Supporting Information

for

P(O)R₂-directed Pd-catalyzed C–H functionalization of biaryl derivatives to synthesize chiral phosphorous ligands

Rong-Bin Hu,¹ Hong-Li Wang,¹ Hong-Yu Zhang,¹ Heng Zhang,¹ Yan-Na Ma¹ and Shang-dong Yang*^{1, 2}

Address: ¹State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China and ²State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Lanzhou 730000, P. R. China Email: Shang-dong Yang - yangshd@lzu.edu.cn

* Corresponding author

Experimental details, characterization data (¹H, ¹³C, ³¹P spectra) of products

Table of Contents

I . General methods and materials	S2
${ m I\hspace{-1.5mm}I}$. The synthesis route of chiral ligand L-1 and substrates	S2–S3
\blacksquare . General procedures for the preparation of C–H functionalization	S3–S4
IV. Characterization of the products	S5–S10
V. Copies of NMR and HPLC spectra charts	S11–S45

I. General methods and materials

¹H and ¹³C NMR spectra were recorded on a Bruker advance III 400 spectrometer (400 MHz for ¹H and 100 MHz for ¹³C) in CDCl₃ with TMS as internal standard. Chemical shifts (δ) were measured in ppm relative to TMS $\delta = 0$ for ¹H, or to chloroform $\delta = 77.0$ for ¹³C as internal standard. ³¹P NMR spectra and ¹⁹F NMR were recorded on the same instrument. Data are reported as follows: Chemical shift, multiplicity (s = singlet, d = doublet, dd = doublet of doublets, t = triplet, q = quartet, m = multiplet), Coupling constants, *J*, are reported in hertz. Mass data were measured with Thermo Scientific DSQ II mass spectrometer. The starting materials were purchased from Aldrich, Acros Organics, J&K Chemicals or TCI and used without further purification. Solvents were dried and purified according to the procedure from "Purification of Laboratory Chemicals book". Thin-layer chromatography (TLC) was performed using 60 mesh silica gel plates visualized with short-wavelength UV light (254 nm). Substrates were prepared according to corresponding literature. Enantioselectivities were determined by high performance liquid chromatography (HPLC, Waters-600-2996 or Agilent 1260) analysis employing a chiral column. Compound 2a was described previously in Org. Lett. 2013, 15, 5302-5305, Compound **2b** was described previously in Chem. Commun., 2014, 50, 4686-4689.

II. The synthesis route of chiral ligand L-1 and substrates

Detailed operations see following references: 1. Govender, S.; Mmutlane, E. M.; van Otterlo, W. A. L.; de Koning, C. B. *Org. Biomol. C hem.*, **2007**, *5*, 2433–2440, doi: 10.1039/b707187f; 2. Kakei, H.; Tsuji, R.; Ohshima, T.; Morimoto, H.; Matsunaga, S.; Shibasaki, M. *Chem. Asian J.*, **2007**, *2*, 257–264, doi: 10.1002/asia.200600309; 3. Wang, S. L.; Li, J. J.; Miao, T. T.; Wu, W. H.; Li, Q.; Zhuang, Y.; Zhou, Z. Y.; Qiu, L. Q. *Org. Lett.*, **2012**, *14*, 1966-1969, doi: 10.1021/ol300721p.

Detailed operations see following reference: Yin, J.; Buchwald, S. L. J. Am. Chem. Soc., **2000**, *122*, 12051-12052, doi: 10.1021/ja005622z. 2. Wang, S. L.; Li, J. J.; Miao, T. T.; Wu, W. H.; Li, Q.; Zhuang, Y.; Zhou, Z. Y.; Qiu, L. Q. Org. Lett., **2012**, *14*, 1966-1969, doi: 10.1021/ol300721p.

III. General procedures for the preparation of C–H functionalization

In a similar manner as described before [1]: Under air atmosphere, diarylphosphine oxide (0.30 mmol, 1 equiv), $Pd(OAc)_2$ (6.7 mg, 0.03 mmol, 10.0 mol %), Ac-Gly-OH (7.2 mg, 0.06 mmol, 20.0 mol %) and AgOAc (250.5 mg, 1.5 mmol, 5.0 equiv) were added to oven-dried reaction tube containing a magnetic stir bar. After sealed tube, a solution of ethyl acrylate (150.0, 1.5 mmol, 5.0 equiv) in 3.0 mL CF₃CH₂OH was added using a syringe. The mixture was stirred at 100°C in an oil bath until substrate disappeared as judged by TLC. After cooling to room temperature, the solution was removed in vacuo to yield a residue, which was purified by silica gel using (1:1 EtOAc/hexane) to afford the pure product as a oil.

In a similar manner as described before [2]: Under air atmosphere, diarylphosphine oxide (0.30 mmol, 1.0 equiv), Pd(OAc)2 (6.7 mg, 0.03mmol, 10.0 mol %) and PhI(OAc)₂ (289 mg, 0.90 mmol, 3.0 equiv) were added to tube containing a magnetic stir bar. After sealed tube, 3.0 mL CF₃CH₂OH was added using a syringe. The mixture was stirred at 100 $^{\circ}$ C in an oil bath until substrate disappeared as judged by TLC. After cooling to room temperature, the solution was removed in vacuo to yield a residue, which was purified by silica gel using (1:1 EtOAc/hexane) to afford the pure product as an oil.

In a similar manner as described before [3]: Under air atmosphere, diarylphosphine oxide (0.20 mmol, 1.0 equiv) and Pd(TFA)₂ (6.6 mg, 0.02 mmol, 10 mol %) were added to a tube containing a magnetic stir bar. After which, 1.0 mL DCE was added using a syringe. Then 70 % aq. TBHP solution (110 μ L, 0.80 mmol, 4.0 equiv) and benzyl alcohol 2'a (52 uL, 0.5 mmol, 2.5 equiv) were added with microsyringes. The reaction mixture was stirred at 60 °C in an oil bath for 20 hours until substrate disappeared as judged by TLC. After cooling to room temperatur, the solution was removed in vacuo to yield a residue, which was purified by silica gel to afford the pure product as an oil.

In a similar manner as described before [4]: Under air atmosphere, diarylphosphine oxide (0.30 mmol, 1.0 equiv), $Pd(TFA)_2$ (10.0 mg, 0.03 mmol, 10.0 mol %) and $PhI(OTFA)_2$ (193.5 mg, 0.45 mmol, 1.5 equiv) were added to tube containing a magnetic stir bar. After sealed tube, 2.0 mL CH₃NO₂ was added using a syringe. The mixture was stirred at 60 °C in an oil bath until substrate disappeared as judged by TLC. After cooling to room temperature, the solution was removed in vacuo to yield a residue, which was purified by silica gel using (1:1 EtOAc/hexane) to afford the pure product as oil.

IV. Characterization of the products

Yellow oil. ¹**H** NMR (400 MHz, CDCl₃) δ : 8.04-8.00 (m, 1 H), 7.9,5-7.93 (m, 1 H), 7.90-7.85 (m, 1 H), 7.72-7.66 (m, 2 H), 7.59 (d, J = 8.8 Hz, 1 H), 7.53-7.50 (m, 1 H), 7.37-7.26 (m, 3 H), 7.23-.08 (m, 5 H), 7.02-7.00 (m, 2 H), 6.95 (t, J = 7.2 Hz, 2 H), 6.82 (m, 2 H), 6.19 (d, J = 15.9 Hz, 1 H), 4.09 (q, J = 7.2 Hz, 2 H), 2.29(s, 3 H), 2.23 (s, 3 H), 1.21 (t, J = 7.2 Hz, 3. H); ¹³C NMR (100 MHz, CDCl₃) δ : 166.51, 142.85, 141.46, 141.44, 141.07, 141.04, 140.93, 140.85, 137.05, 137.01, 134.50, 134.48, 133.68, 133.44, 133.22, 133.10, 131.82, 131.72, 131.50, 131.40, 131.35, 130.50, 130.35, 129.44, 129.32, 128.89, 128.74, 128.62, 128.27, 128.14, 128.08, 128.02, 127.64, 127.42, 127.22, 126.96, 126.58, 126.35, 122.16, 118.37, 60.10, 21.44, 21.36, 14.17; ³¹P NMR (162 MHz, CDCl₃) δ : 28.71; **MS (ESI):** found [M+Na]⁺603.21; $[\alpha]^{22}_{D} = -29.0^{\circ}$ (c = 1.0, CHCl₃); Enantiomeric excess is 99% determined by HPLC (Chiralcel AD, Hexane/Isopropanol 90/10, flow rate = 1.0 mL/min, 232 nm): major isomer: t_R = 115.72 min, an other isomer was not found.

Yellow oil. ¹**H** NMR (400 MHz, CDCl₃) δ : 8.01-7.93 (m, 2 H), 7.90 (d, J = 8.2 Hz, 1 H), 7.70 (d, J = 9.0 Hz, 1 H), 7.65 (d, J = 8.2 Hz, 1 H), 7.52 (t, J = 7.3 Hz, 1 H), 7.32-7.19 (m, 7 H), 7.13-7.08 (m, 2 H), 6.94-6.89 (m, 3 H), 6.86-6.83 (m, 2 H), 2.26 (s, 3 H), 2.24 (s, 3 H), 1.79 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ : 168.83, 146.95, 141.30, 141.27, 141.09, 141.06, 138.33, 138.25, 134.46, 134.44, 133.71, 132.72, 132.60, 131.64, 131.45, 131.02, 130.88, 130.39, 130.01, 129.71, 129.32, 129.04, 128.93, 128.82, 128.64, 128.49, 128.36, 128.19, 127.94, 127.70, 127.50, 127.28, 126.89, 126.37, 126.23, 125.67, 125.63, 125.15, 121.39, 115.63, 21.44, 21.40, 20.75; ³¹P NMR (162 MHz, CDCl₃) δ : 29.19; **MS (ESI):** found [M+H]⁺ 541.19;[α]²²_D = +58.0° (c = 1.0, CHCl₃); Enantiomeric excess is 99% determined by HPLC (Chiralcel AD, Hexane/Isopropanol 85/15, flow rate = 1.0 mL/min, 230.8 nm): major isomer: t_R = 51.69 min, an other isomer was not found.

Yellow oil. ¹**H** NMR (400 MHz, CDCl₃) δ : 7.93-7.89 (m, 2 H), 7.674-7.69 (m, 2 H), 7.62 (d, J = 8.8 Hz, 1 H), 7.5-7.45 (m, 3 H), 7.30-7.22 (m, 4 H), 7.17-7.02 (m, 4 H), 6.92 (t, J = 7.7 Hz, 1 H), 6.54-6.52 (m, 2 H), 6.43 (d, J = 8.4 Hz, 1 H), 2.41 (s, 3 H), 2.01 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ : 153.16, 142.83, 141.09, 141.01, 140.92, 135.17, 133.54, 133.39, 132.06, 131.97, 130.74, 130.32, 129.86, 129.75, 129.50, 129.37, 128.88, 128.44, 128.29, 128.23, 128.16, 128.10, 127.95, 127.91, 127.78, 127.45, 127.29, 126.38, 125.63, 125.55, 125.46, 124.36, 122.91, 121.70, 121.08, 21.60, 21.23; ³¹P NMR (162 MHz, CDCl₃) δ : 33.26; **MS (ESI):** found [M+H]⁺ 499.19; $[\alpha]^{22}_{D} = +45.0^{\circ}$ (c = 1.0, CHCl₃); Enantiomeric excess is 99% determined by HPLC (Chiralcel AD, Hexane/Isopropanol 85/15, flow rate = 1.0 mL/min, 236.7 nm): major isomer: t_R = 22.35 min, an other isomer was not found.

Yellow oil. ¹**H NMR** (400 MHz, CDCl₃) δ : 7.87-7.83 (m, 4 H), 7.72 (d, *J* =7.5 Hz, 2 H), 7.53 (d, *J* =8.6 Hz 1 H), 7.50-7.42 (m, 3 H), 7.36 (t, *J* = 7.4 Hz, 1 H), 7.32-7.24 (m, 4 H), 7.23-7.19 (m, 2 H), 7.16-7.09 (m, 3 H), 7.0-7.01 (m, 3 H), 6.79-6.77 (m, 2 H), 2.28 (s, 3 H), 2.16 (s, 3 H); ¹³**C NMR** (100 MHz, CDCl₃) δ : 196.95, 143.15, 143.08, 141.31, 141.28, 141.23, 141.20, 137.76, 137.48, 137.43, 135.79, 134.54, 134.42, 133.84, 133.71, 131.80, 131.77, 131.70, 131.67, 131.02, 130.68, 130.24, 129.97, 129.18, 128.67, 128.55, 128.41, 128.28, 127.91, 127.84, 127.75, 127.65, 127.63, 127.57, 127.51, 127.30, 127.18, 127.04, 126.86, 126.67, 126.28, 126.18, 21.44, 21.32; ³¹**P NMR** (162 MHz, CDCl₃) δ : 29.05; **MS (ESI):** found [M+H]⁺ 587.22;[α]²²_D = +65.0° (c = 1.0, CHCl₃); Enantiomeric excess is 99% determined by HPLC (Chiralcel AD, Hexane/Isopropanol 90/10, flow rate = 1.0 mL/min, 233.2 nm): major isomer: t_R = 9.32 min, an other isomer was not found.

White oil. ¹H NMR (400 MHz, CDCl₃) δ : 8.08-8.01 (m, 2 H), 7.94 (d, J = 8.2 Hz, 1 H), 7.8,9-7.84 (m, 1 H), 7.54-7.51 (m, 1 H), 7.42-7.38 (m, 2 H), 7.36-7.30 (m, 2 H), 7.27-7.17 (m, 7 H), 7.13-7.01 (m, 4 H), 6.88 (d, J = 8.4 Hz, 1 H), 6.82 (s, 1 H), 6.21 (d, J = 15.8 Hz, 1 H), 4.11 (q, J = 7.1 Hz, 2 H), 4.02 (s, 3 H), 1.21 (t, J = 7.1 Hz, 3. H); ¹³C NMR (100 MHz, CDCl₃) δ : 166.47, 155.55, 143.29, 141.24, 141.16, 134.59, 134.57, 134.51, 133.67, 133.65, 133.56, 132.85, 132.62, 131.81, 131.74, 131.64, 131.53, 131.45, 131.35, 131.03, 131.00, 130.62, 130.59, 130.52, 129.97, 129.93, 128.91, 128.80, 128.29, 128.17, 128.10, 128.07, 127.89, 127.77, 127.54, 127.40, 127.30, 127.28, 127.24, 127.17, 126.92, 126.11, 121.69, 118.22, 99.51, 60.14, 55.31, 14.17; ³¹P NMR (162 MHz, CDCl₃) δ : 28.60; **MS (ESI):** found [M+H]⁺ 583.20;[α]²²_D = -22.0° (c = 0.5, CHCl₃); Enantiomeric excess is 98% determined by HPLC (Chiralcel AD, Hexane/Isopropanol 85/15, flow rate = 1.0 mL/min, 209.7 nm): major isomer: t_R = 16.26 min.

Yellow oil. ¹**H** NMR (400 MHz, CDCl₃) δ : 8.02-7.89 (m, 4 H), 7.55-7.51 (m, 1 H), 7.39-7.35 (m, 1 H), 7.30-7.23 (m, 5 H), 7.18-7.12 (m, 2 H), 6.98-6.89 (m, 6 H), 2.27 (s, 3 H), 1.80 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ : 168.44, 160.00, 157.48, 146.35, 146.24, 141.41, 141.38, 141.30, 141.27, 137.53, 137.45, 134.52, 134.50, 134.30, 134.25, 132.84, 132.73, 131.77, 131.60, 131.53, 131.49, 131.43, 130.76, 130.49, 129.86, 129.43, 129.05, 128.94, 128.80, 128.49, 128.36, 128.26, 128.22, 128.14, 128.10, 127.82, 127.36, 127.10, 127.02, 126.30, 126.27, 125.46, 121.87, 121.82, 121.48121.32, 120.31, 120.26, 106.32, 106.08, 21.41, 20.70; ³¹P NMR (162 MHz, CDCl₃) δ : 28.65; ¹⁹F NMR (376 MHz, CDCl₃) δ : (d, -120.51); MS (ESI): found [M+H]⁺ 559.20; [α]²²_D = -15.0° (c = 0.2, CHCl₃); Enantiomeric excess is 99% determined by HPLC (Chiralcel AD, Hexane/Isopropanol 85/15, flow rate = 1.0 mL/min, 233.2 nm): major isomer: t_R = 30.50 min, an other isomer was not found.

Yellow oil. ¹**H** NMR (400 MHz, CDCl₃) δ : 8.05-8.02 (m, 1 H), 7.94 (d, *J* =8.2 Hz, 1 H), 7.90-7.85(m, 1 H), 7.79 (d, *J* =8.4 Hz, 1 H), 7.53 (t, *J* = 7.8 Hz, 1 H), 7.43-7.32 (m, 5 H), 7.26-7.16 (m, 7 H), 7.12 (t, *J* = 7.8 Hz, 1 H), 7.04-6.97 (m, 4 H), 6.23 (d, *J* =15.9 Hz, 1 H), 4.10 (q, *J* = 7.1 Hz, 2 H), 2.63 (s, 3 H), 1.22 (t, *J* = 7.3 Hz, 3 H); ¹³**C** NMR (100 MHz, CDCl₃) δ : 166.55, 142.87, 141.32, 141.23, 135.44, 135.39, 135.14, 134.57, 134.55, 133.75, 133.39, 133.28, 132.86, 132.74, 132.70, 131.84, 131.74, 131.66, 131.45, 131.35, 131.21, 131.13, 131.06, 131.03, 130.38, 130.35, 130.20, 128.91, 128.80, 128.33, 128.21, 128.18, 128.15, 128.09, 127.94, 127.82, 127.37, 127.28, 127.25, 127.17, 126.57, 126.13, 123.80, 122.81, 118.44, 60.10, 19.62, 14.19; ³¹**P** NMR (162 MHz, CDCl₃) δ : 28.71; **MS (ESI):** found [M+H]⁺ 567.21;[α]²²_D = -45.0° (c = 0.2, CHCl₃); We tried to obtain the enantiomeric excess, but didn't find the corresponding condition.

Yellow oil. ¹**H** NMR (400 MHz, CDCl₃) δ :7.87 (d, J = 8.3 Hz, 2 H), 7.61-7.50 (m, 6 H), 7.41-.37 (m, 2 H), 7.33-7.17 (m, 8 H), 6.92 (d, J = 15.9 Hz, 1 H), 6.71 (d, J = 8.1 Hz, 1 H), 6.04 (d, J = 15.9 Hz, 1 H), 4.03 (q, J = 7.2 Hz, 2 H), 3.36 (s, 3 H), 1.16 (t, J = 7.2 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ : 166.47, 155.55, 143.29, 141.24, 141.16, 134.59, 134.57, 134.51, 133.67, 133.65, 133.56, 132.85, 132.62, 131.81, 131.74, 131.64, 131.53, 131.45, 131.35, 131.03, 131.00, 130.62, 130.59, 130.52, 129.97, 129.93, 128.91, 128.80, 128.29, 128.17, 128.10, 128.07, 127.89, 127.77, 127.54, 127.40, 127.30, 127.28, 127.24, 127.17, 126.92, 126.11, 121.69, 118.22, 99.51, 60.14, 55.31, 14.17; ³¹P NMR (162 MHz, CDCl₃) δ : 28.11; MS (ESI): found [M+H]⁺ 533.20;[α]²²_D = -20.0° (c =0.2, CHCl₃); Enantiomeric excess is 74% determined by HPLC (Chiralcel AD-H, Hexane/Isopropanol 90/10, flow rate = 1.0 mL/min, 235.1 nm): major isomer: t_R = 37.82 min, minor isomer: t_R = 41.51 min.

Yellow oil. ¹**H** NMR (400 MHz, CDCl₃) δ : 7.87-7.84 (m, 2 H), 7.68-7.61 (m, 3 H), 7.55-7.50 (m, 3 H), 7.47-7.33 (m, 6 H), 7.31-7.21 (m, 3 H), 6.73 (d, J = 8.2 Hz, 1 H), 6.48 (d, J = 8.3 Hz, 1 H), 3.34 (s, 3 H), 1.62 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ : 168.53, 157.95, 149.66, 138.14, 138.06, 134.40, 134.38, 134.15, 133.94, 133.12, 132.90, 132.65, 132.54, 132.11, 132.01, 131.87, 131.78, 131.18, 131.15, 131.01, 130.98, 129.57, 129.29, 128.55, 128.43, 128.26, 127.96, 127.92, 127.84, 127.81, 127.69, 127.66, 127.42, 127.30, 126.75, 126.69, 119.11, 119.07, 114.61, 107.15, 55.07, 20.57; ³¹P NMR (162 MHz, CDCl₃) δ : 28.39; ¹⁹F NMR (376 MHz, CDCl₃) δ : (d, -120.51); MS (ESI): found [M+H]⁺ 493.17;[α]²²_D = -10.0° (c = 0.2, CHCl₃); Enantiomeric excess is 78% determined by HPLC (Chiralcel AD, Hexane/Isopropanol 85/15, flow rate = 1.0 mL/min, 236.7nm): major isomer: t_R = 24.14 min, minor isomer: t_R = 19.63 min.

Yellow oil. ¹**H** NMR (400 MHz, CDCl₃) δ : 9.00 (b, 1 H), 7.80-7.68 (m, 4 H), 7.53-7.41 (m, 5 H), 7.38-7.28 (m, 5 H), 7.21-7.16 (m, 2 H), 7.10 (d, J = 2.9 Hz, 1 H), 6.69 (dd, $J_1 = 8.8$ Hz, $J_2 = 3.0$ Hz, 1 H), 6.17 (d, J = 8.9 Hz, 1 H), 3.20 (s, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ : 150.22, 149.46, 144.48, 144.40, 134.47, 133.64, 132.89, 132.77, 132.68, 132.61, 132.15, 132.06, 131.63, 131.30, 130.79, 130.69, 130.47, 129.03, 128,50, 128.37, 128.33, 128.21, 127.98, 127.83, 127.78, 127.63, 127.50, 127.05, 126.92, 126.46, 125.48, 125.42, 121.30, 116.45, 109.68, 54.40; ³¹P NMR (162 MHz, CDCl₃) δ : 28.39; **MS (ESI):** found [M+H]⁺ 451.16;[α]²²_D = -20.0° (c = 0.2, CHCl₃); Enantiomeric excess is 64% determined by HPLC (Chiralcel OD-H, Hexane/Isopropanol 95/5, flow rate = 0.5 mL/min, 237.9 nm): major isomer: t_R = 19.21 min, minor isomer: t_R = 15.93 min.

Yellow oil. ¹**H NMR** (400 MHz, CDCl₃) δ: 7.87-7.83 (m, 2 H), 7.66-7.61 (m, 3 H), 7.55-7.45 (m, 4 H), 7.41-7.34 (m, 5 H), 7.31-7.26 (m, 2 H), 7.20 (t, *J* = 8.2 Hz, 1 H), 6.68 (d, *J* = 8.2 Hz, 1 H), 6.47 (d, *J* = 8.4 Hz, 1 H),

3.75-3.59 (m, 2 H), 1.60 (s, 3 H), 0.94 (t, J = 6.9 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃) &: 168.53, 157.37, 149.68, 138.62, 138.55, 134.46, 134.44, 133.19, 133.01, 132.66, 132.54, 132.15, 132.05, 131.89, 131.79, 131.49, 131.47, 131.35, 131.32, 129.61, 128.45, 128.34, 128.22, 128.07, 128.05, 127.95, 127.89, 127.77, 127.57, 127.47, 127.34, 127.17, 126.92, 126.63, 119.14, 119.09, 114.41, 108.05, 63.31, 20.45, 14.28; ³¹P NMR (162 MHz, CDCl₃) &: 30.53; **MS (ESI):** found $[M+H]^+$ 507.19; $[\alpha]^{22}_{D} = -45.0^{\circ}$ (c = 0.2, CHCl₃); Enantiomeric excess is 90% determined by HPLC (Chiralcel AD, Hexane/Isopropanol 85/15, flow rate = 1.0 mL/min, 236.7 nm): major isomer: t_R = 22.26 min, minor isomer: t_R = 13.38 min.

Yellow oil. ¹**H** NMR (400 MHz, CDCl₃) δ : 7.87 (d, J = 8.0 Hz, 2 H), 7.60-7.50 (m, 6 H), 7.43-7.22 (m, 9 H), 7.16 (d, J = 7.8 Hz, 1 H), 6.92 (d, J = 15.9 Hz, 1 H), 6.69 (d, J = 8.1 Hz, 1 H), 6.03 (d, J = 15.9 Hz, 1 H), 4.03 (q, J = 7.0 Hz, 2 H), 3.77-3.64 (m, 2 H), 1.17 (t, J = 7.3 Hz, 3 H), 0.92 (t, J = 7.2 Hz, 3 H); ¹³C NMR (100 MHz, CDCl₃) δ : 166.44, 157.16, 142.62, 140.88, 140.81, 135.30, 134.43, 134.41, 134.11, 133.64, 133.10, 133.07, 132.99, 132.62, 132.00, 131.91, 131.86, 131.76, 131.08, 131.05, 129.33, 128.49, 128.37, 128.28, 127.97, 127.93, 127.91, 127.85, 127.79, 127.77, 127.51, 127.47, 127.42, 127.30, 126.80, 126.38, 118.43, 117.41, 112.08, 63.27, 59.90, 14.35, 14.10; ³¹P NMR (162 MHz, CDCl₃) δ : 28.09; MS (ESI): found [M+H]⁺ 547.17; [α]²²_D = -25.0° (c = 0.2, CHCl₃); Enantiomeric excess is 90% determined by HPLC (Chiralcel IC-3, Agilent 1260, Hexane/Isopropanol 85/15, flow rate = 1.0 mL/min, 240 nm): major isomer: t_R = 36.627 min, minor isomer: t_R = 30.10 min.

Reference

1. Wang, H.-L., Hu, R.-B.; Zhang, H.; Zhou, A.-X.; Yang, S.-D. Org. Lett., **2013**, *15*, 5302-5305, doi: 10.1021/ol402577p.

2. Zhang, H.; Hu, R.-B.; Zhang, X.-Y.; Li, S.-X.; Yang, S.-D. *Chem. Commun.*, **2014**, *50*, 4686-4689, doi;10.1039/C4CC01238K.

3. Ma, Y.-N., Tian, Q.-P., Zhang, H.-Y.; Zhou, A.-X.; Yang, S.-D. Org. Chem. Front., **2014**, *1*, 284-288, doi:10.1039/C4Q000005F.

4. Zhang, H.-Y.; Yi, H.-M.; Wang, G.-W.; Yang, B.; Yang, S.-D. Org. Lett., **2013**, *15*, 6186-6189, doi:10.1021/ol403028a.

V. Copies of NMR and HPLC spectra charts

处理通道:PDA 232.0 :	纳	才	¢
------------------	---	---	---

	处理通道	保留时间 (分钟)	面积	% 面积	峰高
1	PDA 232.0 纳米	94.201	8307715	45.63	20770
2	PDA 232.0 纳米	116.102	9900071	54.37	20338

Processing channel: PDA 232.0nm

	Processing channel	Retention time (minute)	Area	Area %	Peak height
1	PDA 232.0 nm	94.201	8307715	45.63	20770
2	PDA 232.0 nm	116.102	9900071	54.37	20338

处理通道: PDA 232.0 纳米

	处理通道	保留时间 (分钟)	面积	%面积	峰高
1	PDA 232.0 纳米	115.724	16693790	100.00	32195

Processing channel: PDA 232.0nm

	Processing channel	Retention time (minute)	Area	Area %	Peak height
1	PDA 232.0nm	115.724	16693790	100.00	32195

	处理通道	保留时间 (分钟)	面积	%面积	峰高			
1	PDA 230.8 纳米	36.041	17736728	55.91	116381			
2	PDA 230.8 纳米	52.221	13987835	44.09	63774			

处理通道: PDA 230.8 纳米

Processing channel: PDA 230.8nm

	Trocessing chamer. TDA 250.000							
	Processing channel	Retention time (minute)	Area	Area %	Peak height			
1	PDA 230.8 nm	36.041	17736728	55.91	116381			
2	PDA 230.8 nm	52.221	13987835	44.09	63774			

处理通道: PDA 230.8 纳米

	处理通道	保留时间 (分钟)	面积	%面积	峰高
1	PDA 230.8 纳米	51.691	28979760	100.00	133151

Processing channel: PDA 230.8nm

	Processing channel	Retention time (minute)	Area	Area %	Peak height
1	PDA 230.8nm	51.691	28979760	100.00	133151

33.26

	处理通道	保留时间 (分钟)	面积	%面积	峰高
1	PDA 236.7 纳米	22.378	29034173	44.20	318496
2	PDA 236.7 纳米	41.849	36661096	55.80	203379

Processing channel: PDA 236.7nm

	Processing channel	Retention time (minute)	Area	Area %	Peak height
1	PDA 236.7nm	22.378	29034173	44.20	318496
2	PDA 236.7 nm	41.849	36661096	55.80	203379

	处理通道	保留时间 (分钟)	面积	%面积	峰高			
1	PDA 236.7 纳米	22.349	24311437	100.00	270218			

Processing channel: PDA 236.7nm

	Processing channel	Retention time (minute)	Area	Area %	Peak height
1	PDA 236.7nm	22.349	24311437	100.00	270218

Processing channel: PDA 233.2nm

	Processing channel	Retention time (minute)	Area	Area %	Peak height
1	PDA 233.2nm	9.396	29034173	57.35	351301
2	PDA 233.2nm	17.353	11822919	42.65	104642

	处理通道	保留时间 (分钟)	面积	%面积	峰高			
1	PDA 233.2 纳米	9.322	23204244	100.00	502337			

小田、岡、送・日日へのつつの小山、火

Processing channel: PDA 233.2nm

	Processing channel	Retention time (minute)	Area	Area %	Peak height
1	PDA 233.2nm	9.322	23204244	100.00	502337

处理通道: PDA 237.9 纳米

	处理通道	保留时间 (分钟)	面积	%面积	峰高
1	PDA 237.9 纳米	18.422	15886727	50.18	207417
2	PDA 237.9 纳米	27.594	15774759	49.82	136827

Peak height Processing channel Retention time Area Area % (minute) PDA 237.9nm 15886727 207417 18.422 50.18 1 2 PDA 237.9nm 15774759 49.82 27.594 136827

Processing channel: PDA 237.9nm

处理通道: PDA 237.9 纳米

	处理通道	保留时间 (分钟)	面积	% 面积	峰高
1	PDA 237.9 纳米	18.570	8670714	100.00	109947

Processing channel: PDA 237.9nm

	Processing channel	Retention time (minute)	Area	Area %	Peak height
1	PDA 237.9nm	18.570	8670714	100.00	109947

处理通道: PDA 233.2 纳米

	处理通道	保留时间 (分钟)	面积	%面积	峰高
1	PDA 233.2 纳米	30.427	40709312	50.72	315869
2	PDA 233.2 纳米	51.741	39558129	49.28	180431

Processing channel: PDA 233.2nm

	Processing channel	Retention time (minute)	Area	Area %	Peak height
1	PDA 233.2nm	30.427	40709312	50.72	315869
2	PDA 233.2nm	51 <u>.</u> 741	39558129	48.28	180431

处理通道: PDA 233.2 纳米

	处理通道	保留时间 (分钟)	面积	%面积	峰高
1	PDA 233.2 纳米	30.504	27347121	100.00	216054

Processing channel: PDA 233.2nm

	Processing channel	Retention time (minute)	Area	Area %	Peak height
1	PDA 233.2nm	30.504	27347121	100.00	216054

	Processing channel	Retention time (minute)	Area	Area %	Peak height
1	PDA 229.7nm	38.069	23460782	49.75	295552
2	PDA 229.7nm	41.634	23695855	50.25	272443

Processing channel: PDA 229.7nm

处理通道: PDA 235.1 纳米

	处理通道	保留时间 (分钟)	面积	%面积	峰高
1	PDA 235.1 纳米	37.820	57678578	87.07	724170
2	PDA 235.1 纳米	41.506	8564760	12.93	102220

Processing channel: PDA 235.1nm

	Processing channel	Retention time (minute)	Area	Area %	Peak height
1	PDA 235.1nm	37.820	57678578	87.07	724170
2	PDA 235.1nm	41.506	8560760	12.93	102220

	处理通道	保留时间 (分钟)	面积	%面积	峰高
1	PDA 236.7 纳米	19.595	59648584	49.45	747000
2	PDA 236.7 纳米	24.184	60979640	50.55	617442

	Processing channel	Retention time (minute)	Area	Area %	Peak height
1	PDA 236.7nm	19.595	59648584	49.45	747000
2	PDA 236.7nm	24.184	60979640	50.55	617442

Processing channel: PDA 236.7nm

	处理通道	保留时间 (分钟)	面积	%面积	峰高
1	PDA 236.7 纳米	19.628	7123913	10.88	88652
2	PDA 236.7 纳米	24.138	58329832	89.12	593536

Processing channel: PDA 236.7nm

	Processing channel	Retention time (minute)	Area	Area %	Peak height
1	PDA 236.7nm	19.628	7123913	10.88	88652
2	PDA 236.7nm	24.138	58329832	89.12	593536

28.49

	处理通道	保留时间 (分钟)	面积	%面积	峰高
1	PDA 237.9 纳米	16.207	24960109	49.63	480433
2	PDA 237.9 纳米	19.662	25331296	50.37	389016

	Processing channel	Retention time (minute)	Area	Area %	Peak height
1	PDA 237.9nm	16.207	24960109	49.63	480433
2	PDA 237.9nm	19.662	25331296	50.37	389016

Processing channel: PDA 237.9nm

处理通道: PDA 237.9 纳米

	处理通道	保留时间 (分钟)	面积	%面积	峰高
1	PDA 237.9 纳米	15.934	10061404	18.05	194948
2	PDA 237.9 纳米	19.207	45676134	81.95	699301

Processing channel: PDA 237.9nm

	Processing channel	Retention time (minute)	Area	Area %	Peak height
1	PDA 237.9nm	15.934	10061404	18.05	194948
2	PDA 237.9nm	19.207	45676134	81.95	699301

	处理通道	保留时间 (分钟)	面积	% 面积	峰高
1	PDA 236.7 纳米	13.390	4914848	49.13	89950
2	PDA 236.7 纳米	22.560	5088822	50.87	54735

	Processing channel	Retention time (minute)	Area	Area %	Peak height
1	PDA 236.7nm	13.390	4914848	49.13	89950
2	PDA 236.7nm	22.560	5088822	50.87	54735

Processing channel: PDA 236.7nm

	处理通道	保留时间 (分钟)	面积	%面积	峰高
1	PDA 236.7 纳米	13.381	1353855	4.80	24141
2	PDA 236.7 纳米	22.258	26825678	95.20	298324

Processing channel: PDA 236.7nm

	Processing channel	Retention time (minute)	Area	Area %	Peak height
1	PDA 236.7nm	13.381	1353855	4.80	24141
2	PDA 236.7nm	22.258	26825678	95.20	298324

