Supporting Information

for

One-pot stereoselective synthesis of α , β -differentiated diamino esters via the sequence of aminochlorination, aziridination and intermolecular S_N2 reaction

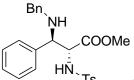
Yiwen Xiong¹, Ping Qian¹, Chenhui Cao¹, Haibo Mei¹, Jianlin Han^{*1,2,3}, Guigen Li^{2,4} and Yi Pan^{*1}

Address: ¹School of Chemsitry and Chemical Engineering, State of Key Laboratory of Coordination, Nanjing University, Nanjing, 210093, China, ²Institute for Chemistry & BioMedical Sciences, Nanjing University, Nanjing, 210093, China, ³High-Tech Research Institute of Nanjing University, Changzhou, 213164, China and ⁴Department of Chemsitry and Biochemistry, Texas Tech Unviersity, Lubbock, Texas, 79409-1061, USA

Email: Jianlin Han* - hanjl@nju.edu.cn; Yi Pan yipan@nju.edu.cn *Corresponding author

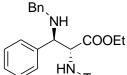
Experimental details and spectral data

Table of Contents

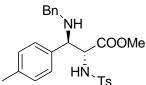

1.	General remarks	.S2
2.	General procedure for one-pot synthesis of α , β -diamino esters	.S2
3.	General procedure for ring-opening of aziridine 6	.88
4.	X-ray crystallography for 50	S9
5.	¹ H and ¹³ C NMR spectra for compounds 5	S10

1 General remarks

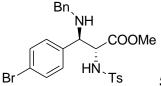
All the reactions were carried out in oven-dried glassware and all commercially available reagents were used without further purification. Dichloromethane and acetonitrile used for the reaction were distilled using calcium hydride under nitrogen prior to use. ¹H and ¹³C NMR spectra (TMS used as internal standard) were recorded at ambient temperature at 300 MHz, 75 MHz respectively in CDCl₃ with a Bruker ARX300 spectrometer. High resolution mass spectra for all the new compounds were done by a Micro mass Q-Tof instrument (ESI). Analytical thin-layer chromatography (TLC) was performed using 0.25 mm precoated silica gel plates and the compounds were visualized with UV light ($\lambda = 254$ nm). Compounds were purified using flash column chromatography on silica gel (200–300mesh).


2 General procedure for one-pot synthesis of α,β-diamino esters

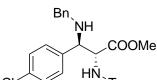
Into a dry vial was added cinnamic ester **4** (0.50 mmol) and freshly distilled acetonitrile (3.0 mL). The reaction vial was loaded with freshly activated 4 Å molecular sieves (250 mg), TsNCl₂ (1.0 mmol) and Cu(OTf)₂ (10 mol %). The solution in the capped vial was stirred at room temperature for 24 h without argon protection. The reaction was finally quenched by dropwise addition of saturated aqueous Na₂SO₃ solution (3.0 mL). After quenching for 30 min, benzylamine (2.0 mL) was added to the mixture exposed to air. Another hour was needed until conversion was complete. Then the phases were separated, and the aqueous phase was extracted with ethyl acetate (3×10 mL). The combined organic layers were washed with brine, dried over anhydrous sodium sulfate, and concentrated to dryness. Purification by flash chromatography (EtOAc/hexane, from1:20 to 1:3, v/v) provided final products **5**.



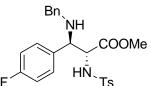
5a Pale yellow oil; ¹H NMR (300 MHz, CDCl₃) δ 7.64 (d, J = 6.3 Hz, 2H), 7.31-7.20 (m, 10H), 7.08 (dd, J = 5.7, 0.9 Hz, 2H), 5.37 (d, J = 6.6 Hz, 1H), 4.25 (d, J = 5.4 Hz, 1H), 3.98 (d, J = 3.6 Hz, 1H), 3.70 (d, J = 9.6 Hz, 1H), 3.55 (d, J = 9.9 Hz, 1H), 3.36 (s, 3H), 2.38 (s, 3H) ; ¹³C NMR (75 MHz, CDCl₃) δ 170.2,


143.6, 139.4, 137.4 136.6, 129.6, 128.7, 128.4, 128.2, 127.3, 127.2, 62.7, 59.7, 52.1, 50.7, 21.5; HRMS-(ESI) m/z [M+H]⁺ calcd for C₂₄H₂₇N₂O₄S, 439.1692; found, 439.1694

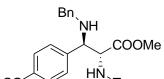
5b Pale yellow oil; ¹H NMR (300 MHz, CDCl₃) δ 7.79 (d, J = 8.4 Hz, 2H), 7.34-7.23 (m, 10H), 7.14 (dd, J = 7.5, 2.1 Hz, 2H), 5.38 (d, J = 5.7 Hz, 1H), 4.29 (s, 1H), 4.05 (d, J = 4.8 Hz, 1H), 3.82 (qd, J = 7.2, 1.2 Hz, 2H), 3.75 (d, J = 13.2 Hz, 1H), 3.61 (d, J = 12.9 Hz, 1H), 2.40 (s, 3H), 0.98 (t, J = 6.9 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 169.6, 143.6, 139.4, 137.4, 136.6, 129.6, 128.7, 128.4, 128.3, 128.2, 127.3, 127.1, 62.7, 61.5, 59.6, 50.7, 21.5, 13.8; HRMS-(ESI) m/z [M+H]⁺ calcd for C₂₅H₂₉N₂O₄S, 453.1848; found, 453.1860

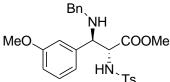


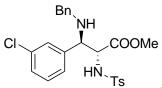
5c Pale yellow oil; ¹H NMR (300 MHz, CDCl₃) δ 7.68 (d, J = 8.1 Hz, 2H), 7.34-7.23 (m, 7H), 7.15 (d, J = 7.8 Hz, 2H), 7.00 (d, J = 8.1 Hz, 2H), 5.41 (br, 1H), 4.28 (s, 1H), 3.98 (d, J = 5.1 Hz, 1H), 3.73 (d, J = 13.2 Hz, 1H), 3.58 (d, J = 13.2 Hz, 1H), 3.41 (s, 3H), 2.41 (s, 3H), 2.36 (s, 3H) ; ¹³C NMR (75 MHz, CDCl₃) δ 170.3, 143.6, 139.5, 137.9, 136.6, 134.3, 129.5, 129.4, 128.4, 128.3, 127.3, 127.1, 62.4, 59.8, 52.1, 50.7, 21.5, 21.1; HRMS-(ESI) m/z [M+H]⁺ calcd for C₂₅H₂₉N₂O₄S , 453.1848; found, 453.1840

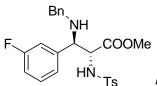


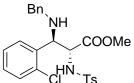
Br **5d** Pale yellow oil; ¹H NMR (300 MHz, CDCl₃) δ 7.65 (d, J = 8.1 Hz, 2H), 7.42 (d, J = 8.1 Hz, 2H), 7.33-7.23 (m, 7H), 7.01 (d, J = 8.4 Hz, 2H), 5.43 (d, J = 6.9 Hz, 1H), 4.25 (s, 1H), 3.97 (d, J = 5.1 Hz, 1H), 3.71 (d, J = 13.2 Hz, 1H), 3.56 (d, J = 13.2 Hz, 1H), 3.44 (s, 3H), 2.42 (s, 3H) ; ¹³C NMR (75 MHz, CDCl₃) δ 170.2, 143.8, 139.2, 136.8, 136.5, 131.8, 129.6, 129.0, 128.4, 128.2, 127.2,

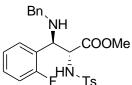

122.1, 62.3, 59.6, 52.3, 50.7, 21.6; HRMS-(ESI) m/z [M+H]⁺ calcd for C₂₄H₂₆BrN₂O₄S, 517.0797; found, 517.0793

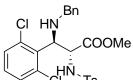

Cl Se Pale yellow oil; ¹H NMR (300 MHz, CDCl₃) δ 7.65 (dd, *J* = 8.1,1.8 Hz, 2H), 7.33-7.24 (m, 9H), 7.07 (dd, *J* = 8.1, 1.8 Hz, 2H), 5.37 (d, *J* = 3.3 Hz, 1H), 4.26 (s, 1H), 3.99 (d, *J* = 2.1 Hz, 1H), 3.71 (d, *J* = 13.2 Hz, 1H), 3.57 (d, *J* = 11.8 Hz, 1H), 3.43 (s, 3H), 2.42 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 170.3, 143.8, 139.3, 136.3, 134.1, 129.7, 128.9, 128.8, 128.5, 127.3, 62.3, 59.8, 52.4, 50.8, 21.6; HRMS-(ESI) m/z [M+H]⁺ calcd for C₂₄H₂₆ClN₂O₄S, 473.1302; found, 473.1300

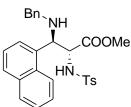

5 f Pale yellow oil; ¹H NMR (300 MHz, CDCl₃) δ 7.67 (d, J = 8.1 Hz, 2H), 7.33-6.98 (m, 11H), 5.42 (br, 1H), 4.27 (d, J = 4.5 Hz, 1H), 4.01 (d, J = 5.1 Hz, 1H), 3.72 (d, J = 13.2 Hz, 1H), 3.57 (d, J = 13.2 Hz, 1H), 3.42 (s, 3H), 2.42 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 170.2, 164.1, 160.8, 143.7, 139.3, 136.6, 133.4, 129.6, 129.0, 128.9, 128.4, 128.2, 127.3, 127.2, 115.6, 62.1, 59.8, 52.2, 50.7, 21.5; HRMS-(ESI) m/z [M+H]⁺ calcd for C₂₄H₂₆FN₂O₄S, 457.1597; found, 457.1601

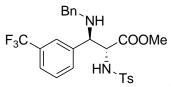

5g Pale yellow oil; ¹H NMR (300 MHz, CDCl₃) δ 7.67 (d, *J* = 8.4 Hz, 2H), 7.33-7.17 (m, 11H), 5.50 (br, 1H), 4.28 (s, 1H), 4.04 (d, *J* = 5.1 Hz, 1H), 3.72 (d, *J* = 13.2 Hz, 1H), 3.58 (d, *J* = 12.9 Hz, 1H), 3.42 (s, 3H), 2.41 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 170.2, 148.9, 143.8, 139.3, 136.6, 129.6, 128.8, 128.4, 128.2, 127.2, 121.0, 62.2, 59.8, 52.2, 50.8, 21.4; HRMS-(ESI) *m*/*z* [M+H]⁺ calcd for C₂₅H₂₆F₃N₂O₅S, 523.1515; found, 523.1495

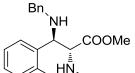

5h Pale yellow oil; ¹H NMR (300 MHz, CDCl₃) δ 7.63 (d, J = 8.4 Hz, 2H), 7.34-7.20 (m, 9H), 6.80-6.77 (m, 2H), 5.71 (br, 1H), 4.33-4.26 (m, 2H), 3.77-3.67 (m, 4H), 3.48-3.43 (m, 4H), 2.41 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 170.4, 158.6, 143.6, 139.2, 136.6, 135.9, 130.6, 129.6, 128.5, 128.4, 127.3, 114.8, 113.4, 59.3, 58.0, 55.6, 52.2, 50.8, 21.5; HRMS-(ESI) m/z [M+Na]⁺ calcd for $C_{25}H_{28}N_2O_5S$ Na, 491.1617; found, 491.1674


5 File yellow oil; ¹H NMR (300 MHz, CDCl₃) δ 7.67 (d, J = 8.1 Hz, 2H), 7.34-7.24 (m, 9H), 7.09-7.03 (m, 2H), 5.41 (d, J = 9.3 Hz, 1H), 4.26 (dd, J = 8.7, 4.8 Hz, 2H), 3.73 (d, J = 13.2 Hz, 1H), 3.58 (d, J = 13.2 Hz, 1H), 3.44 (s, 3H) 2.42 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 170.1, 143.8, 139.9, 139.1, 136.4, 134.7,130.0, 129.6, 128.4, 128.2, 127.4, 127.2, 126.4, 125.5, 62.4, 125.5, 62.4, 59.7, 52.3, 50.7, 21.5; HRMS-(ESI) m/z [M+H]⁺ calcd for C₂₄H₂₆ClN₂O₄S, 473.1302; found, 473.1296


5j Pale yellow oil; ¹H NMR (300 MHz, CDCl₃) δ 7.68 (d, J = 8.1 Hz, 2H), 7.34-7.23 (m, 8H), 6.99 (td, J = 8.4, 2.1 Hz, 1H), 6.92 (d, J = 7.8 Hz, 1H), 6.85 (d, J = 9.6 Hz, 1H), 5.46 (br, 1H), 4.28 (d, J = 4.2 Hz, 1H), 4.01 (d, J = 5.1 Hz, 1H), 3.73 (d, J = 13.2 Hz, 1H), 3.58 (d, J = 13.2 Hz, 1H), 3.43 (s, 3H), 2.41 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 170.2, 164.2, 161.8, 143.8, 139.3, 136.5, 130.3, 129.6, 128.4, 128.2, 127.3, 127.2, 123.1, 115.1, 114.2, 62.4, 59.7, 52.3, 50.7, 21.5; HRMS-(ESI) m/z [M+H]⁺ calcd for C₂₄H₂₆FN₂O₄S, 457.1597; found, 457.1615


5k Pale yellow oil; ¹H NMR (300 MHz, CDCl₃) δ 7.64 (d, J = 8.1 Hz, 2H), 7.35-7.21 (m, 11H), 5.70 (br, 1H), 4.38-4.29 (m, 2H), 3.69 (d, J = 12.9 Hz, 1H), 3.45 (d, J = 13.2 Hz, 1H), 3.38 (s, 3H), 2.41 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 170.3, 143.6, 139.1, 136.6, 134.7, 134.2, 130.1, 129.6, 129.2, 128.5, 128.4, 127.8, 127.3, 127.0, 59.0, 57.8, 52.1, 50.7, 21.5; HRMS-(ESI) m/z [M+H]⁺ calcd for C₂₄H₂₆ClN₂O₄S, 473.1302; found, 473.1294


5 Pale yellow oil; ¹H NMR (300 MHz, CDCl₃) δ 7.67 (d, J = 8.4 Hz, 2H), 7.36-7.16 (m, 10H), 7.01 (t, J = 6.0 Hz, 1H), 5.49 (d, J = 9.0 Hz, 1H), 4.35-4.26 (m, 2H), 3.73 (d, J = 12.9 Hz, 1H), 3.57 (d, J = 12.9 Hz, 1H), 3.44 (s, 3H), 2.41 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 170.3, 162.6, 159.3, 143.6, 139.3, 136.6, 129.6, 128.6, 128.4, 128.3, 127.3, 124.4, 115.8, 115.5, 58.7, 57.0, 52.2, 51.0, 21.5 ; HRMS-(ESI) m/z [M+H]⁺ calcd for C₂₄H₂₆FN₂O₄S, 457.1597; found, 457.1615.


5m Pale yellow oil; ¹H NMR (300 MHz, CDCl₃) δ 7.52 (d, J = 8.4 Hz, 2H), 7.31-7.13 (m, 10H), 5.30 (d, J = 10.8 Hz, 1H), 4.71 (d, J = 10.8 Hz, 1H), 4.58 (d, J = 10.8 Hz, 1H) 3.61 (d, J = 13.2 Hz, 1H), 3.60 (s, 3H), 3.45 (d, J = 13.2 Hz, 1H), 2.40 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 171.4, 143.4, 139.2, 137.6, 136.4, 133.9, 132.6, 130.0, 129.4, 128.2, 128.1, 127.2, 60.9, 57.9, 52.3, 51.4, 21.5; HRMS-(ESI) m/z [M+H]⁺ calcd for C₂₄H₂₅Cl₂N₂O₄S, 507.0912; found, 507.0931

5n Red-brown oil; ¹H NMR (300 MHz, CDCl₃) δ 7.90 (d, J = 7.5 Hz, 1H), 7.83 (d, J = 7.8 Hz, 1H), 7.64 (d, J = 8.1 Hz, 2H), 7.57 (t, J = 7.5 Hz, 1H), 7.52-7.21 (m, 11H), 5.98 (br, 1H), 4.78 (d, J = 4.8 Hz, 1H), 4.34 (d, J = 4.5 Hz, 1H), 3.83 (d, J = 12.9 Hz, 1H), 3.54 (d, J = 13.2 Hz, 1H), 3.22 (s, 3H), 2.43 (s, 3H) ; ¹³C NMR (75 MHz, CDCl₃) δ 170.2, 143.6, 139.5, 136.7, 134.0, 132.8, 131.5, 129.6, 129.2, 128.7, 128.5, 127.4, 127.3, 126.5, 125.8, 125.1, 123.5, 121.9, 58.5, 57.9, 51.8, 50.8, 21.6; HRMS-(ESI) m/z [M+H]⁺ calcd for C₂₈H₂₉N₂O₄S, 489.1848; found, 489.1843

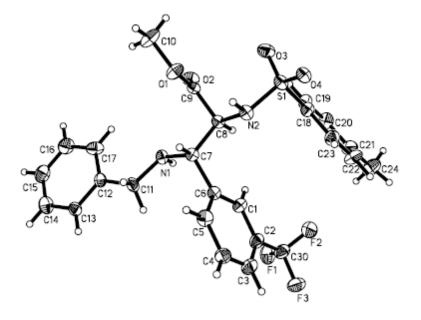
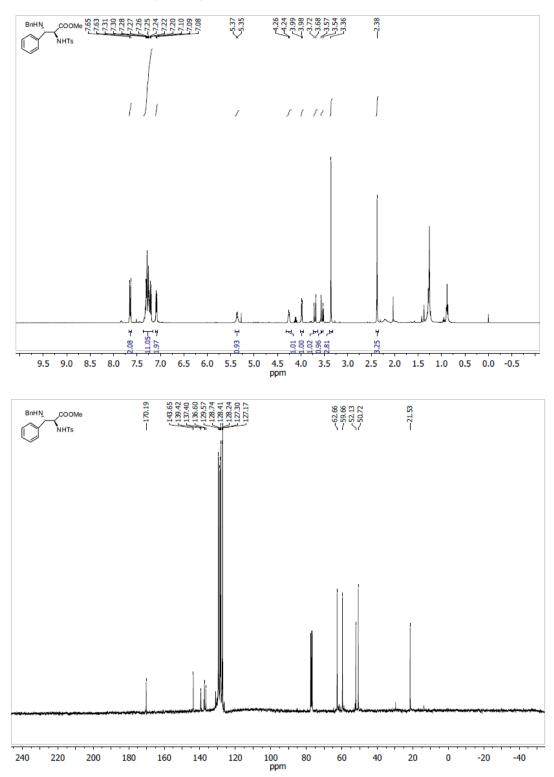
50 white solid; m.p. 118-120 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.64 (d, J = 8.4 Hz, 2H), 7.54 (d, J = 7.6 Hz, 1H), 7.45 (t, J = 7.6 Hz, 1H), 7.37 (d, J = 8.0 Hz, 1H), 7.31-7.21 (m, 8H), 5.34 (d, J = 8.8 Hz, 1H), 4.28-4.24 (m, 1H), 3.70 (d, J = 13.2 Hz, 1H), 3.57 (d, J = 13.2 Hz, 1H), 3.40 (s, 3H), 2.38 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 170.0, 143.9, 139.1 (d, J = 9.9 Hz), 136.4, 131.8, 130.7, 129.6, 129.2, 128.5, 128.2, 127.3 (d, J = 2.7 Hz), 125.0 (d, J = 3.7 Hz), 124.1 (d, J = 3.8 Hz), 62.6, 59.6, 52.3, 50.8, 21.5; HRMS-(ESI) m/z [M+H]⁺ calcd for C₂₅H₂₆F₃N₂O₄S, 507.1565; found, 507.1564

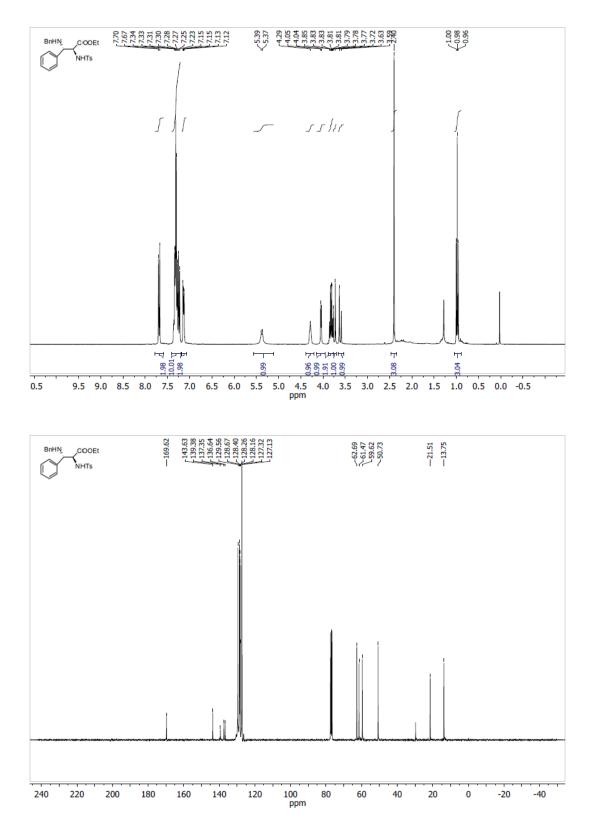
^Br^{III} **5p** Pale yellow oil; ¹H NMR (300 MHz, CDCl₃) δ 7.64 (d, J = 8.1 Hz, 2H), 7.54 (d, J = 7.8 Hz, 1H), 7.38-7.15 (m, 10H), 5.80 (br, 1H), 4.36-4.26 (m, 2H), 3.69 (d, J = 12.9 Hz, 1H), 3.43 (d, J = 12.9 Hz, 1H), 3.37 (s, 3H), 2.41 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 170.3, 143.6, 139.1, 136.7, 136.4, 133.4, 129.6, 128.5, 128.4, 127.9, 127.6, 127.4, 127.3, 127.0, 124.6, 61.4, 57.8, 52.1, 50.7, 21.5; HRMS-(ESI) m/z [M+H]⁺ calcd for C₂₄H₂₆BrN₂O₄S, 517.0797; found, 517.0794.

3 General procedure for ring-opening of aziridine 6

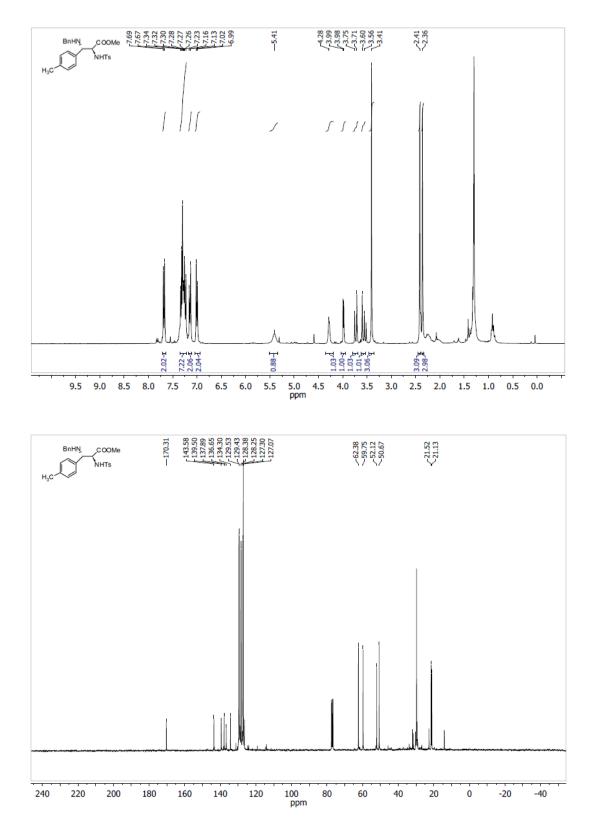
Into a solution of prepared aziridine **6** (0.5 mmol) in dry CH₃CN (4.0 mL) was added benzylamine (5.0 mmol) in an ice bath. Then the temperature was raised to room temperature and the reaction mixture was maintained at rt for another 3 h, resulting in complete conversion. After being concentrated under reduced pressure, the residue was purified via column chromatography with ethyl acetate and petroleum ether (from 1:10 to 1:3 v/v) as eluent to give compound **5b**.

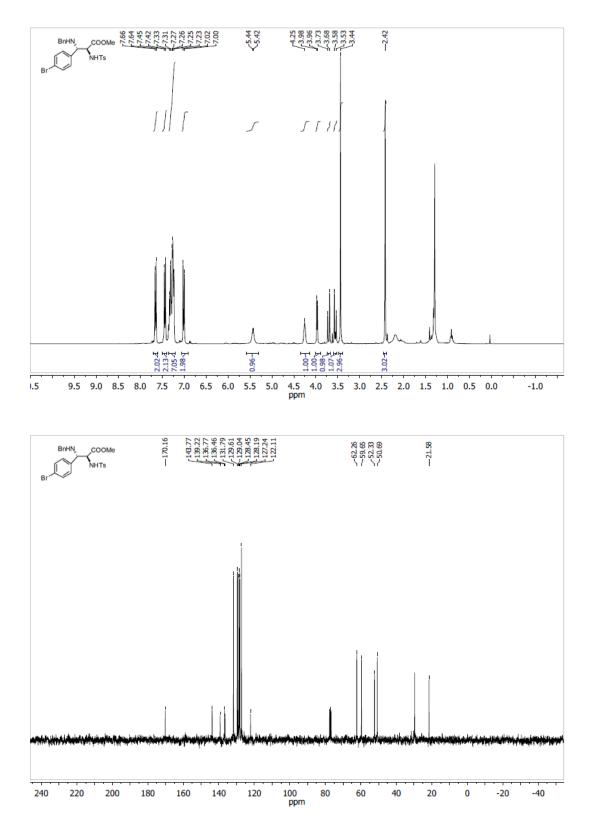
4 X-ray crystallography for 50

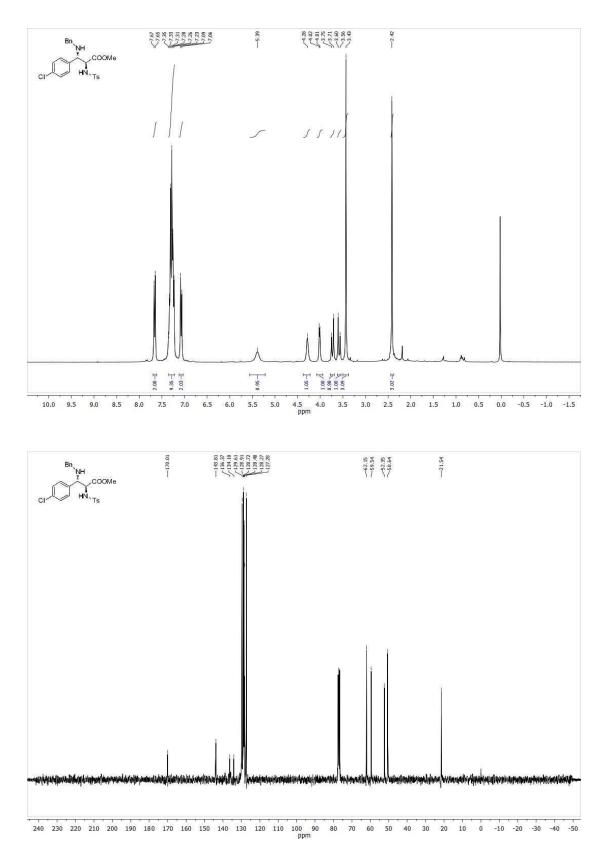



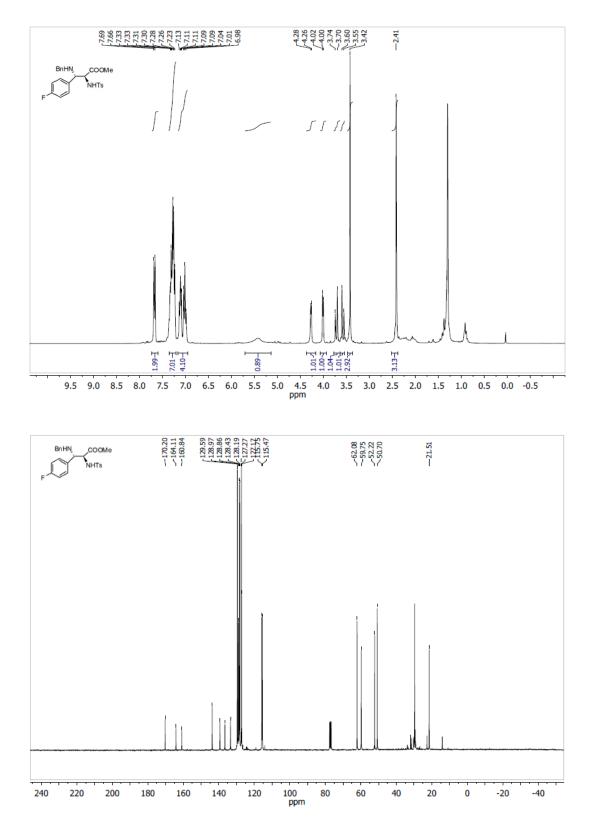

Figure S1: ORTEP diagram of compound 50 (CCDC 982288).

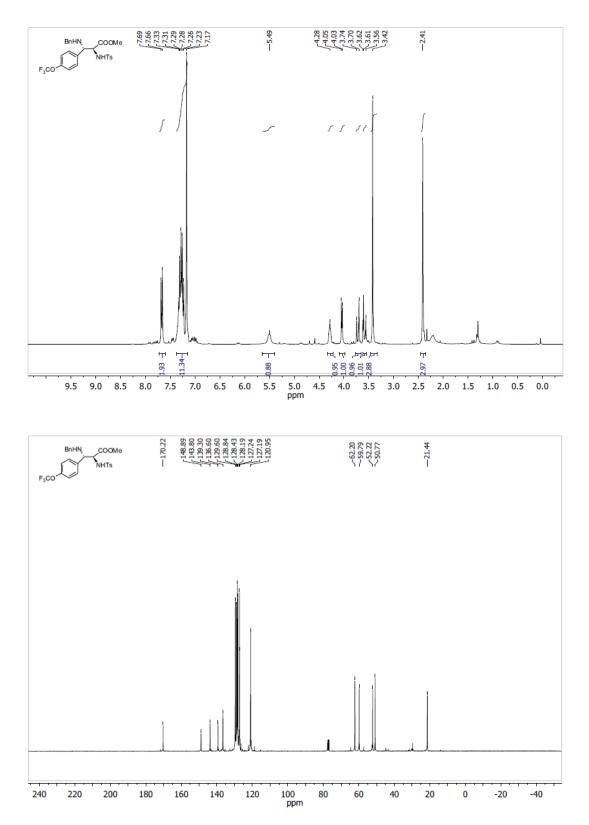
5 ¹H and ¹³C NMR spectra for compound 5

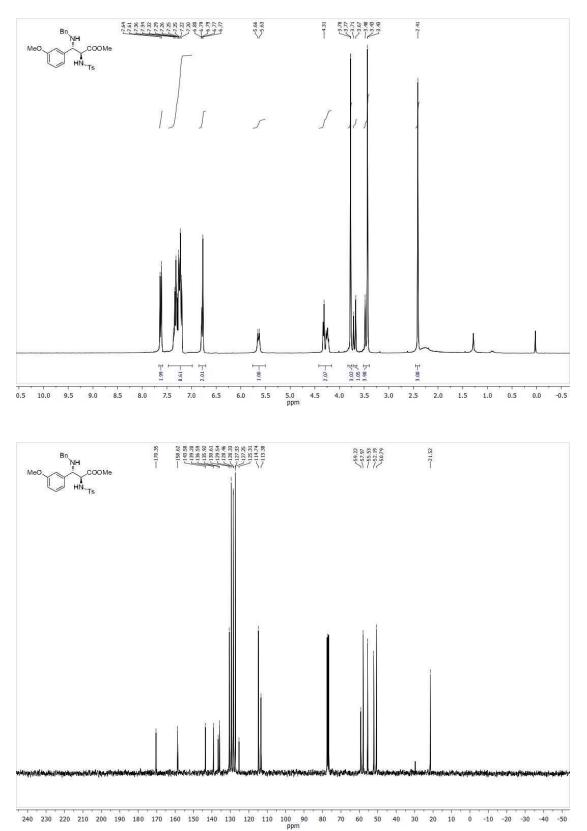

¹H and ¹³C NMR of **5a** (CDCl₃)

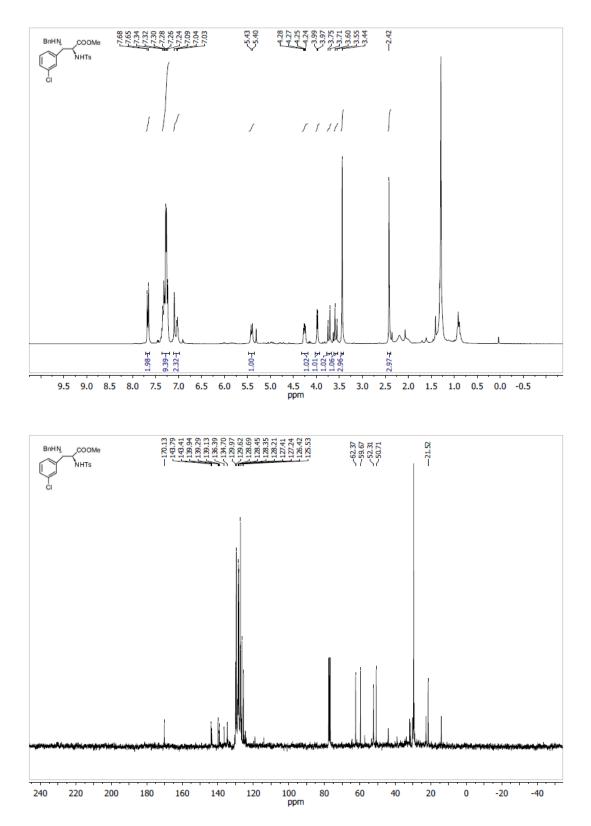

¹H and ¹³C NMR of **5b** (CDCl₃)

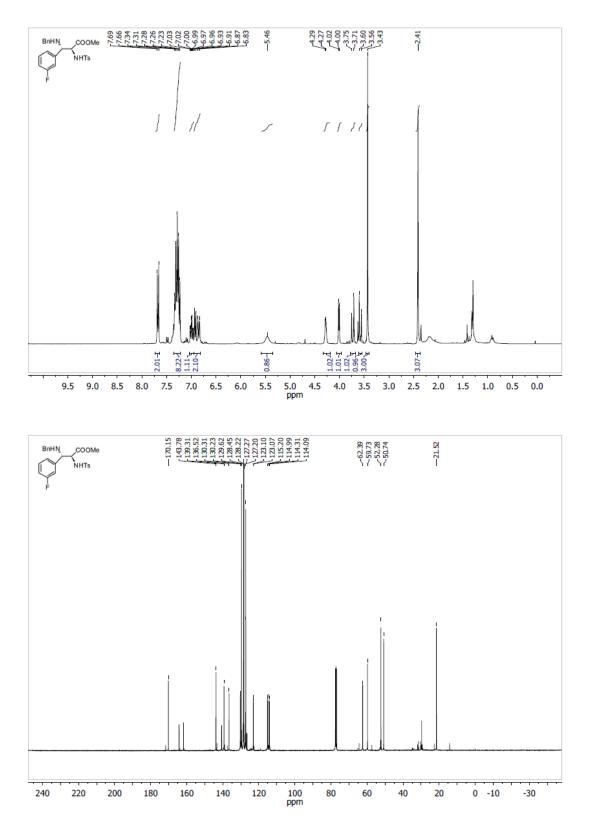

¹H and ¹³C NMR of **5c** (CDCl₃)

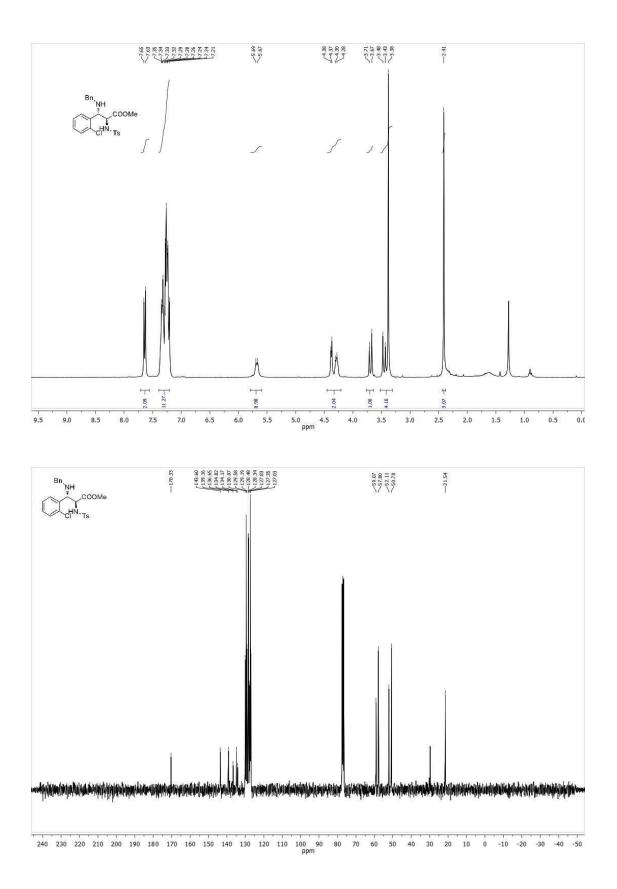

¹H and ¹³C NMR of **5d** (CDCl₃)


¹H and ¹³C NMR of **5e** (CDCl₃)

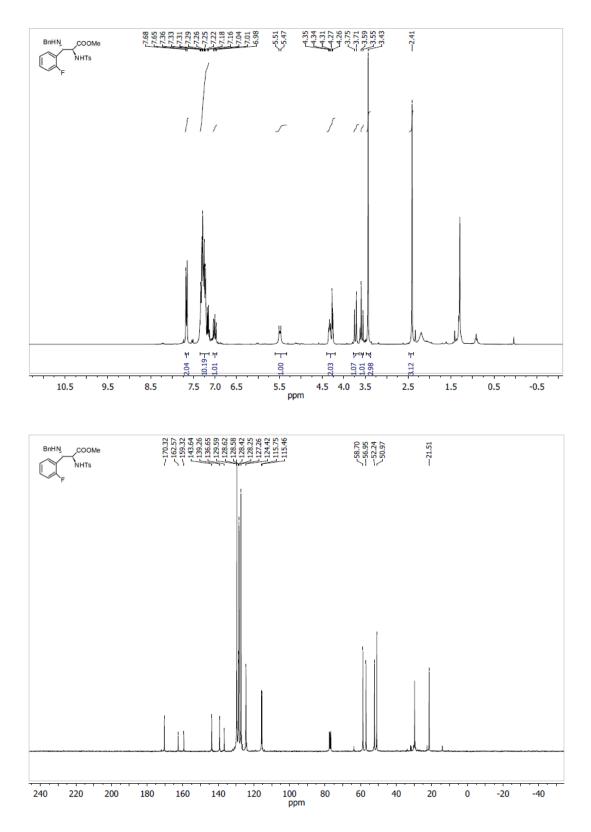

¹H and ¹³C NMR of **5f** (CDCl₃)


¹H and ¹³C NMR of **5g** (CDCl₃)

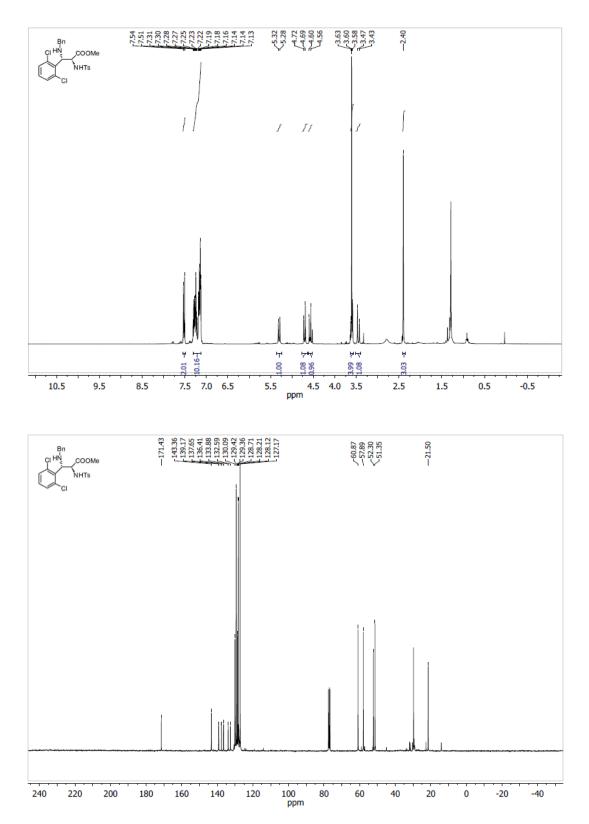

¹H and ¹³C NMR of **5h** (CDCl₃)

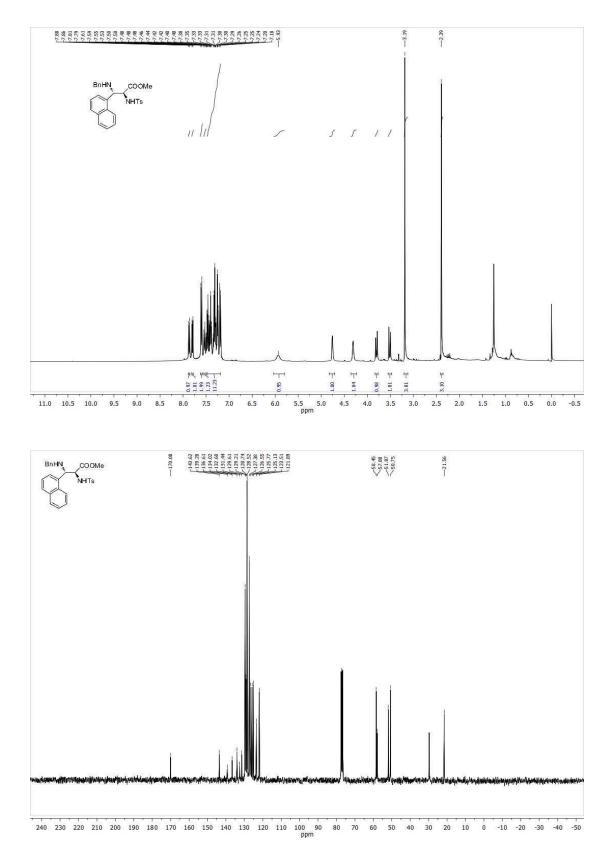


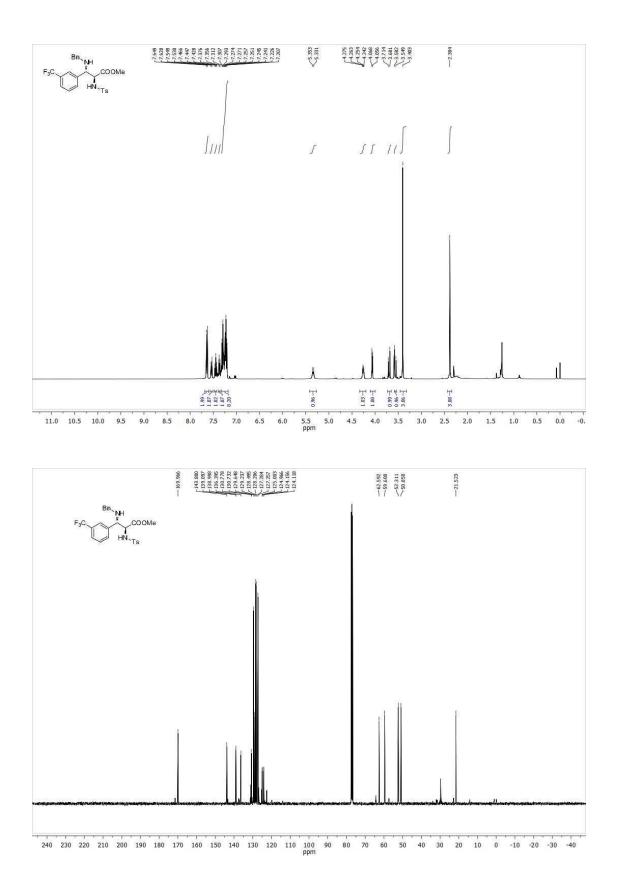
¹H and ¹³C NMR of **5i** (CDCl₃)

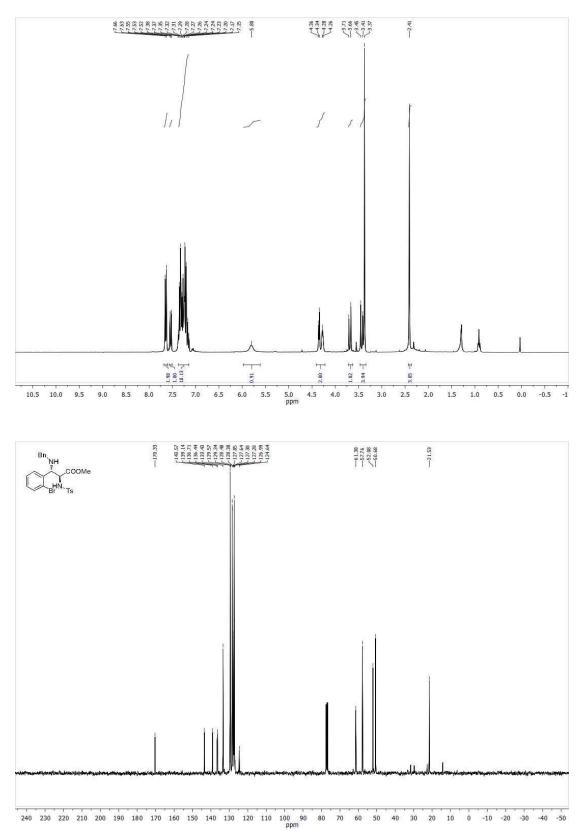


¹H and ¹³C NMR of **5j** (CDCl₃)




¹H and ¹³C NMR of **5l** (CDCl₃)


¹H and ¹³C NMR of **5m** (CDCl₃)


¹H and ¹³C NMR of **5n** (CDCl₃)

¹H and ¹³C NMR of **50** (CDCl₃)

¹H and ¹³C NMR of **5p** (CDCl₃)

