trimethylsilyl)-ethoxy]-3,6-dihydro-2H-1,2-oxazine (4a) and (3S)-2-benzyl-3-[(2R,4S)-2-(4-bromo-phenyl)-1,3-dioxolan-4-yl]-4-[2-(trimethylsilyl)ethoxy]-3,6-dihydro-2H-1,2-oxazine (4b)

Procedure 1:

Under an argon atmosphere, allene 5 ($86 \mathrm{mg}, 0.55 \mathrm{mmol}$) was dissolved in THF (2 mL) and cooled to $-40^{\circ} \mathrm{C}$. Then n-BuLi ($0.22 \mathrm{~mL}, 2.5 \mathrm{M}$ in THF, 0.55 mmol) was added dropwise, the solution was stirred for 10 min at $-40^{\circ} \mathrm{C}$ and then cooled to $-78^{\circ} \mathrm{C}$. Nitrone 6 ($100 \mathrm{mg}, 0.276 \mathrm{mmol}$) was dissolved in THF (1 mL) and added dropwise to the solution of deprotonated allene. The mixture was stirred for 1.5 h at $-78^{\circ} \mathrm{C}$ and then quenched with water $(5 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. The solution was allowed to warm up to rt and the aqueous layer was extracted with diethyl ether ($3 \times 50 \mathrm{~mL}$). The combined organic layers were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent was removed in vacuo. The crude product was purified by column chromatography (silica gel, hexanes/EtOAc 20:1) to yield the two diastereomers $\mathbf{4 a}(50 \mathrm{mg}, 35 \%)$ and $\mathbf{4 b}(46 \mathrm{mg}, 32 \%)$, both as colorless solids. The yields of reactions in large scale are 43-56\%.

Procedure 2:

4-Bromobenzaldehyde dimethyl acetal ($1.90 \mathrm{~mL}, 11.4 \mathrm{mmol}$) and cerium ammonium nitrate ($5 \mathrm{mg}, 0.010 \mathrm{mmol}$) were dissolved in dichloromethane (1 mL) and stirred for 15 min at rt . 1,2-Oxazine $10(400 \mathrm{mg}, 1.14 \mathrm{mmol})$ was added and the mixture was stirring for 3 d at rt. Sat. aq. NaHCO_{3} solution (50 mL) was added, the layers were separated and the water layer was extracted with dichloromethane $(3 \times 100 \mathrm{~mL})$. The combined organic layers were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent was removed in vacuo. The crude product was purified by column chromatography (silica gel, hexanes/EtOAc 20:1) to yield 4 a ($22 \mathrm{mg}, 4 \%$) and 4 b ($238 \mathrm{mg}, 40 \%$), both as colorless solids.

Diastereomer 4a:

mp $73-75^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{22}+41.0\left(c 1.00, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.06(\mathrm{~s}, 9 \mathrm{H}$, SiMe_{3}), 0.98-1.10 (m, 2 H, Me SiCH_{2}), $3.32(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 3.73-3.86(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{Me}_{3} \mathrm{SiCH}_{2} \mathrm{CH}_{2}$), 4.08-4.20 (m, $\left.5 \mathrm{H}, \mathrm{NCH}_{2}, 5^{\prime}-\mathrm{H}, 6-\mathrm{H}\right), 4.41-4.45\left(\mathrm{~m}, 1 \mathrm{H}, 5^{\prime}-\mathrm{H}\right), 4.67-4.71$ (m, $\left.1 \mathrm{H}, 4^{\prime}-\mathrm{H}\right), 4.76-4.77(\mathrm{~m}, 1 \mathrm{H}, 5-\mathrm{H}), 5.85\left(\mathrm{~s}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right), 7.25-7.27(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ph}), 7.30-$ 7.33 (m, $2 \mathrm{H}, \mathrm{Ph}$), 7.36-7.37 (m, $2 \mathrm{H}, \mathrm{Ar}), 7.40-7.42$ (m, $2 \mathrm{H}, \mathrm{Ph}), 7.50-7.51$ (m, $2 \mathrm{H}, \mathrm{Ar}$) ppm; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-1.4\left(\mathrm{q}, \mathrm{SiMe}_{3}\right), 17.4\left(\mathrm{t}, \mathrm{Me}_{3} \mathrm{SiCH} 2\right), 58.3\left(\mathrm{t}, \mathrm{NCH}_{2}\right)$, 63.0 (d, C-3), 63.0 ($\mathrm{t}, \mathrm{Me}_{3} \mathrm{SiCH}_{2} \mathrm{CH}_{2}$), 64.5 (t, C-6), 68.0 (t, C-5'), 75.3 (d, C-4'), 93.2 (d, C-5), 102.8 (d, C-2'), 123.0 (s, Ar), 127.1, 128.2, 128.2, 128.7, 131.4 (5 d, Ph, Ar), 137.6, 137.7 (2 s, Ar, Ph), 149.8 (s, C-4) ppm; IR (ATR): $\tilde{v} 3085$ (=C-H), 2950-2830 (C-
H), 1675 (C=C), $1250(\mathrm{C}-\mathrm{O}) \mathrm{cm}^{-1}$; ESI-TOF (m / z): $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{BrNO}_{4} \mathrm{SiNa}$, 542.1158; found, 542.1217; $\left[2 \mathrm{M}+\mathrm{Na}^{+}\right.$calcd for $\mathrm{C}_{50} \mathrm{H}_{64} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{Si}_{2} \mathrm{Na}, 1059.2469$; found, 1059.2520; anal. calcd for $\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{BrNO}_{4} \mathrm{Si}$ (518.5): C, $57.91 ; \mathrm{H}, 6.22 ; \mathrm{N}, 2.70$; found: C, 57.75; H, 6.15; N, 2.72.

Diastereomer 4b:

melting range $84-89{ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}{ }^{22}+3.2\left(c 1.25, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 0.03$ ($\mathrm{s}, 9 \mathrm{H}, \mathrm{SiMe}_{3}$), 0.92-1.05 (m, $2 \mathrm{H}, \mathrm{Me}_{3} \mathrm{SiCH}_{2}$), 3.30-3.33 (m, $1 \mathrm{H}, 3-\mathrm{H}$), 3.70-3.75 (m, $1 \mathrm{H}, \mathrm{Me}_{3} \mathrm{SiCH}_{2} \mathrm{CH}_{2}$), $3.77-3.83\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Me}_{3} \mathrm{SiCH}_{2} \mathrm{CH}_{2}\right.$), $3.96(\mathrm{dd}, \mathrm{J}=6.6,8.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.5^{\prime}-\mathrm{H}\right), 4.07\left(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}, 5^{\prime}-\mathrm{H}\right), 4.16-4.21\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{NCH}_{2}, 6-\mathrm{H}\right), 4.43-4.47(\mathrm{~m}, 1 \mathrm{H}$, $6-\mathrm{H}), 4.68\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}, 4^{\prime}-\mathrm{H}\right), 4.74-4.76(\mathrm{~m}, 1 \mathrm{H}, 5-\mathrm{H}), 5.82\left(\mathrm{~s}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right), 7.25-7.31(\mathrm{~m}, 5 \mathrm{H}$, Ar, Ph), 7.39-7.40 (m, 2 H, Ar, Ph), 7.44-7.46 (m, $2 \mathrm{H}, \mathrm{Ar}$) ppm; ${ }^{13} \mathrm{C}$ NMR (125 MHz , CDCl_{3}): $\delta-1.5\left(\mathrm{q}, \mathrm{SiMe}_{3}\right), 17.4\left(\mathrm{t}, \mathrm{Me}_{3} \mathrm{SiCH}_{2}\right), 58.0\left(\mathrm{t}, \mathrm{NCH}_{2}\right), 62.9(\mathrm{~d}, \mathrm{C}-3), 64.4(\mathrm{t}, \mathrm{C}-6)$, $67.1\left(\mathrm{t}, \mathrm{Me}_{3} \mathrm{SiCH}_{2} \mathrm{CH}_{2}\right), 72.0\left(\mathrm{t}, \mathrm{C}-5^{\prime}\right), 76.5\left(\mathrm{~d}, \mathrm{C}-4^{\prime}\right), 93.1(\mathrm{~d}, \mathrm{C}-5), 102.9\left(\mathrm{~d}, \mathrm{C}-2^{\prime}\right), 123.0$ (s, Ar), 127.1, 128.2, 128.3, 128.7, 131.3 (5 d, Ar, Ph), 137.4, 137.5 (2 s, Ar, Ph), 149.5 (s, C-4) ppm; IR (ATR): $\tilde{v} 3065$ (=C-H), 2950 (C-H), 1670 (C=C), 1250 (C-O) cm ${ }^{-1}$; ESI-TOF (m / z): $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{BrNO}_{4} \mathrm{SiNa}, 542.1158$; found, 542.1172; [2M + Na^{+}calcd for $\mathrm{C}_{50} \mathrm{H}_{64} \mathrm{Br}_{2} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{Si}_{2} \mathrm{Na}$, 1059.2469; found, 1059.2446; anal. calcd for $\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{BrNO}_{4} \mathrm{Si}(518.5): \mathrm{C}, 57.91 ; \mathrm{H}, 6.22 ; \mathrm{N}, 2.70$; found: C, $57.96 ; \mathrm{H}, 6.32 ; \mathrm{N}, 2.67$.

dioxa-2-azabicyclo[3.3.1]nonan-9-one (11)

1,2-Oxazine 4 ($5.05 \mathrm{~g}, 9.74 \mathrm{mmol}$) was dissolved in acetonitrile (70 mL) and cooled to $-30^{\circ} \mathrm{C}$. Tin(IV) chloride ($7.61 \mathrm{~g}, 3.43 \mathrm{~mL}, 29.2 \mathrm{mmol}$) was added and the solution was stirred for 18 h and allowed to warm to rt . The mixture was quenched with water (60 mL) and extracted with dichloromethane $(3 \times 150 \mathrm{~mL})$. The combined organic layers were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent was removed in vacuo. The crude product was dissolved in THF (80 mL), imidazole ($1.33 \mathrm{~g}, 19.5 \mathrm{mmol}$) and tert-butyldimethylsilyl chloride ($2.20 \mathrm{~g}, 14.6 \mathrm{mmol}$) were added and the mixture was stirred for 4 h at rt . The salts were filtered off and the solvent was removed in vacuo. The crude product was extracted with diethyl ether $(3 \times 150 \mathrm{~mL})$. The combined organic layers were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, the solvent was removed in vacuo and the crude product was purified by column chromatography (silica gel, hexanes/EtOAc 30:1) to yield 11 (4.22 g, 82\%) as a colorless oil.

$[\alpha]_{\mathrm{D}}{ }^{22}+120.2\left(c 1.28, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.02,0.04(2 \mathrm{~s}, 3 \mathrm{H}$ each, SiMe), 0.85 (s, $9 \mathrm{H}, \mathrm{Sit}-\mathrm{Bu}$), 2.71-2.75 (m, $1 \mathrm{H}, 5-\mathrm{H}$), 3.54-3.56 (m, $1 \mathrm{H}, 1-\mathrm{H}$), 3.88 (ddd, $J=1.5,5.1,7.9 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}), 3.94\left(\mathrm{dd}, J=5.1,9.5 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{CH}_{2}\right), 4.01(\mathrm{~d}, J=13.8$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2}\right), 4.09-4.19\left(\mathrm{~m}, 3 \mathrm{H}, 8-\mathrm{CH}_{2}, \mathrm{NCH}_{2}, 4-\mathrm{H}\right), 4.25(\mathrm{dd}, J=5.6,12.0 \mathrm{~Hz}, 1 \mathrm{H}$, 4-H), $4.89(\mathrm{~s}, 1 \mathrm{H}, 6-\mathrm{H}), 7.25-7.36(\mathrm{~m}, 7 \mathrm{H}, \mathrm{Ar}, \mathrm{Ph}), 7.48-7.50(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}) \mathrm{ppm} ;$ ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-5.32,-5.26(2 \mathrm{q}, \mathrm{SiMe}), 18.3,25.9$ (q, s, Sit-Bu), $55.3(\mathrm{~d}$,
$\mathrm{C}-5), 60.5\left(\mathrm{t}, \mathrm{NCH}_{2}\right), 61.4\left(\mathrm{t}, 8-\mathrm{CH}_{2}\right), 67.2(\mathrm{t}, \mathrm{C}-4), 70.8(\mathrm{~d}, \mathrm{C}-1), 81.2(\mathrm{~d}, \mathrm{C}-6), 81.6(\mathrm{~d}$, C-8), 122.0 (s, Ar), 127.6, 127.7, 128.6, 128.9, 131.8 (5 d, Ar, Ph), 136.3, 137.2 (2 s, Ar, Ph), 207.9 (s, C-9) ppm; IR (ATR): $\tilde{v} 3065(=\mathrm{C}-\mathrm{H}), 2950-2855(\mathrm{C}-\mathrm{H}), 1730(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1}$; ESI-TOF (m / z): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{26} \mathrm{H}_{35} \mathrm{BrNO}_{4} \mathrm{Si}$, 534.1498 ; found, $534.1540 ;[\mathrm{M}+\mathrm{Na}]^{+}$ calcd for $\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{BrNO}_{4} \mathrm{SiNa}$, 556.1318; found, 556.1356 ; anal. calcd for $\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{BrNO}_{4} \mathrm{Si}$ (532.5): C, 58.64; H, 6.44; N, 2.63; found: C, 57.97; H, 6.51; N, 2.50.
(1R,5S,6R,8S,9R)-2-Benzyl-6-(4-bromophenyl)-8-[(tert-butyldimethylsiloxy)methyl]-3,7-dioxa-2-azabicyclo[3.3.1]nonan-9-ol (12a) and (1R,5S,6R,8S,9S)-2-benzyl-6-(4-bromophenyl)-8-[(tert-butyldimethylsiloxy)methyl]-3,7-dioxa-2-azabicyclo[3.3.1]no-nan-9-ol (12b)

Procedure 1:

At $0^{\circ} \mathrm{C}$ compound 11 ($500 \mathrm{mg}, 0.939 \mathrm{mmol}$) was dissolved in ethanol (14 mL), sodium borohydride ($71 \mathrm{mg}, 1.88 \mathrm{mmol}$) was added and the mixture stirred for 3 h at $-40^{\circ} \mathrm{C}$. The solvent was then removed in vacuo and water (50 mL) and dichloromethane (80 mL) were added and the crude product was extracted with dichloromethane ($4 \times 80 \mathrm{~mL}$). The combined organic layers were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent was removed in vacuo. The crude product was purified by column chromatography (silica gel, hexanes/EtOAc $5: 1$) to yield 12a ($315 \mathrm{mg}, 63 \%$) and $\mathbf{1 2 b}(46 \mathrm{mg}, 9 \%)$ as colorless solids.

Procedure 2:

Compound 11 ($680 \mathrm{mg}, 1.28 \mathrm{mmol}$) was dissolved in THF (20 mL), at $-10{ }^{\circ} \mathrm{C} \mathrm{L}-$ selectride ($1.92 \mathrm{~mL}, 1 \mathrm{~m}$ in THF, 1.92 mmol) was added dropwise and the solution was stirred for 1 h at $-10^{\circ} \mathrm{C}$. The mixture was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ solution (30 mL) and the aqueous layer was extracted with diethyl ether ($4 \times 80 \mathrm{~mL}$). The combined organic layers were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvents removed in vacuo. The crude product was purified by column chromatography (silica gel, hexanes/EtOAc 5:1) to yield 12a (501 mg, 73\%) as a colorless solid.

Diastereomer 12a:

mp 140-143 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{22}+25.2\left(c 1.04, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.11,0.12(2$ s, 3 H each, SiMe), 0.93 (s, $9 \mathrm{H}, \mathrm{Sit}-\mathrm{Bu}), 2.05\left(\mathrm{~S}_{\mathrm{br}}, 1 \mathrm{H}, 5-\mathrm{H}\right), 3.30\left(\mathrm{~S}_{\mathrm{br}}, 1 \mathrm{H}, 1-\mathrm{H}\right), 3.68$ (dd, $J=1.3,12.2 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}), 3.76(\mathrm{~d}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}), 3.85(\mathrm{dd}, J=6.9,8.9 \mathrm{~Hz}$, $1 \mathrm{H}, 8-\mathrm{H}), 3.98-4.07\left(\mathrm{~m}, 4 \mathrm{H}, 4-\mathrm{H}, 9-\mathrm{H}, 8-\mathrm{CH}_{2}\right), 4.13\left(\mathrm{AB}\right.$ system, $J_{\mathrm{AB}}=15.1 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{NCH}_{2}\right), 4.35\left(\mathrm{AB}\right.$ system, $\left.\mathrm{J}_{\mathrm{AB}}=15.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2}\right), 4.74(\mathrm{~s}, 1 \mathrm{H}, 6-\mathrm{H}), 7.24-7.29(\mathrm{~m}, 3$ $\mathrm{H}, \mathrm{Ph})$, 7.32-7.36 (m, $4 \mathrm{H}, \mathrm{Ar}, \mathrm{Ph})$, 7.45-7.47 (m, $2 \mathrm{H}, \mathrm{Ar}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}): $\delta-5.4,-5.3(2 \mathrm{q}, \mathrm{SiMe}), 18.1,25.8$ ($\mathrm{q}, \mathrm{s}, \mathrm{Sit}-\mathrm{Bu}$), 40.8 (d, C-5), 60.2 (d, C-1), $61.6\left(\mathrm{t}, \mathrm{NCH}_{2}\right), 62.4\left(\mathrm{t}, 8-\mathrm{CH}_{2}\right), 64.8(\mathrm{t}, \mathrm{C}-4), 70.3(\mathrm{~d}, \mathrm{C}-8), 78.9$ (d, C-6), 79.7 (d, C-9), 121.0 (s, Ar), 127.1, 127.5, 128.0, 128.3, 131.3 (5 d, Ar, Ph), 138.3139 .0 (2 s, Ar, Ph) ppm; IR (ATR): \tilde{v} 3555-3135 (O-H), 3095-3030 (=C-H), 2960-2855 (C-H), 1250 (C-O) cm^{-1}; ESI-TOF $(\mathrm{m} / \mathrm{z})$: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{26} \mathrm{H}_{37} \mathrm{BrNO}_{4} \mathrm{Si}$, 534.1675; found, 534.1680; s12
$[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{BrNO}_{4} \mathrm{SiNa}, 558.1474$; found, 558.1481 ; anal. calcd for $\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{BrNO}_{4} \mathrm{Si}$ (534.6): C, 58.42; H, 6.79; N, 2.62; found: C, 58.31; H, 5.98; N, 2.98.

Diastereomer 12b:

Melting range $161-165^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{22}+61.7$ (c 1.37, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR (500 MHz, CDCl_{3}): $\delta 0.05,0.07$ (2 s, 3 H each, SiMe), 0.87 (s, $9 \mathrm{H}, \mathrm{Sit}-\mathrm{Bu}$), 1.85 ($\mathrm{S}_{\mathrm{br},} 1 \mathrm{H}, 5-\mathrm{H}$), $2.98\left(\mathrm{~S}_{\mathrm{br}}, 1 \mathrm{H}, 1-\mathrm{H}\right), 3.67(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}), 3.90-4.01\left(\mathrm{~m}, 4 \mathrm{H}, 4-\mathrm{H}, 8-\mathrm{CH}_{2}, \mathrm{OH}\right)$, $4.09(\mathrm{t}, \mathrm{J}=8.9 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}), 4.16\left(\mathrm{AB}\right.$ system, $\left.J_{\mathrm{AB}}=14.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2}\right), 4.29(\mathrm{AB}$ system, $\left.J_{A B}=14.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2}\right), 4.68(\mathrm{t}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}, 9-\mathrm{H}), 5.27(\mathrm{~s}, 1 \mathrm{H}, 6-\mathrm{H})$, 7.23-7.36 (m, $7 \mathrm{H}, \mathrm{Ar}, \mathrm{Ph}), 7.42-7.49(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $-5.3,-5.2$ (2 q, SiMe), 18.3, 25.9 (q, s, Sit-Bu), 41.5 (d, C-5), 57.6 (d, C-1), 58.2 (t, NCH_{2}), 62.4 (d, C-8), 62.8 (t, 8-CH $)_{2}$, 64.1 (d, C-9), 64.3 (t, C-4), 72.7 (d, C-6), 79.7 (d, C-9), 120.8 (s, Ar), 127.2, 127.9, 128.3, 128.6, 131.2 (5 d, Ar, Ph), 131.3, 131.6 (2 s, Ar, Ph) ppm; IR (ATR): \tilde{v} 3515-3340 (O-H), 3090-3030 (=C-H), 2950-2855 (C-H), 1250 (C-O) cm^{-1}; ESI-TOF $(\mathrm{m} / \mathrm{z}):\left[\mathrm{M}+\mathrm{H}^{+}\right.$calcd for $\mathrm{C}_{26} \mathrm{H}_{37} \mathrm{BrNO}_{4} \mathrm{Si}$, 534.1675; found, 534.1678; $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{BrNO}_{4} \mathrm{SiNa}$, 558.1474; found, 558.1478; anal. calcd for $\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{BrNO}_{4} \mathrm{Si}(534.6): \mathrm{C}, 58.42 ; \mathrm{H}, 6.79 ; \mathrm{N}, 2.62$; found: C, $59.51 ; \mathrm{H}, 6.69 ; \mathrm{N}, 2.44$.

butyldimethylsiloxy)methyl]-3,7-dioxa-2-azabicyclo[3.3.1]nonane (13)

Compound 12a ($277 \mathrm{mg}, 0.518 \mathrm{mmol}$) was dissolved in dichloromethane (1.5 mL), 2,6-lutidine ($0.11 \mathrm{~mL}, 0.932 \mathrm{mmol}$) was added and the mixture was cooled to $0^{\circ} \mathrm{C}$. tertbutyldimethylsilyl triflate ($0.12 \mathrm{~mL}, 0.673 \mathrm{mmol}$) was added dropwise and the solution was stirred for 2 h at $0^{\circ} \mathrm{C}$. The mixture was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ solution (20 $\mathrm{mL})$ and the aqueous layers were extracted with dichloromethane $(3 \times 30 \mathrm{~mL})$. The combined organic layers were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent was removed in vacuo. The crude product was purified by column chromatography (silica gel, hexanes/EtOAc 30:1) to yield 13 (336 mg, quant.) as a colorless oil.

$[\alpha]_{\mathrm{D}}{ }^{22}+71.5\left(c 1.12, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.06,0.08,0.17,0.19(4 \mathrm{~s}, 3$ H each, SiMe), 0.88, 1.00 (2 s, 9 H each, Sit-Bu), $1.65\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}, 5 \mathrm{H}\right), 3.00\left(\mathrm{~S}_{\mathrm{br}}, 1 \mathrm{H}, 1-\mathrm{H}\right)$, $3.22(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}), 3.85(\mathrm{ddd}, J=1.8,5.1,7.2 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{H}), 3.92(\mathrm{dd}, J=$ 5.1, $\left.9.6 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{CH}_{2}\right), 4.10\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}, 9-\mathrm{H}\right), 4.11\left(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2}\right), 4.17(\mathrm{dd}$, $\left.J=7.2,9.6 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{CH}_{2}\right), 4.47(\mathrm{dt}, J=1.7,11.8 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}), 4.86(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1$ $\left.\mathrm{H}, \mathrm{NCH}_{2}\right), 4.87\left(\mathrm{~s}_{\mathrm{br}}, 1 \mathrm{H}, 6-\mathrm{H}\right), 7.21-7.24(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ph}), 7.29-7.32(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ph}), 7.38-7.39$ (m, $2 \mathrm{H}, \mathrm{Ar}), 7.43-7.45(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta-5.13,-5.06$, -4.7, -4.5 (4 q, SiMe), 18.2, 18.4 (2 s, Sit-Bu), 25.9, 26.1 (2 q, Sit-Bu), 42.4 (d, C-5), 56.0 (t, C-4), 58.7 (t, NCH2), 58.8 (d, C-1), 63.3 (t, 8-CH2), 70.4 (d, C-9), 79.8 (d, C-6), 80.2 (d, C-8), 121.3 (s, Ar), 127.0, 128.3, 128.3, 128.6, 131.4 (5 d, Ph, Ar), 139.4, 139.6 (2 s,

Ph, Ar) ppm; IR (ATR): \tilde{v} 3090-3025 (=C-H), 2955-2855 (C-H), 1250 (C-O) cm ${ }^{-1}$; ESITOF (m/z): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{32} \mathrm{H}_{51} \mathrm{BrNO}_{4} \mathrm{Si}_{2}$, 648.2535 ; found, 648.2574 ; $[\mathrm{M}+\mathrm{Na}]^{+}$ calcd for $\mathrm{C}_{32} \mathrm{H}_{50} \mathrm{BrNO}_{4} \mathrm{Si}_{2} \mathrm{Na}, 670.2354$, found, 670.2395 ; anal. calcd for $\mathrm{C}_{32} \mathrm{H}_{50} \mathrm{BrNO}_{4} \mathrm{Si}_{2}$ (648.8): C, 59.24; H, 7.77; N, 2.16; found: C, 59.48; H, 7.78; N, 2.16.
(1R,5S,6R,8S,9R)-2-Benzyl-6-(4-bromophenyl)-8-(hydroxymethyl)-3,7-dioxa-2-azabicyclo[3.3.1]nonan-9-ol (15a) and (1R,5S,6R,8S,9S)-2-benzyl-6-(4-bromo-phenyl)-8-(hydroxymethyl)-3,7-dioxa-2-azabicyclo[3.3.1]nonan-9-ol (15b)

1,2-Oxazine 4 (2.00 g , 3.86 mmol) was dissolved in acetonitrile (20 mL) and cooled to $-30^{\circ} \mathrm{C}$. Tin(iv) chloride ($3.02 \mathrm{~g}, 1.36 \mathrm{~mL}, 11.6 \mathrm{mmol}$) was added and the solution was stirred for 18 h and allowed to warm up to rt . The mixture was quenched with water $(40 \mathrm{~mL})$ and the aqueous layer extracted with dichloromethane ($3 \times 80 \mathrm{~mL}$). The combined organic layers were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent was removed in vacuo. The crude product was dissolved in THF (30 mL) and cooled to $-15^{\circ} \mathrm{C}$. Lselectride ($4.63 \mathrm{~mL}, 1 \mathrm{~m}$ in THF, 4.63 mmol) was added dropwise and the solution was stirred for 1 h at $-15^{\circ} \mathrm{C}$. The mixture was quenched with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ solution (50 mL) and the aqueous layer extracted with diethyl ether ($5 \times 80 \mathrm{~mL}$). The combined organic layers were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent was removed in vacuo. The crude product was purified by column chromatography (silica gel, hexanes/EtOAc 1:1 \rightarrow $1: 2$) to yield $\mathbf{1 5 a}$ ($254 \mathrm{mg}, 16 \%$) and 15 b ($685 \mathrm{mg}, 42 \%$) as colorless solids.

Diastereomer 15a:

$\mathrm{mp} 58-60^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}{ }^{22}+88.9\left(\mathrm{c} 1.00, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.02\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}\right.$, $5-\mathrm{H}$), 2.60 ($\mathrm{s}_{\mathrm{br}}, 1 \mathrm{H}, \mathrm{OH}$), 3.08 ($\mathrm{m}_{\mathrm{c}}, 1 \mathrm{H}, 1-\mathrm{H}$), $3.60\left(\mathrm{~s}_{\mathrm{br}}, 1 \mathrm{H}, \mathrm{OH}\right.$), 3.66 (dd, J=2.3, 12.3 $\mathrm{Hz}, 1 \mathrm{H}, 4-\mathrm{H}), 3.81-3.85\left(\mathrm{~m}, 2 \mathrm{H}, 8-\mathrm{H}, 8-\mathrm{CH}_{2}\right), 4.03-4.13\left(\mathrm{~m}, 3 \mathrm{H}, 4-\mathrm{H}, 8-\mathrm{CH}_{2}, 9-\mathrm{H}\right), 4.09$ (AB system, $J_{A B}=14.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2}$), 4.29 (AB system, $J_{A B}=14.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2}$), 4.75 (s, 1 H, 6-H), 7.24-7.29 (m, 3 H, Ph), 7.33-7.34 (m, 4 H, Ar, Ph), 7.45-7.48 (m, 2 H, Ar) ppm; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 40.8$ (d, C-5), 61.3 (d, C-1), 61.6 (t, NCH_{2}), 64.0 (t, 8-CH2), 64.2 (t, C-4), 70.3 (d, C-9), 79.2 (d, C-6), 79.9 (d, C-8), 121.4 (s, Ar), 127.7, 128.6, 128.7, 131.6 (4 d, Ar, Ph), 137.3, 138.9 (2 s, Ar, Ph) ppm; IR (ATR): $\tilde{v} 3530-$ 3210 (O-H), 2920-2850 (C-H), 1070 (C-O) cm ${ }^{-1}$; ESI-TOF (m / z): $\left[\mathrm{M}+\mathrm{H}^{+}\right.$calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{BrNO}_{4}, 420.0810$; found, 420.0807; $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{BrNO}_{4} \mathrm{Na}$, 442.0630; found, 442.0630; anal. calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{BrNO}_{4}$ (420.3): $\mathrm{C}, 57.15 ; \mathrm{H}, 5.28 ; \mathrm{N}$, 3.33; found: C, 57.30; H, 5.42; N, 3.48.

Diastereomer 15b:

mp 197-198 ${ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}{ }^{22}+125.4$ (c $0.95, \mathrm{CHCl}_{3} / \mathrm{MeOH}, 9: 1$); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3} / \mathrm{CD}_{3} \mathrm{OD}, 6: 1\right.$, 700 MHz): $\delta 1.81\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}, 5-\mathrm{H}\right), 2.80\left(\mathrm{~s}_{\mathrm{br}}, 1 \mathrm{H}, 1-\mathrm{H}\right), 3.61(\mathrm{dd}, \mathrm{J}=1.4,12.3 \mathrm{~Hz}, 1 \mathrm{H}, 4-$ H), 3.79 (dd, $J=4.2,11.6 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{CH}_{2}$), 3.98 (dd, $J=5.7,11.6 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{CH}_{2}$), 4.02 (ddd, $J=1.4,2.6,12.3 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}), 4.08\left(\mathrm{AB}\right.$ system, $J=13.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2}$), 4.26 (AB system, $\left.J=13.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2}\right), 4.26\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}, 8-\mathrm{H}\right), 4.85(\mathrm{t}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}, 9-\mathrm{H})$, 5.25 (s, 1 H, 6-H), 7.21-7.73 (m, 1 H, Ph), 7.26-7.30 (m, 6 H, Ar, Ph), 7.40-7.41 (m, 2 H, Ar) ppm; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3} / \mathrm{CD}_{3} \mathrm{OD}, 6: 1,175 \mathrm{MHz}\right): \delta 41.2(\mathrm{~d}, \mathrm{C}-5), 57.2\left(\mathrm{t}, \mathrm{NCH}_{2}\right), 58.7$
(d, C-1), 61.5 (d, C-9), 63.7 (t, C-4), 64.5 (t, 8-CH $)_{2}$, 72.8 (d, C-8), 73.0 (d, C-6), 120.9 (s, Ar), 127.8, 127.9, 128.5, 128.6, 131.1 (5 d, Ar, Ph), 137.0, 140.0 (2 s, Ar, Ph) ppm; IR (ATR): $\tilde{v} 3385(\mathrm{O}-\mathrm{H}), 3085-3025(=\mathrm{CH})$, 2920-2870 (CH), $1490(\mathrm{CH}) \mathrm{cm}^{-1}$; ESI-TOF (m/z): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{BrNO}_{4}, 420.0810$; found, 420.0824; $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{BrNO}_{4} \mathrm{Na}, 442.0630$; found, 442.0652 ; anal. calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{BrNO}_{4}$ (420.3): C , 57.15; H, 5.28; N, 3.33; found: C, 57.52; H, 5.32; N, 3.37.
(1R,5S,6R,8S,9R)-2-Benzyl-6-(4-bromophenyl)-8-(trityloxymethyl)-3,7-dioxa-2-azabicyclo[3.3.1]nonan-9-ol (16)

Compound 15a ($360 \mathrm{mg}, 0.857 \mathrm{mmol}$) was dissolved in pyridine (4 mL). Trityl chloride ($287 \mathrm{mg}, 1.03 \mathrm{mmol}$) and DMAP ($42 \mathrm{mg}, 0.343 \mathrm{mmol}$) were added and the mixture was stirred for 3 d at $60^{\circ} \mathrm{C}$. The mixture was quenched with brine (10 mL) and the aqueous layer was extracted with ethyl acetate ($3 \times 30 \mathrm{~mL}$). The combined organic layers were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvents removed in vacuo. The crude product was purified by column chromatography (silica gel, hexanes/EtOAc 4:1) to yield 16 (470 mg , 83%) as a colorless solid.
mp 94-96 ${ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}{ }^{22}+17.8$ (c 1.10, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.01$ ($\mathrm{s}_{\mathrm{br},} 1 \mathrm{H}$, $5-\mathrm{H}$), $3.30(\mathrm{~s}, 1 \mathrm{H}, 1-\mathrm{H}), 3.34\left(\mathrm{dd}, J=7.8,8.8 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{CH}_{2}\right), 3.60(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}$,
$4-H), 3.83\left(\mathrm{dd}, J=6.3,8.8 \mathrm{~Hz}, 1 \mathrm{H}, 8-\mathrm{CH}_{2}\right), 3.84\left(\mathrm{AB}\right.$ system, $\left.J=14.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2}\right)$, 3.91 (AB system, $\left.J=14.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2}\right), 3.96(\mathrm{dd}, J=4.7,12.2 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}), 4.12$ $\left(\mathrm{m}_{\mathrm{c}}, 2 \mathrm{H}, 9-\mathrm{H}, 8-\mathrm{H}\right), 4.80(\mathrm{~s}, 1 \mathrm{H}, 6-\mathrm{H}), 7.05-7.07(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph}, \mathrm{Ar}), 7.22-7.28(\mathrm{~m}, 14 \mathrm{H}$, Ph, Ar), 7.45-7.51 (m, $8 \mathrm{H}, \mathrm{Ph}, \mathrm{Ar}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}): $\delta 41.1$ (d, C-5), 60.7 (d, C-1), $61.2\left(\mathrm{t}, \mathrm{NCH}_{2}\right), 64.1$ (t, 8-CH2$), 64.9(\mathrm{t}, \mathrm{C}-4), 70.2$ (d, C-9), 78.7 (d, C-8), 79.2 (d, C-6), $87.0\left(\mathrm{~s}, \mathrm{CPh}_{3}\right), 121.2$ (s, Ar), 127.2, 127.3, 127.7, 128.0, 128.1, 128.2, 128.3, 128.7, 131.4 (9 d, Ar, Ph), 137.9, 139.2, 143.8 (3 s, Ph, Ar) ppm; IR (ATR): \tilde{v} 3555-3300 (O-H), $3025(=\mathrm{C}-\mathrm{H}), 2940-2855(\mathrm{C}-\mathrm{H}), 1450\left(\mathrm{CH}_{2}\right) \mathrm{cm}^{-1}$; ESI-TOF $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+$ H^{+}calcd for $\mathrm{C}_{39} \mathrm{H}_{37} \mathrm{BrNO}_{4}$, 662.1906; found, 662.1904; $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{39} \mathrm{H}_{36} \mathrm{BrNO}_{4} \mathrm{Na}$, 684.1725; found, 684.1721; anal. calcd for $\mathrm{C}_{39} \mathrm{H}_{36} \mathrm{BrNO}_{4}$ (662.6): C , 70.69; H, 5.48; N, 2.11; found: C, 71.21; H, 6.59; N, 2.13.
[(2S,3R,4R,5S,6R)-3-Amino-2,5-di(hydroxymethyl)-6-phenyltetrahydro-2H-pyran-4ol (17a)

A suspension of $\mathrm{Pd} / \mathrm{C}(10 \% \mathrm{Pd}, 50 \mathrm{mg})$ and $\mathrm{iPrOH}(3 \mathrm{~mL})$ was saturated with hydrogen for 15 min . Compound $15 \mathrm{a}(50 \mathrm{mg}, 0.119 \mathrm{mmol})$ and $\mathrm{NEt}_{3}(12 \mathrm{mg}, 0.119 \mathrm{mmol})$ were dissolved in EtOAc (1 mL) and added to this suspension. The mixture was stirred for 18 h under hydrogen pressure (balloon), filtered through a pad of Celite ${ }^{\circledR}$ and the solvent removed in vacuo. The crude product was purified by column chromatography (silica gel, $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 15: 1$) to yield 17 a ($25 \mathrm{mg}, 83 \%$) as a colorless solid.

mp $163{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{22}+71.5\left(c 0.60, \mathrm{CH}_{3} \mathrm{OH}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): \delta 2.21\left(\mathrm{~s}_{\mathrm{br}}, 1 \mathrm{H}\right.$, $5-\mathrm{H}), 3.19\left(\mathrm{dd}, J=4.2,11.5 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{CH}_{2}\right), 3.24(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 3.59-3.64$ ($\mathrm{m}, 2 \mathrm{H}, 5-\mathrm{CH}_{2}, 2-\mathrm{H}$), $3.71\left(\mathrm{dd}, J=5.5,11.3 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{CH}_{2}\right), 3.83(\mathrm{dd}, J=6.6,11.3 \mathrm{~Hz}$, $\left.1 \mathrm{H}, 2-\mathrm{CH}_{2}\right), 4.27(\mathrm{dd}, J=4.4,5.5 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}), 4.68(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 7.21(\mathrm{C}$ part of ${A A^{\prime}}^{\prime} B^{\prime} C$ system, $\left.J_{C B}=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph}\right), 7.30\left(\mathrm{~B}\right.$ part of $\mathrm{AA}^{\prime} \mathrm{BB}^{\prime} \mathrm{C}$ system, $\mathrm{J}_{\mathrm{ABC}}=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}$), 7.44 (A part of $\mathrm{AA}^{\prime} \mathrm{BB}^{\prime} \mathrm{C}$ system, $J_{\mathrm{AB}}=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}$) ppm; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 175 \mathrm{MHz}\right): \delta 47.3(\mathrm{~d}, \mathrm{C}-5), 50.8(\mathrm{~d}, \mathrm{C}-3), 56.2\left(\mathrm{t}, 5-\mathrm{CH}_{2}\right), 63.1$ (t, 2CH_{2}), 73.1 (d, C-4), 80.4 (d, C-2), 82.0 (d, C-6), 127.1, 127.9, 128.9, 141.6 (3 d, s, Ph) ppm; IR (ATR): \tilde{v} 3600-3300 (O-H, N-H), 3070-3025 (=C-H), 2930-2855 (C-H) cm ${ }^{-1}$; ESI-TOF $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{NO}_{4}, 254.1392$; found, 254.1408 ; $[\mathrm{M}+\mathrm{Na}]^{+}$ calcd for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{NO}_{4} \mathrm{Na}$, 276.1212; found, 276.1223; anal. calcd for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{NO}_{4}$ (253.3): C, 61.64; H, 7.56; N, 5.53; C, 61.60; H, 7.65; N, 5.66.

(2S,3R,4S,5S,6R)-3-Amino-2,5-di(hydroxymethyl)-6-phenyltetrahydro-2H-pyran-4ol (17b)

A suspension of $\mathrm{Pd} / \mathrm{C}(10 \% \mathrm{Pd}, 69 \mathrm{mg})$ and $\mathrm{iPrOH}(3 \mathrm{~mL})$ was saturated with hydrogen for 15 min . Compound 15b ($69 \mathrm{mg}, 0.164 \mathrm{mmol}$) and $\mathrm{NEt}_{3}(17 \mathrm{mg}, 0.164 \mathrm{mmol})$ were dissolved in EtOAc (1 mL) and added to this suspension. The mixture was stirred for 18 h under hydrogen pressure (balloon), then filtrated through a pad of Celite ${ }^{\circledR}$ and the solvent was removed in vacuo. The crude product was purified by column chromatography (silica gel, $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 15: 1$) to yield 17 b ($32 \mathrm{mg}, 77 \%$) as a colorless solid.

mp 185-188 ${ }^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{22}+46.1$ (c 1.09, $\left.\mathrm{CH}_{3} \mathrm{OH}\right) ;{ }^{1} \mathrm{H}$ NMR (500 MHz, $\mathrm{CD}_{3} \mathrm{OD}$): $\delta 2.06$ (dd, J $=4.2,7.5 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 3.39\left(\mathrm{dd}, J=4.2,11.1 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{CH}_{2}\right), 3.44(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}$, $3-\mathrm{H}), 3.45\left(\mathrm{dd}, J=2.9,11.1 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{CH}_{2}\right), 3.93\left(\mathrm{~d}_{\mathrm{br}}, J=4.7 \mathrm{~Hz}, 2 \mathrm{H}, 2-\mathrm{CH}_{2}\right), 4.17(\mathrm{td}$, $J=1.8,4.7 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 4.32\left(\mathrm{~s}_{\mathrm{br}}, 1 \mathrm{H}, 4-\mathrm{H}\right), 5.17(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 7.26(\mathrm{C}$ part of $\mathrm{AA}^{\prime} \mathrm{BB}^{\prime} \mathrm{C}$ system, $\left.\mathrm{J}_{\mathrm{CB}}=7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph}\right)$, 7.35 (A part of $\mathrm{AA}^{\prime} \mathrm{BB}^{\prime} \mathrm{C}$ system, $\mathrm{J}_{\mathrm{AB}}=7.3$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{Ph}), 7.43$ (B part of $\mathrm{AA}^{\prime} \mathrm{BB}^{\prime} \mathrm{C}$ system $J_{\mathrm{BAC}}=7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}$) ppm; ${ }^{13} \mathrm{C}$ NMR (125 MHz, CD ${ }_{3} \mathrm{OD}$): $\delta 47.1$ (d, C-5), 51.7 (d, C-3), 60.3 (t, 5-CH2), 63.6 (t, 2CH_{2}), 70.8 (d, C-4), 74.1 (d, C-2), 79.2 (d, C-6), 126.8, 128.1, 129.1, 141.0 (3 d, s, Ph) ppm; IR (ATR): $\tilde{v} 3435,3245(\mathrm{O}-\mathrm{H}, \mathrm{N}-\mathrm{H}), 3020(=\mathrm{C}-\mathrm{H}), 2930-2830(\mathrm{C}-\mathrm{H}) \mathrm{cm}^{-1}$; ESI-TOF $(m / z):[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{NO}_{4}, 254.1392$; found, 254.1394; $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{NO}_{4} \mathrm{Na}$, 276.1212; found, 276.1206.
(1 R,5S,6R,8S,9R)-2-Benzyl-6-(biphenyl-4-yl)-8-(hydroxymethyl)-3,7-dioxa-2-azabi-cyclo[3.3.1]nonan-9-ol (18)

Compound 15a (290 mg, 0.690 mmol$), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(40 \mathrm{mg}, 34.5 \mu \mathrm{~mol})$ and phenylboronic acid ($93 \mathrm{mg}, 0.759 \mathrm{mmol}$) were filled in a sealed tube and flushed with argon. THF (3 $\mathrm{mL})$ and $2 \mathrm{M} \mathrm{Na}_{2} \mathrm{CO}_{3}$ solution (0.69 mL) were added and the mixture was stirred for 48 h at $70^{\circ} \mathrm{C}$. The solution was cooled to rt , water $(20 \mathrm{~mL})$ added and the aqueous layer extracted with ethyl acetate $(3 \times 80 \mathrm{~mL})$. The combined organic layers were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvents removed in vacuo. The crude product was purified by
column chromatography (silica gel, hexanes/EtOAc 1:1) to yield 18 ($234 \mathrm{mg}, 81 \%$) as a colorless solid.

mp $173-175^{\circ} \mathrm{C} ;[\mathrm{a}]_{\mathrm{D}}{ }^{22}+91.9\left(c 1.1, \mathrm{CH}_{3} \mathrm{OH}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 2.12(\mathrm{~s}, 1 \mathrm{H}$, $5-\mathrm{H}$), 2.28 ($\mathrm{S}_{\mathrm{br}}, 1 \mathrm{H}, \mathrm{OH}$), 3.11 (s, $1 \mathrm{H}, 1-\mathrm{H}$), 3.71 (d, $J=10.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{OH}$), 3.81 (dd, $J=$ 1.7, $12.1 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}$), 3.86-3.89 (m, $2 \mathrm{H}, 8-\mathrm{H}, 8-\mathrm{CH}_{2}$), 4.08-4.11 (m, $\left.1 \mathrm{H}, 9-\mathrm{H}\right), 4.12-$ 4.13 (m, $1 \mathrm{H}, 4-\mathrm{H}$), $4.14\left(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2}\right), 4.17(\mathrm{dd}, J=8.0,12.4 \mathrm{~Hz}, 1 \mathrm{H}$, $8-\mathrm{CH}_{2}$), 4.33 ($\mathrm{d}, \mathrm{J}=14.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2}$), $4.85(\mathrm{~s}, 1 \mathrm{H}, 6-\mathrm{H}), 7.28-7.31(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ph})$, 7.34-7.39 (m, 5 H, Ph, Ar), 7.43-7.48 (m, 4 H, Ph, Ar), 7.58-7.60 (m, 4 H, Ar) ppm; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 40.9$ (d, C-5), 61.4 (d, C-1), 61.5 (t, NCH 2), 64.0 (t , $8-\mathrm{CH}_{2}$), 64.3 (t, C-4), 70.4 (d, C-9), 79.6 (d, C-6), 79.8 (d, C-8), 126.4, 127.1, 127.2, 127.4, 127.6, 128.6, 128.7, 128.9 (8 d, Ar, Ph), 137.4, 138.9, 140.4, 140.8 (4 s, Ar, Ph) ppm; IR (ATR): $\tilde{v} 3610-3180(\mathrm{O}-\mathrm{H}), 3090-3010(=\mathrm{C}-\mathrm{H}), 2950-2850(\mathrm{C}-\mathrm{H}), 1240(\mathrm{C}-\mathrm{O})$ cm^{-1}; ESI-TOF (m / z): $[\mathrm{M}+\mathrm{H}]$ calcd for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{NO}_{4}, 418.2013$; found, 418.2015; [$\mathrm{M}+\mathrm{Na}$] calcd for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{NO}_{4} \mathrm{Na}, 440.1838$; found, 440.1831 ; anal. calcd for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{NO}_{4}$ (417.5): C, 74.80; H, 6.52; N, 3.35; found: C, 74.80; H, 6.67; N, 3.73.
(2S,3R,4R,5S,6R)-3-Amino-6-(biphenyl-4-yl)-2,5-di(hydroxymethyl)tetrahydro-2H-pyran-4-ol (19)

A suspension of $\mathrm{Pd} / \mathrm{C}(10 \% \mathrm{Pd}, 55 \mathrm{mg})$ and $\mathrm{iPrOH}(3 \mathrm{~mL})$ was saturated with hydrogen for 15 min . The bicyclic compound 18 ($55 \mathrm{mg}, 0.132 \mathrm{mmol}$) was dissolved in THF
(1 mL), and added to the suspension. The mixture was stirred for 24 h under hydrogen pressure (balloon). The mixture was then filtrated through a pad of Celite ${ }^{\circledR}$ and the solvent was removed in vacuo. The crude material was purified by column chromatography (silica gel, $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 7: 1$) to yield 19 ($26 \mathrm{mg}, 60 \%$) as a colourless solid.

Decomposition $>230{ }^{\circ} \mathrm{C}$; $[\alpha]_{D}{ }^{22}+44.4\left(c\right.$ 1.00, $\left.\mathrm{CH}_{3} \mathrm{OH} / \mathrm{CHCl}_{3}, 7: 3\right) ;{ }^{1} \mathrm{H}$ NMR $(700 \mathrm{MHz}$, $\left.\mathrm{CD}_{3} \mathrm{OD} / \mathrm{CDCl}_{3}, 2: 1\right): \delta 2.40(\mathrm{dt}, J=3.0,6.7 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}), 3.40(\mathrm{dd}, J=3.0,11.1 \mathrm{~Hz}, 1$ $\left.\mathrm{H}, 5-\mathrm{CH}_{2}\right), 3.73(\mathrm{dd}, \mathrm{J}=1.7,4.5 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}), 3.88-3.90\left(\mathrm{~m}, 2 \mathrm{H}, 2-\mathrm{H}, 5-\mathrm{CH}_{2}\right), 4.07\left(\mathrm{~m}_{\mathrm{c}}\right.$, $\left.2 \mathrm{H}, 2-\mathrm{CH}_{2}\right), 4.64(\mathrm{dd}, J=4.5,6.7 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}), 4.98(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 7.43-7.45$ (m, 1 H, Ph), 7.53-7.55 (m, $2 \mathrm{H}, \mathrm{Ph}$), 7.63-7.64 (m, $2 \mathrm{H}, \mathrm{Ar}$), 7.70-7.72 (m, $4 \mathrm{H}, \mathrm{Ph}, \mathrm{Ar}$) ppm; ${ }^{13} \mathrm{C}$ NMR (175 MHz, $\mathrm{CD}_{3} \mathrm{OD} / \mathrm{CDCl}_{3}, 2: 1$): $\delta 45.5$ (d, C-5), 51.6 (d, C-3), 55.0 (t, 5CH_{2}), 63.1 (t, 2- CH_{2}), 69.0 (d, C-4), 76.8 (d, C-2), 81.7 (d, C-6), 127.0, 127.4, 127.6, 128.0, 129.5 ($5 \mathrm{~d}, \mathrm{Ph}$), 139.0, 141.1, 141.6 (3 s, Ph, Ar) ppm; IR (ATR): \tilde{v} 3480-3240 (O-H, N-H), 3045-3030 (=C-H), 2950-2850 (C-H) cm ${ }^{-1}$; ESI-TOF $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{NO}_{4}, 330.1705 ;$ found, 330.1713; $[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{NO}_{4} \mathrm{Na}, 352.1525$; found, 352.1518.

p-Terphenyl derivative 21

Compound 12a (400 mg, 0.748 mmol$), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(86 \mathrm{mg}, 74.8 \mu \mathrm{~mol})$ and benzene-1,4diboronic acid ($59 \mathrm{mg}, 0.36 \mathrm{mmol}$) were filled in a sealed tube and flushed with argon.

THF (2 mL), DMF (8 mL) and 2 m aq. $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution (1.5 mL) were added and the mixture was stirred for 48 h at $70^{\circ} \mathrm{C}$. The solution was cooled to rt , brine $(20 \mathrm{~mL})$ was added and the aqueous layer extracted with ethyl acetate $(3 \times 80 \mathrm{~mL})$. The combined organic layers were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvents removed in vacuo. The crude product was purified by column chromatography (silica gel, hexanes/EtOAc 3:2) to yield 21 ($296 \mathrm{mg}, 84 \%$) as a yellow solid.

mp $163-165{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{22}+55.6\left(c 1.10, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.12,0.13$ (2 s, 6 H each, SiMe), $0.94(\mathrm{~s}, 18 \mathrm{H}, \mathrm{Sit}-\mathrm{Bu}), 2.15(\mathrm{sbr}, 2 \mathrm{H}, 5-\mathrm{H}), 3.33(\mathrm{~s}, 2 \mathrm{H}, 1-\mathrm{H}), 3.80$ (d, $J=10.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OH}$), 3.84 (dd, $J=1.9,12.0 \mathrm{~Hz}, 2 \mathrm{H}, 4-\mathrm{H}$), 3.88 (ddd, $J=1.0,5.8$, $9.0 \mathrm{~Hz}, 2 \mathrm{H}, 8-\mathrm{H}), 4.01-4.12\left(\mathrm{~m}, 8 \mathrm{H}, 8-\mathrm{CH}_{2}, 9-\mathrm{H}, 4-\mathrm{H}\right), 4.15,4.39\left(\mathrm{AB}\right.$ system, $\mathrm{J}_{\mathrm{AB}}=$ $15.1 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{NCH}_{2}$), $4.84(\mathrm{~s}, 2 \mathrm{H}, 6-\mathrm{H}), 7.28-7.29(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.33-7.38(\mathrm{~m}, 8 \mathrm{H}, \mathrm{Ph})$, 7.46 (AB part of $\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}$ system, $J_{\mathrm{AB}}=8.3 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar}$), $7.61\left(\mathrm{~A}^{\prime} \mathrm{B}^{\prime}\right.$ part of $\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}$ system $\left.J_{A^{\prime} B^{\prime}}=8.3 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar}\right), 7.65(\mathrm{~s}, 4 \mathrm{H}, \mathrm{Ar}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-5.2$, -5.1 (2 q, SiMe), 18.3, 26.0 (s, q, Sit-Bu), 41.2 (d, C-5), 60.6 (d, C-1), 61.9 (t, NCH $)_{2}$, 62.6 (t, 8- CH_{2}), 65.4 (t, C-4), 70.7 (d, C-9), 79.6 (d, C-6), 79.9 (d, C-8), 126.4, 127.0, 127.3, 127.5, 128.2, 128.5 (6 d, Ar, Ph), 138.6, 139.3, 139.8, 139.8 (4 s, Ar, Ph) ppm; IR (ATR): \tilde{v} 3615-3155 (O-H), 3085-3030 (=C-H), 2955-2855 (C-H), $1250(\mathrm{C}-\mathrm{O}) \mathrm{cm}^{-1}$; ESITOF $(m / z):[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{58} \mathrm{H}_{77} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{Si}_{2}, 985.5219$; found, 985.5216 ; $[\mathrm{M}+\mathrm{Na}]^{+}$ calcd for $\mathrm{C}_{58} \mathrm{H}_{76} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{Si}_{2} \mathrm{Na}$, 1007.5038; found, 1007.5032; anal. calcd for $\mathrm{C}_{58} \mathrm{H}_{76} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{Si}_{2}$ (985.4): C, 70.69; H, 7.77; N 2.84; found, C, 70.71; H, 7.49; N, 3.25.

p-Terphenyl derivative 22

Compound 21 ($50 \mathrm{mg}, 0.051 \mathrm{mmol}$) was dissolved in THF (1 mL), AcOH (1 mL) and $\mathrm{H}_{2} \mathrm{O}(0.1 \mathrm{~mL})$. Zinc ($67 \mathrm{mg}, 1.02 \mathrm{mmol}$) was added and the mixture was heated to $60^{\circ} \mathrm{C}$ for 18 h . The salts were filtered off and the solvent was removed in vacuo. The crude product was purified by column chromatography [silica gel, $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}(7 \mathrm{~N} \mathrm{NH} 3$) 10:1] to yield 22 ($23 \mathrm{mg}, 59 \%$) as a colorless solid.

mp 135-137 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{22}+57.1$ (c 1.05, $\mathrm{CH}_{3} \mathrm{OH} / \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}, 9: 1$); ${ }^{1} \mathrm{H}$ NMR ($700 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD} /$ $\left.\mathrm{CDCl}_{3} 5: 1\right): \delta 2.27\left(\mathrm{~m}_{\mathrm{c}}, 2 \mathrm{H}, 5-\mathrm{H}\right), 3.16(\mathrm{dd}, \mathrm{J}=1.8,3.9 \mathrm{~Hz}, 2 \mathrm{H}, 3-\mathrm{H}), 3.37(\mathrm{dd}, \mathrm{J}=4.7$, $11.6 \mathrm{~Hz}, 2 \mathrm{H}, 5-\mathrm{CH}_{2}$), $3.65(\mathrm{td}, J=1.8,5.2 \mathrm{~Hz}, 2 \mathrm{H}, 2-\mathrm{H}), 3.74(\mathrm{dd}, J=2.8,11.6 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.5-\mathrm{CH}_{2}\right), 3.84\left(\mathrm{dd}, J=4.8,11.7 \mathrm{~Hz}, 2 \mathrm{H}, 2-\mathrm{CH}_{2}\right), 3.90\left(\mathrm{dd}, J=5.2,11.7 \mathrm{~Hz}, 2 \mathrm{H}, 2-\mathrm{CH}_{2}\right)$, $3.95\left(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 4.12\left(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 4.39(\mathrm{dd}, J=3.9,5.9$ $\mathrm{Hz}, 2 \mathrm{H}, 4-\mathrm{H}), 4.78\left(\mathrm{~m}_{\mathrm{c}}, 2 \mathrm{H}, 6-\mathrm{H}\right), 7.25-7.27(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.33-7.35(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ph}), 7.39-$ 7.40 (m, $4 \mathrm{H}, \mathrm{Ph}$), 7.54 (A part of $\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}$ system; $J=8.3 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar}$), 7.64 (B part of $\left.\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}, J=8.3 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar}\right), 7.69(\mathrm{~s}, 4 \mathrm{H}, \mathrm{Ar}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (175 MHz, CD ${ }_{3} \mathrm{OD} / \mathrm{CDCl}_{3}$ 5:1): $\delta 45.2$ (d, C-5), 53.7 (t, NCH ${ }_{2}$), 55.3 (t, 5- CH_{2}), 57.1 (d, C-3), 62.3 (t, 2- CH_{2}), 73.2 (d, C-4), 78.9 (d, C-2), 80.3 (d, C-6), 125.6, 125.6, 126.4, 127.1, 127.7 (5 d, Ph, Ar), 138.6, 138.6, 139.0, 139.1 (4 s, Ar, Ph) ppm; IR (ATR): $\tilde{v} 3560-3080(\mathrm{O}-\mathrm{H}), 3060-3025$ (=C-H), 2950-2800 (C-H), 1235 (C-O) cm^{-1}; ESI-TOF (m / z): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for
$\mathrm{C}_{46} \mathrm{H}_{53} \mathrm{~N}_{2} \mathrm{O}_{8}, 761.3796$; found, 761.3796 ; $[\mathrm{M}+2 \mathrm{H}]^{2+}$ calcd for $\mathrm{C}_{46} \mathrm{H}_{54} \mathrm{~N}_{2} \mathrm{O}_{8}, 381.1934$; found, 381.1945.
(1S,2R,4S,5R,8S)-6-Benzyl-2-(4-bromophenyl)-4-[(tert-butyldimethylsiloxy)methyl]3 -oxa-6-azabicyclo[3.2.1]octan-8-ol (24) and ($2 S, 3 R, 4 R, 5 S, 6 R$)-3-(benzylamino)-6-(4-bromophenyl)-2-[(tert-butyldimethylsiloxy)methyl]-5-(hydroxymethyl)tetra-hydro-2H-pyran-4-ol (25)

Under an argon atmosphere compound 12a ($150 \mathrm{mg}, 0.281 \mathrm{mmol}$) was dissolved in degassed THF (2 mL), a samarium(II) iodide solution ($8.12 \mathrm{~mL}, 0.1 \mathrm{~m}$ in THF, 0.812 mmol) was added dropwise and the solution stirred for 30 min at rt . After completion of the reaction (control by TLC), the mixture was stirred under air for 10 min , sat. aq. potassium sodium tartrate solution (20 mL) was added and the aqueous layer was extracted with ethyl acetate ($5 \times 80 \mathrm{~mL}$). The combined organic layers were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvents removed in vacuo. The crude product was purified by column chromatography (silica gel, hexanes/EtOAc $2: 1 \rightarrow 1: 1$) to yield 24 (115 mg , 79\%) and 25 ($21 \mathrm{mg}, \mathbf{1 4 \%}$) as colorless solids.

mp 39-41 ${ }^{\circ} \mathrm{C} ;[a]_{\mathrm{D}}{ }^{22}+22.3\left(c 1.01, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 0.06(\mathrm{~s}, 6 \mathrm{H}$, SiMe_{2}), 0.09 ($\mathrm{s}, 9 \mathrm{H}, \mathrm{Sit}-\mathrm{Bu}$), 2.20 ($\mathrm{s}_{\mathrm{br}}, 1 \mathrm{H}, \mathrm{OH}$), 2.42 (A part of ABX system, $\mathrm{J}_{\mathrm{AB}}=$ $5.6 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}$), 2.49 (B part of ABX system, $J_{A B}=5.6 \mathrm{~Hz}, J_{B X}=10.0 \mathrm{~Hz}, 1 \mathrm{H}, 1-\mathrm{H}$), 2.73 (X part of ABX system, $J_{\mathrm{BX}}=10.0 \mathrm{~Hz}, 1 \mathrm{H}, 7-\mathrm{H}$), 3.32 (s, $1 \mathrm{H}, 5-\mathrm{H}$), 3.55 (X part of $A B X$ system, $\left.J_{A X}=5.3 \mathrm{~Hz}, J_{B X}=7.7 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}\right), 3.77\left(\right.$ A part of $A B X$ system $J_{A X}=5.3$
$\left.\mathrm{Hz}, J_{\mathrm{AB}}=9.6 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{CH}_{2}\right), 3.86$ (B part of AB system, $J_{\mathrm{BX}}=7.7 \mathrm{~Hz}, J_{\mathrm{AB}}=9.6 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.4-\mathrm{CH}_{2}\right), 4.01\left(\mathrm{AB}\right.$ system, $\left.J_{\mathrm{AB}}=13.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2}\right), 4.09\left(\mathrm{AB}\right.$ system, $J_{\mathrm{AB}}=13.4 \mathrm{~Hz}, 1$ $\left.\mathrm{H}, \mathrm{NCH}_{2}\right), 4.20(\mathrm{~s}, 1 \mathrm{H}, 8-\mathrm{H}), 4.62(\mathrm{~s}, 1 \mathrm{H}, 2-\mathrm{H}), 7.20\left(\mathrm{~A}\right.$ part of $\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}$ system, $J=8.2$ Hz, $2 \mathrm{H}, \mathrm{Ar}), 7.23-7.24$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{Ph}$), 7.29-7.32 (m, $2 \mathrm{H}, \mathrm{Ph}$), 7.37-7.38 (m, $2 \mathrm{H}, \mathrm{Ph}$), 7.43 (B part of $\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}$ system, $\left.J=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $-5.21,-5.18$ ($\mathrm{q}, \mathrm{SiMe}$), 18.4, 26.1 ($\mathrm{s}, \mathrm{q}, \mathrm{Sit}-\mathrm{Bu}$), 50.0 (t, C-7), 50.2 (d, C-1), 62.0 (t, NCH_{2}), 63.0 (t, 4-CH2), 65.3 (d, C-5), 78.4 (d, C-2), 78.7 (d, C-8), 80.1 (d, C-4), 121.0 (s, Ar), 126.9, 127.7, 128.4, 128.5, 131.3 (5 d, Ph, Ar), 139.9, 140.7 (2 s, Ph, Ar) ppm; IR (ATR): \tilde{v} 3570-3150 (O-H), 3090-3030 (=C-H), 2950-2855 (C-H) cm ${ }^{-1}$; ESI-TOF $(m / z):[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{26} \mathrm{H}_{37} \mathrm{BrNO}_{3} \mathrm{Si}$, 518.1726; found, 518.1738; anal. calcd for $\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{BrNO}_{3} \mathrm{Si}(518.6): \mathrm{C}, 60.22 ; \mathrm{H}, 7.00 ; \mathrm{N}, 2.70$; found: C, $60.42 ; \mathrm{H}, 7.15$; N, 2.75.

mp 46-48 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{22}+56.1\left(c 1.00, \mathrm{CH}_{3} \mathrm{OH}\right) ;{ }^{1} \mathrm{H}$ NMR (700 MHz, CD $\left.{ }_{3} \mathrm{OD}\right): \delta 0.07(\mathrm{~s}, 6 \mathrm{H}$, SiMe_{2}), 0.88 (s, $9 \mathrm{H}, \mathrm{Sit}-\mathrm{Bu}$), 2.16 (ddd, $J=2.0,3.6,9.8 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}$), $3.14(\mathrm{dd}, J=4.0$, $\left.11.5 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{CH}_{2}\right), 3.23\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}, 3-\mathrm{H}\right), 3.61(\mathrm{td}, J=1.8,4.7 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{H}), 3.79(\mathrm{dd}, J$ $\left.=2.0,11.5 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{CH}_{2}\right), 3.93(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH} 2), 3.97\left(\mathrm{~m}_{\mathrm{c}}, 2 \mathrm{H}, 2-\mathrm{CH}_{2}\right)$, $4.25\left(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2}\right), 4.41(\mathrm{dd}, J=3.6,6.1 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}), 4.75(\mathrm{~d}, J=3.6$ Hz, 1 H, 6-H), 7.28-7.31 (m, $1 \mathrm{H}, \mathrm{Ph}$), 7.34-7.36 (m, $2 \mathrm{H}, \mathrm{Ph}$), 7.39-7.40 (m, $4 \mathrm{H}, \mathrm{Ph}, \mathrm{Ar}$), $7.48(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (175 MHz, CD $\left.\mathrm{C}_{3} \mathrm{OD}\right): \delta-5.34,-5.28(\mathrm{q}, \mathrm{SiMe})$, 19.2, 26.3 (s, q, Sit-Bu), 47.4 (d, C-5), 55.6 (t, NCH2), 56.1 (t, 5-CH2), 59.3 (d, C-3), 65.5 (t, 2-CH2), 75.3 (d, C-4), 79.9 (d, C-2), 82.1 (d, C-6), 121.5 (s, Ar), 128.4, 129.3, 129.6, 129.7, 131.9 (5 d, Ph, Ar), 132.1, 140.9 (2 s, Ar, Ph) ppm; IR (ATR): \tilde{v} 3555-3080 (O-H,

N-H), 3060-3030 (=C-H), 2930-2855 (C-H) cm ${ }^{-1}$; ESI-TOF (m / z): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{26} \mathrm{H}_{39} \mathrm{BrNO}_{4} \mathrm{Si}$, 536.1826; found, 536.1847.

p-Terphenyl derivative 26

Compound 21 ($209 \mathrm{mg}, 0.212 \mathrm{mmol}$) was dissolved in THF (3 mL) and stirred with TBAF ($0.86 \mathrm{~mL}, 1 \mathrm{~m}$ in THF, 0.858 mmol) for 2 d at rt . The resulting brownish precipitate was filtered off and washed with dichloromethane (100 mL) and methanol (100 mL) until the solid was colorless. The product was dried in vacuo to yield 23 ($48 \mathrm{mg}, 30 \%$) as a colorless solid.
mp 247-249 ${ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}{ }^{22}+150.3\left(c \quad 0.33, \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$): $\delta 2.25$ (s, 2 $\mathrm{H}, 5-\mathrm{H}$), $3.60(\mathrm{~s}, 2 \mathrm{H}, 1-\mathrm{H}), 3.71(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 2 \mathrm{H}, 4-\mathrm{H}), 4.32(\mathrm{td}, J=1.0,5.8 \mathrm{~Hz}, 2 \mathrm{H}$, $8-\mathrm{H}$), 4.53 ($\mathrm{s}_{\mathrm{br}}, 2 \mathrm{H}, 9-\mathrm{H}$), 4.54 (dd, $J=5.8,10.9 \mathrm{~Hz}, 2 \mathrm{H}, 8-\mathrm{CH}_{2}$), 4.63 (dd, $J=6.1$, $10.9 \mathrm{~Hz}, 2 \mathrm{H}, 8-\mathrm{CH}_{2}$), $4.67\left(\mathrm{~d}, \mathrm{~J}=14.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 4.80(\mathrm{dd}, J=2.2,11.6 \mathrm{~Hz}, 2 \mathrm{H}$, $4-\mathrm{H}$), $5.13\left(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 5.17$ ($\mathrm{s}, 2 \mathrm{H}, 6-\mathrm{H}$), 7.27 (C part of $\mathrm{AA}^{\prime \prime} \mathrm{BB}^{\prime \prime} \mathrm{C}$ system, $\left.J_{C B}=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}\right), 7.36\left(\mathrm{~A}\right.$ part of $\mathrm{AA}^{\prime \prime} \mathrm{BB}{ }^{\prime \prime} \mathrm{C}$ system, $\mathrm{J}_{\mathrm{AB}}=7.4 \mathrm{~Hz}, 4 \mathrm{H}$, Ph), 7.67 (B part of $\mathrm{AA}^{\prime \prime} \mathrm{BB}^{\prime \prime} \mathrm{C}$ system, $\mathrm{J}_{\mathrm{ABC}}=7.4 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ph}$), 7.79 (s, $8 \mathrm{H}, \mathrm{Ar}$), 7.81 (s, $4 \mathrm{H}, \mathrm{Ar}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}$): $\delta 42.8$ (d, C-5), $59.5(\mathrm{t}, \mathrm{C}-4), 60.4\left(\mathrm{t}, \mathrm{NCH}_{2}\right)$, 61.2 (d, C-1), 64.4 (t, 8-CH2), 70.1 (d, C-9), 80.8 (d, C-6), 81.7 (d, C-8), 127.4, 127.6, 128.0, 128.3, 129.0, 129.7 (6 d, Ar, Ph) 140.1, 140.5, 141.1, 141.6 (4 s, Ph, Ar) ppm; IR (ATR): $\tilde{v} \quad 3500-3275 \quad(\mathrm{O}-\mathrm{H}), \quad 3030 \quad(=\mathrm{C}-\mathrm{H}), \quad 2920-2855 \quad(\mathrm{C}-\mathrm{H}), \quad 1255$ (C-O) cm^{-1}; ESI-TOF (m / z): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{46} \mathrm{H}_{49} \mathrm{~N}_{2} \mathrm{O}_{8}, 757.3489$; found, 757.3488 ;
$[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{46} \mathrm{H}_{48} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{Na}, 779.3308$; found, 779.3318; anal. calcd for $\mathrm{C}_{46} \mathrm{H}_{48} \mathrm{~N}_{2} \mathrm{O}_{8}$ (756.9): C, 73.00; H, 6.39; N, 3.70; found: C, $69.73 ; \mathrm{H}, 7.46$; N, 3.41.

p-Terphenyl derivative 27

Compound 16 ($300 \mathrm{mg}, 0.453 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(32 \mathrm{mg}, 45.3 \mu \mathrm{~mol})$ and benzene-1,4-diboronic acid ($37 \mathrm{mg}, 0.222 \mathrm{mmol}$) were filled in a sealed tube and flushed with argon. DMF (4 mL) and $2 \mathrm{~m} \mathrm{Na}_{2} \mathrm{CO}_{3}$ solution $(0.9 \mathrm{~mL})$ were added and the mixture was stirred for 3 d at $80^{\circ} \mathrm{C}$. The solution was cooled to rt , brine $(20 \mathrm{~mL})$ was added and the aqueous layer extracted with ethyl acetate (80 mL). The combined organic layers were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvents removed in vacuo. The crude product was purified by column chromatography (silica gel, hexanes/EtOAc 2:1) to yield 27 (140 mg, 51\%) as a yellow solid.
mp 144-146 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{22}-18.5\left(c 1.00, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (700 MHz, $\left.\mathrm{CDCl}_{3}\right)$: $\delta 2.11\left(\mathrm{~s}_{\mathrm{br}}, 2 \mathrm{H}\right.$, $5-\mathrm{H}), 3.33\left(\mathrm{~S}_{\mathrm{br}}, 2 \mathrm{H}, 1-\mathrm{H}\right), 3.37\left(\mathrm{dd}, J=7.8,8.8 \mathrm{~Hz}, 2 \mathrm{H}, 8-\mathrm{CH}_{2}\right), 3.74(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 2$ $\mathrm{H}, 4-\mathrm{H}), 3.81(\mathrm{~d}, \mathrm{~J}=10.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OH}), 3.85-3.87\left(\mathrm{~m}, 2 \mathrm{H}, 8-\mathrm{CH}_{2}\right), 3.86,3.93(\mathrm{AB}$ system, $\left.J_{\mathrm{AB}}=14.9 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{NCH}_{2}\right), 4.00(\mathrm{dd}, J=5.0,12.0 \mathrm{~Hz}, 2 \mathrm{H}, 4-\mathrm{H}), 4.12-4.16(\mathrm{~m}, 4$ H, 9-H, 8-H), $4.90(\mathrm{~s}, 2 \mathrm{H}, 6-\mathrm{H}), 7.07-7.08(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ph}), 7.21-7.28(\mathrm{~m}, 8 \mathrm{H}, \mathrm{Ph}), 7.31-$ $7.33(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ph}), 7.45\left(\mathrm{~A}\right.$ part of $\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}$ system, $\left.J_{\mathrm{AB}}=8.3 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar}\right), 7.50-7.51(\mathrm{~m}$, $10 \mathrm{H}, \mathrm{Ph}), 7.60\left(\mathrm{~B}\right.$ part of $\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}$ system, $\left.J_{\mathrm{AB}}=8.3 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar}\right), 7.64(\mathrm{~s}, 4 \mathrm{H}, \mathrm{Ar}) \mathrm{ppm}$; ${ }^{13} \mathrm{C}$ NMR (175 MHz, CDCl_{3}): $\delta 41.1$ (d, C-5), 61.0 (d, C-1), 61.3 (t, NCH_{2}), 64.3 (t, 8CH_{2}), 65.3 (t, C-4), 70.5 (d, C-8), 78.8 (d, C-9), 79.7 (d, C-6), 87.1 (s, CPh $)_{3}$, 126.5,
127.0, 127.2, 127.3, 127.5, 128.1, 128.2, 128.4, 128.8 (9 d, Ar, Ph), 138.1, 139.3, 139.8, 139.9, 143.9 ($5 \mathrm{~s}, \mathrm{Ar}, \mathrm{Ph}$) ppm; IR (ATR): \tilde{v} 3605-3140 (O-H), 3086-3030 (=C-H), 29552850 (C-H); ESI-TOF (m / z): $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{84} \mathrm{H}_{77} \mathrm{~N}_{2} \mathrm{O}_{8}, 1241.5680$; found, 1241.5668; [$\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{84} \mathrm{H}_{76} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{Na}, 1263.5533$; found, 1263.5485; anal. calcd $\mathrm{C}_{84} \mathrm{H}_{76} \mathrm{~N}_{2} \mathrm{O}_{8}$ (1241.5): C, 81.26; H, 6.17; N, 2.26; found: C, 81.17; H, 6.26; N, 2.28.

p-Terphenyl derivatives 30 and 31 :

A suspension of $\mathrm{Pd} / \mathrm{C}(10 \% \mathrm{Pd}, 200 \mathrm{mg})$ and $\mathrm{iPrOH}(3 \mathrm{~mL})$ was saturated with hydrogen for 15 min . Compound 27 ($100 \mathrm{mg}, 80.5 \mu \mathrm{~mol}$) and TFA ($23 \mathrm{mg}, 0.02 \mathrm{~mL}, 0.201 \mathrm{mmol}$) were dissolved in hexafluoro-2-propanol (2 mL) and added to the suspension. The mixture was stirred for 8 h under hydrogen pressure (balloon), then filtered through Celite ${ }^{\circledR}$ and the solvents were removed in vacuo. Under an argon atmosphere the crude product was dissolved in degassed $\mathrm{MeOH}(1 \mathrm{~mL})$ and a samarium(II) iodide solution (0.1 m in THF, $4.83 \mathrm{~mL}, 0.483 \mathrm{mmol}$) was added dropwise. The mixture was stirred for 30 min at rt and then for another 10 min in the presence of air. A size exclusion chromatography (Sephadex ${ }^{\text {TM }} \mathrm{LH}-20, \mathrm{CH}_{3} \mathrm{OH}$) of the mixture and subsequent purification by thin-layer chromatography (silica gel, $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}, 7 \mathrm{~N} \mathrm{NH}_{3}$) afforded $\mathbf{3 0}$ ($25 \mathrm{mg}, 54 \%$) and 31 ($20 \mathrm{mg}, 37 \%$) as a yellow solid.
p-Terphenyl derivatives 30

Decomposition $>200{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{22}+13.5\left(c 0.40, \mathrm{CH}_{3} \mathrm{OH}\right) ;{ }^{1} \mathrm{H}$ NMR (700 MHz, $\mathrm{CD}_{3} \mathrm{OD}$): $\delta 2.33\left(\mathrm{~m}_{\mathrm{c}}, 2 \mathrm{H}, 5-\mathrm{H}\right), 3.28\left(\mathrm{dd}, J=2.8,11.0 \mathrm{~Hz}, 2 \mathrm{H}, 5-\mathrm{CH}_{2}\right), 3.66(\mathrm{dd}, J=1.6,4.6 \mathrm{~Hz}, 2$ $\mathrm{H}, 3-\mathrm{H}), 3.80\left(\mathrm{dd}, \mathrm{J}=1.5,11.0 \mathrm{~Hz}, 2 \mathrm{H}, 5-\mathrm{CH}_{2}\right), 3.85$ (X part of ABX system with additional $\left.J=1.6 \mathrm{~Hz}, J_{\mathrm{AX}}=J_{\mathrm{BX}}=4.7 \mathrm{~Hz}, 2 \mathrm{H}, 2-\mathrm{H}\right), 3.95$ (A part of ABX system, $J_{\mathrm{AX}}=$ 4.7, $\left.J_{A B}=12.0 \mathrm{~Hz}, 2 \mathrm{H}, 2-\mathrm{CH}_{2}\right), 3.98\left(\mathrm{~B}\right.$ part ABX system, $J_{\mathrm{BX}}=4.7, J_{\mathrm{AB}}=12.0 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.2-\mathrm{CH}_{2}\right), 4.46(\mathrm{sbr}, 2 \mathrm{H}, \mathrm{NH}), 4.59(\mathrm{dd}, J=4.6,6.6 \mathrm{~Hz}, 2 \mathrm{H}, 4-\mathrm{H}), 4.94(\mathrm{~d}, \mathrm{~J}=3.6 \mathrm{~Hz}, 2 \mathrm{H}$, $6-H$), 7.58 (A part of ${A A^{\prime}}^{\prime} B^{\prime}$ system, $\left.J_{A B}=8.2 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar}\right), 7.69$ (B part of $\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}$ system, $\left.J_{A B}=8.2 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar}\right), 7.73(\mathrm{~s}, 4 \mathrm{H}, \mathrm{Ar}) \mathrm{ppm} ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(175 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): \delta$ 46.0 (d, C-5), 52.0 (d, C-3), $55.2\left(\mathrm{t}, 5-\mathrm{CH}_{2}\right), 63.4\left(\mathrm{t}, 2-\mathrm{CH}_{2}\right), 69.1$ (d, C-4), 77.1 (d, C-2), 82.0 (d, C-6), 127.5, 127.6, 128.3 (3 d, Ar), 139.9, 140.7, 141.0 (3 s, Ar) ppm; IR (ATR): च $3570-3475$ (O-H, N-H), 3095-3020 (=C-H), 2960-2930 (C-H), 1240 (C-O) cm ${ }^{-1}$; ESITOF $(\mathrm{m} / \mathrm{z}):[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{32} \mathrm{H}_{41} \mathrm{~N}_{2} \mathrm{O}_{8}, 581.2863$; found, 581.2882 ; $[\mathrm{M}+2 \mathrm{H}]$ calcd for $\mathrm{C}_{32} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{O}_{8}$, 291.1471; found 291.1475.

p-Terphenyl derivatives 31

mp 154-156 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{22}+100.9\left(c 1.00, \mathrm{CH}_{3} \mathrm{OH}\right) ;{ }^{1} \mathrm{H}$ NMR (700 MHz, CD$\left.{ }_{3} \mathrm{OD}\right): \delta 2.32\left(\mathrm{~s}_{\mathrm{br}}\right.$, $1 \mathrm{H}, 5-\mathrm{H}), 2.37\left(\mathrm{~s}_{\mathrm{br}}, 1 \mathrm{H}, 5^{\prime}-\mathrm{H}\right), 3.28-3.29\left(\mathrm{~m}, 2 \mathrm{H}, 5-\mathrm{CH}_{2}, 5^{\prime}-\mathrm{CH}_{2}\right), 3.62\left(\mathrm{~s}_{\mathrm{br}}, 1 \mathrm{H}, 3-\mathrm{H}\right)$, 3.69-3.71 (m, 2 H, 2-H, $\left.3^{\prime}-\mathrm{H}\right), 3.80\left(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{CH}_{2}\right), 3.84\left(\mathrm{~m}_{\mathrm{c}}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right)$, $3.88\left(\mathrm{dd}, J=2.2,10.8 \mathrm{~Hz}, 1 \mathrm{H}, 5^{\prime}-\mathrm{CH}_{2}\right), 3.94\left(\mathrm{dd}, J=4.8,11.8 \mathrm{~Hz}, 1 \mathrm{H}, 2^{\prime}-\mathrm{CH}_{2}\right), 3.97-$ $4.00\left(\mathrm{~m}, 2 \mathrm{H}, 2-\mathrm{CH}_{2}, 2^{\prime}-\mathrm{CH}_{2}\right), 4.07\left(\mathrm{dd}, J=3.3,12.2 \mathrm{~Hz}, 1 \mathrm{H}, 2-\mathrm{CH}_{2}\right), 4.33(\mathrm{~d}, \mathrm{~J}=12.7$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{NCH}_{2}\right), 4.57\left(\mathrm{~d}, \mathrm{~m}_{\mathrm{c}}, J=12.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}_{2}, 4-\mathrm{H}\right), 4.67(\mathrm{dd}, J=4.1,6.7 \mathrm{~Hz}, 1 \mathrm{H}$,
$\left.4^{\prime}-\mathrm{H}\right), 4.93(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}), 4.96\left(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}, 6^{\prime}-\mathrm{H}\right), 7.41-7.46(\mathrm{~m}, 3 \mathrm{H}$, Ph), 7.49-7.50 (m, $2 \mathrm{H}, \mathrm{Ph}$), 7.56-7.59 (m, 4 H, Ar), 7.68-7.70 (m, 4 H, Ar), 7.74 (s, 4 H , Ar); ${ }^{13} \mathrm{C}$ NMR ($175 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta 46.1$ ($\mathrm{d}, \mathrm{C}-5$), 46.5 ($\mathrm{d}, \mathrm{C}-5$) $) 51.9$ ($\mathrm{d}, \mathrm{C}-3$), 53.9 (t , $\left.\mathrm{NCH}_{2}\right), 55.3\left(\mathrm{t}, 5-\mathrm{CH}_{2}\right), 55.9\left(\mathrm{t}, 5^{\prime}-\mathrm{CH}_{2}\right), 59.8\left(\mathrm{~d}, \mathrm{C}-3^{\prime}\right), 63.4\left(\mathrm{t}, 2^{\prime}-\mathrm{CH}_{2}\right), 65.1\left(\mathrm{t}, 2-\mathrm{CH}_{2}\right)$, 69.5 (d, C-4), 72.3 (d, C-4'), 77.3 (d, C-2), 77.4 (d, C-2'), 81.9 (d, C-6), 82.4 (d, C-6'), 127.5, 127.6, 127.7, 128.3, 130.0,130.2, 130.4 (7 d, Ar, Ph), 139.9, 140.0, 140.7, 141.0 (4 s, Ph, Ar); IR (ATR): \tilde{v} 3605-3430 (O-H), 3090-3030 (=C-H), 2950-2880 (C-H), 1255 (C-O) cm^{-1}; ESI-TOF (m / z): $\left[\mathrm{M}+\mathrm{H}^{+}\right.$calcd for $\mathrm{C}_{39} \mathrm{H}_{47} \mathrm{~N}_{2} \mathrm{O}_{8}, 671.3327$; found, 671.3357; $[\mathrm{M}+2 \mathrm{H}]^{2+}$ calcd for $\mathrm{C}_{78} \mathrm{H}_{93} \mathrm{~N}_{4} \mathrm{O}_{16}, 336.1706$; found 336.1713.

References

1. Bouché, L.; Kandziora, M.; Reissig, H.-U., Beilstein J. Org. Chem. 2014, 10, 213223. doi: 10.3762/bjoc. 10.17
2. Helms, M.; Schade, W.; Pulz, R.; Watanabe, T.; Al-Harrasi, A.; Fišera, L.; Hlobilová, I.; Zahn, G.; Reissig, H.-U. Eur. J. Org. Chem. 2005, 1003-1019. doi: 10.1002/ejoc. 200400627
3. Borch, R. F.; Bernstein, M. D.; Durst, H. D. J. Am. Chem. Soc. 1971, 93, 28972904. doi: 10.1021/ja00741a013
4. Imamoto, T.; Ono, M.; Chem. Lett. 1987, 16, 501-502.
doi: 10.1246/cl.1987.501
5. Pfrengle, F.; Dekaris, V.; Schefzig, L.; Zimmer, R.; Reissig, H.-U., Synlett 2008, 2965-2968. doi: 10.1002/chem. 201001060
