Supporting Information

for

Pyrrolidine nucleotide analogs with a tunable

conformation

Lenka Poštová Slavětínská, Dominik Rejman and Radek Pohl*

Address: Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the

Czech Republic, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic

Email: Radek Pohl - pohl@uochb.cas.cz

* Corresponding author

Additional experimental data

Table of contents:

The pD titration curves for compounds 9 and 10	S2
Variable temperature ³¹ P NMR of 14	S 3
The parametrization of the pyrrolidine ring for compounds 9, 10, 13A, 13B, 14A and 14B	S4
NMR signals assignment and copies of ¹ H, ¹³ C and ³¹ P NMR spectra	S10

The pD titration curves for compounds 9 and 10

Compound 9

Variable temperature ³¹P NMR of 14

Figure S1: ³¹P NMR spectra (202.3 MHz) of **14** measured (black curve) and simulated (red curve) at various temperatures.

Table S1: Rate constant values obtained by lineshape analysis of the spectra measured at various temperatures for **14**.

T(°C)	<i>T</i> (K)	1/ <i>T</i> (K⁻¹)	<i>k</i> (s⁻¹)	ln(<i>k/T</i>)
25	298.15	0.003354	21.8	-2.61569
35	308.15	0.003245	30.1	-2.32606
45	318.15	0.003143	42.2	-2.02010
55	328.15	0.003047	52.7	-1.82886
65	338.15	0.002957	69.7	-1.57929
75	348.15	0.002872	98.5	-1.26258
85	358.15	0.002792	114.0	-1.14475
95	368.15	0.002716	164.5	-0.80558
100	373.15	0.002680	203.5	-0.60631

Figure S2: The plot of T vs. k and 1/T vs. $\ln(k/T)$ for compound 14.

The parametrization of the pyrrolidine ring

The relation between exocyclic ϕ_{exo} and endocyclic ϕ_{endo} dihedral angles ($\phi_{exo} = A\phi_{endo} + B$) extracted from DFT B3LYP/6-31G* optimized geometries of 20 conformers.

Figure S3: The ring parametrization for compound 9.

Figure S4: The ring parametrization for compound 10.

Figure S5: The ring parametrization for compound 13A.

Figure S6: The ring parametrization for compound 13B.

Figure S7: The ring parametrization for compound 14A.

Figure S8: The ring parametrization for compound 14B.

NMR signals assignment and copies of ¹H, ¹³C and ³¹P NMR spectra

¹H NMR (499.8 MHz, D₂O, *T* = 25 °C, pD = 6.4): 1.86 (d, 3H, ⁴*J* = 1.2, CH₃); 3.18 (dd, 1H, *J*_{gem} = 14.2, *J*_{H,P} = 11.3, CH_aH_bP); 3.24 (dd, 1H, *J*_{gem} = 14.2, *J*_{H,P} = 11.7, CH_aH_bP); 3.39 (dd, 1H, *J*_{gem} = 12.0, *J*_{2",3'} = 6.4, H-2"); 3.87 (dd, 1H, *J*_{gem} = 12.8, *J*_{5',4'} = 5.6, H-5'); 3.93 (dd, 1H, *J*_{gem} = 12.8, *J*_{5",4'} = 9.1, H-5"); 4.04 (dd, 1H, *J*_{gem} = 12.0, *J*_{2',3'} = 6.9, H-2'); 4.62 (ddd, 1H, *J*_{4',5"} = 9.1, *J*_{4',5'} = 5.6, *J*_{4',3'} = 4.1, H-4'); 4.83 (ddd, 1H, *J*_{3',2'} = 6.9, *J*_{3',2"} = 6.4, *J*_{3',4'} = 4.1, H-3'); 7.49 (q, 1H, ⁴*J* = 1.2, H-6). ¹³C NMR (125.7 MHz, D₂O, *T* = 25 °C, pD = 6.4): 14.04 (CH₃); 56.23 (d, *J*_{C,P} = 128.1, CH₂P); 59.38 (d, *J*_{C,P} = 4.6, C-5'); 63.72

 $(\mathsf{d}, J_{\mathsf{C},\mathsf{P}} = 5.1, \,\mathsf{C}\text{-2'}); \, 69.45 \; (\mathsf{C}\text{-4'}); \, 75.05 \; (\mathsf{C}\text{-3'}); \, 113.95 \; (\mathsf{C}\text{-5}); \, 145.10 \; (\mathsf{C}\text{-6}); \, 154.84 \; (\mathsf{C}\text{-2}); \, 169.46 \; (\mathsf{C}\text{-4});.$

³¹P{1H} NMR (202.3 MHz, D₂O, *T* = 25 °C, pD = 6.4): 7.16.

¹H NMR (499.8 MHz, D₂O, *T* = 25 °C, pD = 5.7): 1.88 (d, 3H, ⁴*J* = 1.2, CH₃); 3.28, 3.31 (2 × dd, 2 × 1H, J_{gem} = 14.4, $J_{H,P}$ = 11.7, CH₂P); 3.68 (dd, 1H, J_{gem} = 12.7, $J_{2",3'}$ = 5.2, H-2"); 3.78 (dd, 1H, J_{gem} = 12.7, $J_{2',3'}$ = 2.0, H-2'); 3.80 (dd, 1H, J_{gem} = 12.8, $J_{5",4'}$ = 9.4, H-5"); 4.05 (dd, 1H, J_{gem} = 12.8, $J_{5',4'}$ = 6.9, H-5'); 4.71 (ddd, 1H, $J_{3',4'}$ = 6.0, $J_{3',2"}$ = 5.2, $J_{3',2'}$ = 2.0, H-3'); 5.19 (ddd, 1H, $J_{4',5"}$ = 9.4, $J_{4',5'}$ = 6.9, $J_{4',3'}$ = 6.0, H-4'); 7.58 (q, 1H, ⁴*J* = 1.2, H-6).

¹³C NMR (125.7 MHz, D₂O, *T* = 25 °C, pD = 5.7): 14.15 (CH₃); 56.21 (d, $J_{C,P}$ = 130.0, CH₂P); 58.13 (d, $J_{C,P}$ = 4.9, C-5'); 60.55 (C-4'); 64.95 (d, $J_{C,P}$ = 5.0, C-2'); 70.95 (C-3'); 113.28 (C-5); 144.39 (C-6); 155.36 (C-2); 169.23 (C-4);. ³¹P{1H} NMR (202.3 MHz, D₂O, *T* = 25 °C, pD = 5.7): 7.29.

¹H NMR (499.8 MHz, D₂O, *T* = 25 °C, pD = 6.9): 3.33 (dd, 1H, $J_{gem} = 14.4$, $J_{H,P} = 11.3$, CH_aH_bP); 3.36 (dd, 1H, $J_{gem} = 14.4$, $J_{H,P} = 11.4$, CH_aH_bP); 3.48 (dd, 1H, $J_{gem} = 12.6$, $J_{2",3"} = 5.1$, H-2"); 4.09 (dd, 1H, $J_{gem} = 13.0$, $J_{5",4"} = 7.3$, H-5"); 4.13 (dd, 1H, $J_{gem} = 13.0$, $J_{5',4"} = 4.4$, H-5'); 4.25 (dd, 1H, $J_{gem} = 12.6$, $J_{2',3"} = 6.5$, H-2'); 4.78 (overlap with HDO signal, H-3'); 5.21 (ddd, 1H, $J_{4',5"} = 7.3$, $J_{4',5"} = 7.3$, $J_{4',5"} = 4.4$, $J_{4',3"} = 3.0$, H-4'); 8.22 (s, 1H, H-8); 8.25 (s, 1H, H-2).

¹³C NMR (125.7 MHz, D₂O, *T* = 25 °C, pD = 6.9): 56.83 (d, $J_{C,P}$ = 128.5, CH₂P); 60.45 (d, $J_{C,P}$ = 6.0, C-5'); 63.61 (d, $J_{C,P}$ = 4.3, C-2'); 64.28 (C-4'); 77.14 (C-3'); 121.49 (C-5); 144.20 (C-8); 150.93 (C-4); 155.31 (C-2); 158.31 (C-6). ³¹P{1H} NMR (202.3 MHz, D₂O, *T* = 25 °C, pD = 6.9): 7.74.

¹H NMR (499.8 MHz, D₂O, *T* = 25 °C, pD = 6.7): 3.33 (dd, 1H, J_{gem} = 14.1, $J_{H,P}$ = 11.2, CH_aH_bP); 3.37 (dd, 1H, J_{gem} = 14.1, $J_{H,P}$ = 11.6, CH_aH_bP); 3.83 (dd, 1H, J_{gem} = 13.0, $J_{2",3"}$ = 6.1, H-2"); 3.87 (dd, 1H, J_{gem} = 13.0, $J_{2',3"}$ = 3.5, H-2'); 4.01 (dd, 1H, J_{gem} = 12.8, $J_{5",4"}$ = 7.9, H-5''); 4.30 (dd, 1H, J_{gem} = 12.8, $J_{5',4"}$ = 5.0, H-5'); 4.25); 4.92 (td, 1H, $J_{3',4"}$ = $J_{3',2"}$ = 6.1, $J_{3',2"}$ = 3.5, H-2'); 5.47 (ddd, 1H, $J_{4',5"}$ = 7.9, $J_{4',3"}$ = 6.2, $J_{4',5"}$ = 5.0, H-4'); 8.23 (s, 1H, H-8); 8.27 (s, 1H, H-2).

¹³C NMR (125.7 MHz, D₂O, *T* = 25 °C, pD = 6.7): 56.73 (d, $J_{C,P}$ = 127.6, CH₂P); 59.20 (C-4'); 59.71 (d, $J_{C,P}$ = 5.8, C-5'); 63.92 (d, $J_{C,P}$ = 4.0, C-2'); 71.51 (C-3'); 121.04 (C-5); 145.04 (C-8); 151.71 (C-4); 155.31 (C-2); 158.35 (C-6).

³¹P{1H} NMR (202.3 MHz, D_2O , T = 25 °C, pD = 6.7): 7.24.

¹H NMR (400.1 MHz, D₂O, *T* = 25 °C, pD = 6.4): 1.88 (d, 3H, ⁴*J* = 1.2, CH₃); 3.47 (ddd, 1H, *J*_{gem} = 13.6, *J*_{2",3'} = 4.8, *J*_{H,P} = 1.7, H-2"); 3.85 (ddd, 1H, *J*_{gem} = 13.6, *J*_{2',3'} = 6.8, *J*_{H,P} = 1.6, H-2'); 4.12 (dd, 1H, *J*_{gem} = 12.9, *J*_{5',4'} = 6.2, H-5'); 4.41 (dd, 1H, *J*_{gem} = 12.9, *J*_{5',4'} = 7.7, H-5"); 4.59 (ddd, 1H, *J*_{3',2'} = 6.8, *J*_{3',4'} = 5.4, *J*_{3',2"} = 4.8, H-3'); 4.91 (ddd, 1H, *J*_{4',5"} = 7.7, *J*_{4',5'} = 6.2, *J*_{4',3'} = 5.4, H-4'); 7.43 (q, 1H, ⁴*J* = 1.2, H-6).

¹³C NMR (100.6 MHz, D₂O, *T* = 25 °C, pD = 6.4): 14.24 (CH₃); 50.26 (C-5'); 52.88 (d, $J_{C,P}$ = 4.7, C-2'); 64.31 (C-4'); 73.07 (C-3'); 114.39 (C-5); 141.28 (C-6); 155.03 (C-2); 169.15 (C-4); 177.87 (d, $J_{C,P}$ = 202.7, P-CO).

³¹P{1H} NMR (162.0 MHz, D₂O, *T* = 25 °C, pD = 6.4): -2.72.

Rotamer B:

¹H NMR (400.1 MHz, D₂O, *T* = 25 °C, pD = 6.4): 1.88 (d, 3H, ⁴*J* = 1.2, CH₃); 3.68 (ddd, 1H, $J_{gem} = 13.6, J_{5',4'} = 6.1, J_{H,P} = 1.6, H-5')$; 3.81 (dd, 1H, $J_{gem} = 12.3, J_{2',3'} = 5.7, H-2''$); 4.00 (ddd, 1H, $J_{gem} = 13.6, J_{5'',4'} = 8.5, J_{H,P} = 1.6, H-5''$); 4.29 (dd, 1H, $J_{gem} = 12.3, J_{2',3'} = 6.1, H-2'$); 4.60 (ddd, 1H, $J_{3',2''} = 5.7, J_{3',4'} = 5.5, H-3'$); 4.94 (ddd, 1H, $J_{4',5''} = 8.5, J_{4',5'} = 6.1, J_{4',3'} = 5.5, H-4'$); 7.42 (q, 1H, ⁴*J* = 1.2, H-6).

¹³C NMR (100.6 MHz, D₂O, *T* = 25 °C, pD = 6.4): 14.17 (CH₃); 48.81 (d, $J_{C,P}$ = 5.3, C-5'); 54.44 (C-2'); 62.37 (C-4'); 74.64 (C-3'); 114.45 (C-5); 141.35 (C-6); 155.08 (C-2); 169.14 (C-4); 177.87 (d, $J_{C,P}$ = 202.7, P-CO).

³¹P{1H} NMR (162.0 MHz, D_2O , T = 25 °C, pD = 6.4): -2.63.

¹H NMR (600.1 MHz, D₂O, *T* = 25 °C, pD = 5.9): 1.891 (d, 3H, ⁴*J* = 1.2, CH₃); 3.57 (dt, 1H, *J*_{gem} = 13.7, *J*_{2',3'} = *J*_{H,P} = 2.1, H-2'); 3.79 (ddd, 1H, *J*_{gem} = 13.7, *J*_{2',3'} = 5.2, *J*_{H,P} = 2.0, H-2''); 4.17 (dd, 1H, *J*_{gem} = 11.7, *J*_{5',4'} = 9.5, H-5'); 4.42 (dd, 1H, *J*_{gem} = 11.7, *J*_{5',4'} = 8.1, H-5''); 4.58 (ddd, 1H, *J*_{3',2''} = 5.2, *J*_{3',4'} = 4.5, *J*_{3',2'} = 2.1, H-3'); 5.09 (ddd, 1H, *J*_{4',5'} = 9.5, *J*_{4',5''} = 8.1, *J*_{4',3'} = 4.5, H-4'); 7.60 (q, 1H, ⁴*J* = 1.2, H-6).

¹³C NMR (150.9 MHz, D₂O, *T* = 25 °C, pD = 5.9): 14.22 (CH₃); 48.94 (C-5'); 54.51 (d, $J_{C,P}$ = 4.5, C-2'); 59.37 (C-4'); 70.15 (C-3'); 113.06 (C-5); 142.98 (C-6); 155.29 (C-2); 169.16 (C-4); 178.86 (d, $J_{C,P}$ = 198.0, P-CO).

³¹P{1H} NMR (202.3 MHz, D₂O, *T* = 25 °C, pD = 5.9): -2.16.

Rotamer B:

¹H NMR (600.1 MHz, D₂O, *T* = 25 °C, pD = 5.9): 1.887 (d, 3H, ⁴*J* = 1.2, CH₃); 3.80 (ddd, 1H, *J*_{gem} = 13.0, *J*_{5',4'} = 8.5, *J*_{H,P} = 2.1, H-5'); 3.94 (ddd, 1H, *J*_{gem} = 13.0, *J*_{5',4'} = 8.5, *J*_{H,P} = 2.0, H-5"); 4.05 (dd, 1H, *J*_{gem} = 12.7, *J*_{2',3'} = 3.3, H-2'); 4.12 (dd, 1H, *J*_{gem} = 12.7, *J*_{2',3'} = 4.8, H-2"); 4.59 (ddd, 1H, *J*_{3',2"} = 4.8, *J*_{3',4'} = 4.6, *J*_{3',2'} = 3.3, H-3'); 5.18 (dt, 1H, *J*_{4',5'} = 8.5, *J*_{4',5"} = 8.5, *J*_{4',5"} = 4.6, H-4'); 7.57 (q, 1H, ⁴*J* = 1.2, H-6).

¹³C NMR (100.6 MHz, D₂O, *T* = 25 °C, pD = 5.9): 14.18 (CH₃); 48.86 (d, $J_{C,P}$ = 5.1, C-5'); 55.89 (C-2'); 57.63 (C-4'); 72.22 (C-3'); 113.14 (C-5); 142.86 (C-6); 155.37 (C-2); 169.16 (C-4); 178.88 (d, $J_{C,P}$ = 198.5, P-CO).

³¹P{1H} NMR (162.0 MHz, D₂O, *T* = 25 °C, pD = 5.9): -2.28.

S22

	· ·	· ·	· ·	· ·	· ·		· ·	· · ·			· · · ·	· ·	· ·	· · · ·
140	120	100	80	60	40	20	0	-20	-40	-60	-80	-100	-120	ppm

¹H NMR (600.1 MHz, D₂O, *T* = 25 °C, pD = 6.1): 3.54 (dddd, 1H, $J_{gem} = 13.6$, $J_{2",3"} = 4.1$, $J_{H,P} = 1.9$, $J_{2",5"} = 0.9$, H-2"); 3.83 (ddd, 1H, $J_{gem} = 13.6$, $J_{2',3"} = 4.1$, $J_{H,P} = 1.9$, $J_{2",5"} = 0.9$, H-2"); 3.83 (ddd, 1H, $J_{gem} = 13.0$, $J_{5',4"} = 5.6$, $J_{5',3"} = 0.9$, H-5'); 4.57 (ddd, 1H, $J_{gem} = 13.0$, $J_{5",4"} = 6.3$, $J_{5",2"} = 0.9$, H-5'); 4.57 (ddd, 1H, $J_{gem} = 13.0$, $J_{5",4"} = 6.3$, $J_{5",2"} = 0.9$, H-5''); 4.73 (dddd, 1H, $J_{3',2"} = 6.1$, $J_{3',4"} = 4.5$, $J_{3',2"} = 4.1$, $J_{3',5"} = 0.9$, H-3'); 5.01 (ddd, 1H, $J_{4',5"} = 6.3$, $J_{4',5"} = 5.6$, $J_{4',3"} = 4.5$, H-4'); 8.134 (s, 1H, H-8); 8.151 (s, 1H, H-2).

¹³C NMR (150.9 MHz, D₂O, T = 25 °C, pD = 6.1): 51.65 (C-5'); 53.11 (d, $J_{C,P} = 4.6$, C-2'); 62.87 (C-4'); 73.75 (C-3'); 121.29 (C-5); 142.56 (C-8); 151.58 (C-4); 154.92 (C-2); 157.98 (C-6); 179.15 (d, $J_{C,P} = 197.5$, P-CO).

³¹P{1H} NMR (202.3 MHz, D_2O , T = 25 °C, pD = 6.1): -2.25.

Rotamer B:

¹H NMR (600.1 MHz, D₂O, *T* = 25 °C, pD = 6.1): 3.95 (dd, 1H, $J_{gem} = 12.6$, $J_{2",3"} = 5.2$, H-2"); 4.01 (ddd, 1H, $J_{gem} = 13.6$, $J_{5',4"} = 5.5$, $J_{H,P} = 1.9$, H-5'); 4.19 (ddd, 1H, $J_{gem} = 13.6$, $J_{5",4"} = 7.8$, $J_{H,P} = 2.0$, H-5"); 4.31 (ddd, 1H, $J_{gem} = 12.6$, $J_{2',3"} = 5.8$, $J_{2',5"} = 0.8$, H-2'); 4.76 (ddd, 1H, $J_{3',2"} = 5.8$, $J_{3',4"} = 5.3$, $J_{3',2"} = 5.2$, H-3'); 4.99 (ddd, 1H, $J_{4',5"} = 7.8$, $J_{4',5"} = 5.5$, $J_{4',3"} = 5.3$, H-4'); 8.130 (s, 1H, H-8); 8.149 (s, 1H, H-2).

¹³C NMR (150.9 MHz, D₂O, *T* = 25 °C, pD = 6.1): 50.23 (d, $J_{C,P}$ = 4.9, C-5'); 54.64 (C-2'); 60.88 (C-4'); 75.44 (C-3'); 121.29 (C-5); 142.73 (C-8); 151.62 (C-4); 154.95 (C-2); 158.00 (C-6); 179.24 (d, $J_{C,P}$ = 197.0, P-CO).

³¹P{1H} NMR (202.3 MHz, D₂O, *T* = 25 °C, pD = 6.1): -2.23.

¹H NMR (600.1 MHz, D₂O, *T* = 25 °C, pD = 5.9): 3.65 (dt, 1H, $J_{gem} = 13.7$, $J_{2',3'} = J_{H,P} = 2.1$, H-2'); 3.90 (ddd, 1H, $J_{gem} = 13.7$, $J_{2'',3'} = 5.1$, $J_{H,P} = 1.9$, H-2''); 4.41 (dd, 1H, $J_{gem} = 11.6$, $J_{5',4'} = 9.2$, H-5'); 4.66 (dd, 1H, $J_{gem} = 11.6$, $J_{5'',4'} = 7.6$, H-5''); 4.693 (ddd, 1H, $J_{3',2''} = 5.1$, $J_{3',4'} = 4.2$, $J_{3',2'} = 2.1$, H-3'); 5.19 (ddd, 1H, $J_{4',5'} = 9.2$, $J_{4',5''} = 7.6$, $J_{4',3'} = 4.2$, H-4'); 8.158 (s, 1H, H-2); 8.262 (s, 1H, H-8).

¹³C NMR (150.9 MHz, D₂O, T = 25 °C, pD = 5.9): 50.18 (C-5'); 54.30 (d, $J_{C,P} = 4.5$, C-2'); 58.95 (C-4'); 70.35 (C-3'); 120.80 (C-5); 143.65 (C-8); 151.93 (C-4); 154.89 (C-2); 157.95 (C-6); 178.88 (d, $J_{C,P} = 198.3$, P-CO).

³¹P{1H} NMR (202.3 MHz, D₂O, *T* = 25 °C, pD = 5.9): -2.21.

Rotamer B:

¹H NMR (600.1 MHz, D₂O, *T* = 25 °C, pD = 5.9): 4.04 (ddd, 1H, $J_{gem} = 12.8$, $J_{5',4'} = 8.3$, $J_{H,P} = 1.9$, H-5'); 4.14 (dd, 1H, $J_{gem} = 13.0$, $J_{2',3'} = 3.5$, H-2'); 4.18 (ddd, 1H, $J_{gem} = 12.8$, $J_{5'',4'} = 8.2$, $J_{H,P} = 1.8$, H-5''); 4.20 (dd, 1H, $J_{gem} = 12.6$, $J_{2'',3'} = 4.6$, H-2''); 4.698 (ddd, 1H, $J_{3',2''} = 4.6$, $J_{3',4'} = 4.3$, $J_{3',2'} = 3.5$, H-3'); 5.21 (ddd, 1H, $J_{4',5'} = 8.3$, $J_{4',5''} = 8.2$, $J_{4',3'} = 4.3$, H-4'); 8.163 (s, 1H, H-2); 8.261 (s, 1H, H-8).

¹³C NMR (150.9 MHz, D₂O, *T* = 25 °C, pD = 5.9): 49.06 (d, $J_{C,P}$ = 5.2, C-5'); 55.63 (C-2'); 57.39 (C-4'); 72.34 (C-3'); 120.82 (C-5); 143.66 (C-8); 152.04 (C-4); 154.90 (C-2); 157.95 (C-6); 178.91 (d, $J_{C,P}$ = 197.9, P-CO).

 31 P{1H} NMR (202.3 MHz, D₂O, *T* = 25 °C, pD = 5.9): -2.30.

	· · ·	•	· I						•	· I	•	· I		
140	120	100	80	60	40	20	0	-20	-40	-60	-80	-100	-120	ppm