Supporting Information

for
One-pot stereoselective synthesis of $\boldsymbol{\alpha}, \boldsymbol{\beta}$-differentiateddiamino esters via the sequence of aminochlorination,aziridination and intermolecular $\mathbf{S}_{\mathbf{N}} \mathbf{2}$ reaction
Yiwen Xiong ${ }^{1}$, Ping Qian ${ }^{1}$, Chenhui Cao ${ }^{1}$, Haibo Mei ${ }^{1}$, Jianlin Han ${ }^{* 1,2,3}$, Guigen $\mathrm{Li}^{2,4}$ and Yi Pan* ${ }^{1}$
Address: ${ }^{1}$ School of Chemsitry and Chemical Engineering, State of Key Laboratory of Coordination, Nanjing University, Nanjing, 210093, China, ${ }^{2}$ Institute for Chemistry \& BioMedical Sciences, Nanjing University, Nanjing, 210093, China, ${ }^{3}$ High-Tech Research Institute of Nanjing University, Changzhou, 213164, China and ${ }^{4}$ Department of Chemsitry and Biochemistry, Texas Tech Unviersity, Lubbock, Texas, 79409-1061, USA
Email: Jianlin Han* - hanjl@nju.edu.cn; Yi Pan yipan@nju.edu.cn *Corresponding author
Experimental details and spectral data
Table of Contents

1. General remarks S2
2. General procedure for one-pot synthesis of α, β-diamino esters S2
3. General procedure for ring-opening of aziridine 6 S8
4. X-ray crystallography for $\mathbf{5 0}$. S9
5. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for compounds 5 S10

1 General remarks

All the reactions were carried out in oven-dried glassware and all commercially available reagents were used without further purification. Dichloromethane and acetonitrile used for the reaction were distilled using calcium hydride under nitrogen prior to use. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra (TMS used as internal standard) were recorded at ambient temperature at $300 \mathrm{MHz}, 75 \mathrm{MHz}$ respectively in CDCl_{3} with a Bruker ARX300 spectrometer. High resolution mass spectra for all the new compounds were done by a Micro mass Q-Tof instrument (ESI). Analytical thin-layer chromatography (TLC) was performed using 0.25 mm precoated silica gel plates and the compounds were visualized with UV light ($\lambda=254 \mathrm{~nm}$). Compounds were purified using flash column chromatography on silica gel (200-300mesh).

2 General procedure for one-pot synthesis of $\boldsymbol{\alpha}, \boldsymbol{\beta}$-diamino esters

Into a dry vial was added cinnamic ester $4(0.50 \mathrm{mmol})$ and freshly distilled acetonitrile (3.0 mL). The reaction vial was loaded with freshly activated $4 \AA$ molecular sieves $(250 \mathrm{mg}), \mathrm{TsNCl}_{2}(1.0 \mathrm{mmol})$ and $\mathrm{Cu}(\mathrm{OTf})_{2}(10 \mathrm{~mol} \%)$. The solution in the capped vial was stirred at room temperature for 24 h without argon protection. The reaction was finally quenched by dropwise addition of saturated aqueous $\mathrm{Na}_{2} \mathrm{SO}_{3}$ solution (3.0 mL). After quenching for 30 min , benzylamine (2.0 mL) was added to the mixture exposed to air. Another hour was needed until conversion was complete. Then the phases were separated, and the aqueous phase was extracted with ethyl acetate $(3 \times 10 \mathrm{~mL})$. The combined organic layers were washed with brine, dried over anhydrous sodium sulfate, and concentrated to dryness. Purification by flash chromatography (EtOAc/hexane, from1:20 to 1:3, v/v) provided final products 5.

5a Pale yellow oil; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.64(\mathrm{~d}, J=$ $6.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.31-7.20(\mathrm{~m}, 10 \mathrm{H}), 7.08(\mathrm{dd}, J=5.7,0.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.37(\mathrm{~d}, J=6.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.25(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.55$ $(\mathrm{d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.36(\mathrm{~s}, 3 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.2$,
143.6, 139.4, 137.4 136.6, 129.6, 128.7, 128.4, 128.2, 127.3, 127.2, 62.7, 59.7, 52.1, 50.7, 21.5; HRMS-(ESI) $m / z[M+H]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}$, 439.1692; found, 439.1694

5b Pale yellow oil; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.79$ ($\mathrm{d}, J=8.4$ $\mathrm{Hz}, 2 \mathrm{H}), 7.34-7.23(\mathrm{~m}, 10 \mathrm{H}), 7.14(\mathrm{dd}, J=7.5,2.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.38(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H})$, $4.29(\mathrm{~s}, 1 \mathrm{H}), 4.05(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{qd}, J=7.2,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.75(\mathrm{~d}, J=13.2$ $\mathrm{Hz}, 1 \mathrm{H}), 3.61(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 0.98(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.6,143.6,139.4,137.4,136.6,129.6,128.7,128.4,128.3$, 128.2, 127.3, 127.1, 62.7, 61.5, 59.6, 50.7, 21.5, 13.8; HRMS-(ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$ calcd for $\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}$, 453.1848; found, 453.1860

5c Pale yellow oil; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.68(\mathrm{~d}, J=$ $8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.34-7.23(\mathrm{~m}, 7 \mathrm{H}), 7.15(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.00(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.41$ (br, 1H), $4.28(\mathrm{~s}, 1 \mathrm{H}), 3.98(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{~d}, J=$ $13.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $170.3,143.6,139.5,137.9,136.6,134.3,129.5,129.4,128.4,128.3,127.3,127.1$, 62.4, 59.8, 52.1, 50.7, 21.5, 21.1; HRMS-(ESI) $m / z[M+H]^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}$, 453.1848; found, 453.1840

5d Pale yellow oil; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.65(\mathrm{~d}, J$ $=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.33-7.23(\mathrm{~m}, 7 \mathrm{H}), 7.01(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $5.43(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{~s}, 1 \mathrm{H}), 3.97(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~d}, J=13.2 \mathrm{~Hz}$, $1 \mathrm{H}), 3.56(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{~s}, 3 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 170.2,143.8,139.2,136.8,136.5,131.8,129.6,129.0,128.4,128.2,127.2$,
122.1, 62.3, 59.6, 52.3, 50.7, 21.6; HRMS-(ESI) $m / z[M+H]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{BrN}_{2} \mathrm{O}_{4} \mathrm{~S}, 517.0797$; found, 517.0793

5e Pale yellow oil; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.65$ (dd, J $=8.1,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.33-7.24(\mathrm{~m}, 9 \mathrm{H}), 7.07(\mathrm{dd}, J=8.1,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.37(\mathrm{~d}, J=3.3 \mathrm{~Hz}$, $1 \mathrm{H}), 4.26(\mathrm{~s}, 1 \mathrm{H}), 3.99(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{~d}, J=11.8$ $\mathrm{Hz}, 1 \mathrm{H}$), $3.43(\mathrm{~s}, 3 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.3,143.8$, 139.3, 136.3, 134.1, 129.7, 128.9, 128.8, 128.5, 127.3, 62.3, 59.8, 52.4, 50.8, 21.6; HRMS-(ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{ClN}_{2} \mathrm{O}_{4} \mathrm{~S}, 473.1302$; found, 473.1300

5f Pale yellow oil; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.67(\mathrm{~d}, J=$ $8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.33-6.98(\mathrm{~m}, 11 \mathrm{H}), 5.42(\mathrm{br}, 1 \mathrm{H}), 4.27(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{~d}, J=$ $5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.42(\mathrm{~s}, 3 \mathrm{H}), 2.42(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.2,164.1,160.8,143.7,139.3,136.6,133.4$, 129.6, 129.0, 128.9, 128.4, 128.2, 127.3, 127.2, 115.6, 62.1, 59.8, 52.2, 50.7, 21.5; HRMS-(ESI) $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{FN}_{2} \mathrm{O}_{4} \mathrm{~S}, 457.1597$; found, 457.1601

5g Pale yellow oil; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.67(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.33-7.17(\mathrm{~m}, 11 \mathrm{H}), 5.50(\mathrm{br}, 1 \mathrm{H}), 4.28(\mathrm{~s}, 1 \mathrm{H}), 4.04(\mathrm{~d}, J=5.1 \mathrm{~Hz}$, $1 \mathrm{H}), 3.72(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.42(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.2,148.9,143.8,139.3,136.6,129.6,128.8,128.4$, 128.2, 127.2, 121.0, 62.2, 59.8, 52.2, 50.8, 21.4; HRMS-(ESI) $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}$, 523.1515; found, 523.1495

5h Pale yellow oil; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.63$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.34-7.20(\mathrm{~m}, 9 \mathrm{H}), 6.80-6.77(\mathrm{~m}, 2 \mathrm{H}), 5.71(\mathrm{br}, 1 \mathrm{H}), 4.33-4.26(\mathrm{~m}$, 2 H), 3.77-3.67 (m, 4H), 3.48-3.43 (m, 4H), $2.41(\mathrm{~s}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.4,158.6,143.6,139.2,136.6,135.9,130.6,129.6,128.5,128.4,127.3,114.8$, $113.4,59.3,58.0,55.6,52.2,50.8,21.5$; HRMS-(ESI) $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S} \mathrm{Na}, 491.1617$; found, 491.1674

5i Pale yellow oil; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.67(\mathrm{~d}, J=$ $8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.34-7.24(\mathrm{~m}, 9 \mathrm{H}), 7.09-7.03$ (m, 2H), 5.41 (d, J = 9.3 Hz, 1H), 4.26 (dd, $J=8.7,4.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.73(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{~s}, 3 \mathrm{H})$ 2.42 (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 170.1, 143.8, 139.9, 139.1, 136.4, 134.7,130.0, 129.6, 128.4, 128.2, 127.4, 127.2, 126.4, 125.5, 62.4, 125.5, 62.4, 59.7, 52.3, 50.7, 21.5; HRMS-(ESI) $m / z[M+H]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{ClN}_{2} \mathrm{O}_{4} \mathrm{~S}, 473.1302$; found, 473.1296

5j Pale yellow oil; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.68(\mathrm{~d}, J=$ $8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.34-7.23(\mathrm{~m}, 8 \mathrm{H}), 6.99(\mathrm{td}, J=8.4,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.85(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.46(\mathrm{br}, 1 \mathrm{H}), 4.28$ (d, $J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{~d}, J=5.1$ $\mathrm{Hz}, 1 \mathrm{H}), 3.73(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.2,164.2,161.8,143.8,139.3,136.5,130.3$, 129.6, 128.4, 128.2, 127.3, 127.2, 123.1, 115.1, 114.2, 62.4, 59.7, 52.3, 50.7, 21.5; HRMS-(ESI) $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{FN}_{2} \mathrm{O}_{4} \mathrm{~S}, 457.1597$; found, 457.1615

5k Pale yellow oil; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.64$ (d, $J=$ $8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.35-7.21(\mathrm{~m}, 11 \mathrm{H}), 5.70(\mathrm{br}, 1 \mathrm{H}), 4.38-4.29(\mathrm{~m}, 2 \mathrm{H}), 3.69(\mathrm{~d}, J=12.9$ $\mathrm{Hz}, 1 \mathrm{H}), 3.45(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 170.3,143.6,139.1,136.6,134.7,134.2,130.1,129.6,129.2,128.5,128.4$, $127.8,127.3,127.0,59.0,57.8,52.1,50.7,21.5$; HRMS-(ESI) $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{ClN}_{2} \mathrm{O}_{4} \mathrm{~S}, 473.1302$; found, 473.1294

51 Pale yellow oil; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.67(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 2 \mathrm{H}), 7.36-7.16(\mathrm{~m}, 10 \mathrm{H}), 7.01(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.49(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H})$, 4.35-4.26 (m, 2H), 3.73 (d, $J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{~s}, 3 \mathrm{H})$, 2.41 ($\mathrm{s}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.3,162.6,159.3,143.6,139.3$, 136.6, 129.6, 128.6, 128.4, 128.3, 127.3, 124.4, 115.8, 115.5, 58.7, 57.0, 52.2, 51.0, 21.5 ; HRMS-(ESI) $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{FN}_{2} \mathrm{O}_{4} \mathrm{~S}, 457.1597$; found, 457.1615.

5m Pale yellow oil; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.52(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.31-7.13(\mathrm{~m}, 10 \mathrm{H}), 5.30(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H})$, $4.58(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}) 3.61(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{~s}, 3 \mathrm{H}), 3.45(\mathrm{~d}, J=13.2 \mathrm{~Hz}$, $1 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.4,143.4,139.2,137.6,136.4$, $133.9,132.6,130.0,129.4,128.2,128.1,127.2,60.9,57.9,52.3,51.4,21.5$; HRMS-(ESI) $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}$, 507.0912; found, 507.0931

5n Red-brown oil; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.90(\mathrm{~d}, J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, 7.52-7.21 (m, 11H), 5.98 (br, 1H), 4.78 (d, $J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H})$, $3.83(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.22(\mathrm{~s}, 3 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.2,143.6,139.5,136.7,134.0,132.8,131.5,129.6$, $129.2,128.7,128.5,127.4,127.3,126.5,125.8,125.1,123.5,121.9,58.5,57.9,51.8$, 50.8, 21.6; HRMS-(ESI) $m / z[M+H]^{+}$calcd for $\mathrm{C}_{28} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}$, 489.1848; found, 489.1843

50 white solid; m.p. $118-120{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.64(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.54(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, 7.37 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.31-7.21 (m, 8H), $5.34(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.28-4.24(\mathrm{~m}$, $1 \mathrm{H}), 3.70(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{~s}, 3 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.0,143.9,139.1(\mathrm{~d}, J=9.9 \mathrm{~Hz}), 136.4,131.8$, $130.7,129.6,129.2,128.5,128.2,127.3(\mathrm{~d}, J=2.7 \mathrm{~Hz}), 125.0(\mathrm{~d}, J=3.7 \mathrm{~Hz}), 124.1$ (d, $J=3.8 \mathrm{~Hz}), 62.6,59.6,52.3,50.8,21.5 ; \quad$ HRMS-(ESI) $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}$, 507.1565; found, 507.1564

5p Pale yellow oil; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.64$ (d, $J=8.1$ $\mathrm{Hz}, 2 \mathrm{H}$), $7.54(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.15(\mathrm{~m}, 10 \mathrm{H}), 5.80(\mathrm{br}, 1 \mathrm{H}), 4.36-4.26(\mathrm{~m}$, $2 \mathrm{H}), 3.69(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.3,143.6,139.1,136.7,136.4,133.4,129.6,128.5$, $128.4,127.9,127.6,127.4,127.3,127.0,124.6,61.4,57.8,52.1,50.7,21.5$; HRMS-(ESI) $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+} \quad$ calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{BrN}_{2} \mathrm{O}_{4} \mathrm{~S}, 517.0797$; found, 517.0794.

3 General procedure for ring-opening of aziridine 6

Into a solution of prepared aziridine $\mathbf{6}(0.5 \mathrm{mmol})$ in dry $\mathrm{CH}_{3} \mathrm{CN}(4.0 \mathrm{~mL})$ was added benzylamine (5.0 mmol) in an ice bath. Then the temperature was raised to room temperature and the reaction mixture was maintained at rt for another 3 h , resulting in complete conversion. After being concentrated under reduced pressure, the residue was purified via column chromatography with ethyl acetate and petroleum ether (from 1:10 to $1: 3 \mathrm{v} / \mathrm{v}$) as eluent to give compound $\mathbf{5 b}$.

4 X-ray crystallography for 50

Figure S1: ORTEP diagram of compound $\mathbf{5 o}$ (CCDC 982288).

$5 \quad{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for compound 5

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of $\mathbf{5 a}\left(\mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of $\mathbf{5 b}\left(\mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of $\mathbf{5 c}\left(\mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of $\mathbf{5 d}\left(\mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of $\mathbf{5 e}\left(\mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of $\mathbf{5 f}\left(\mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of $\mathbf{5 g}\left(\mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of $\mathbf{5 h}\left(\mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of $\mathbf{5 i}\left(\mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of $\mathbf{5 j}\left(\mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of $\mathbf{5 k}\left(\mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of $\mathbf{5 l}\left(\mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of $\mathbf{5 m}\left(\mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of $\mathbf{5 n}\left(\mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of $\mathbf{5 o}\left(\mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of $\mathbf{5 p}\left(\mathrm{CDCl}_{3}\right)$

