Supporting Information

for

Synthesis and optical properties of pyrroldinyl peptide nucleic acid carrying a clicked Nile red label

Nattawut Yotapan¹, Chayan Charoenpakdee¹, Pawinee Wathanathavorn¹, Boonsong Ditmangklo¹, Hans-Achim Wagenknecht*² and Tirayut Vilaivan*¹

Address: ¹Organic Synthesis Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok 10330, Thailand and ²Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany

Email: Tirayut Vilaivan - vtirayut@chula.ac.th; Hans-Achim Wagenknecht - wagenknecht@kit.edu

*Corresponding author

NMR spectra, HPLC chromatogram, mass spectra and additional spectroscopic data
Figure S1: (a) 1H NMR and (b) 13C NMR spectra of propargyl nile red 1

Figure S2: HPLC chromatogram and MALDI-TOF mass spectrum of 10mer-Nr

Figure S3: HPLC chromatogram and MALDI-TOF mass spectrum of 11merAA-Nr

Figure S4: HPLC chromatogram and MALDI-TOF mass spectrum of 11merCC-Nr

Figure S5: HPLC chromatogram and MALDI-TOF mass spectrum of 11merGG-Nr

Figure S6: HPLC chromatogram and MALDI-TOF mass spectrum of 11merTT-Nr

Figure S7: UV-vis and fluorescence spectra of 1 in MeCN-buffer

Figure S8: UV-vis and fluorescence spectra of 10mer-Nr in MeCN-buffer

Figure S9: UV-vis and fluorescence spectra of 10mer-Nr with various mismatched DNA

Figure S10: UV-vis and fluorescence spectra of 10mer-Nr with various base-inserted DNA

Figure S11: UV-vis and fluorescence spectra of 10mer-Nr with various base-inserted DNA (indirect)

Figure S12: UV-vis and fluorescence spectra of 10mer-Nr with various base-inserted DNA (mismatched)

Figure S13: UV-vis and fluorescence spectra of 11merAA-Nr with complementary and base-inserted DNA

Figure S14: UV-vis and fluorescence spectra of 11merCC-Nr with complementary and base-inserted DNA

Figure S15: UV-vis and fluorescence spectra of 11merGG-Nr with complementary and base-inserted DNA

Figure S16: UV-vis and fluorescence spectra of 11merTT-Nr with complementary and base-inserted DNA

Figure S17: UV-vis and fluorescence spectra of 10mer-Nr and its DNA hybrids before and after addition of β-cyclodextrin

Figure S18: Photographs of 11merXX-Nr and its hybrids with various DNA under black light
Figure S1: (a) 1H NMR (CDCl$_3$, 400 MHz) and (b) 13C NMR (CDCl$_3$, 100 MHz) spectra of propargyl nile red 1
Figure S2: (a) Analytical HPLC chromatogram and (b) MALDI-TOF mass spectrum of 10mer-Nr (calcd for \([M-H]^+ = 4157.5\))
Figure S3: (a) Analytical HPLC chromatogram and (b) MALDI-TOF mass spectrum of 11merAA-Nr (calcd for [M-H]$^+$ = 4491.9)
Figure S4: (a) Analytical HPLC chromatogram and (b) MALDI-TOF mass spectrum of 11merCC-Nr (calcd for [M-H]$^+$ = 4443.9)
Figure S5: (a) Analytical HPLC chromatogram and (b) MALDI-TOF mass spectrum of 11merGG-Nr (calcd for [M-H]$^+$ = 4523.9)
Figure S6: (a) Analytical HPLC chromatogram and (b) MALDI-TOF mass spectrum of 11merTT-Nr (calcd for [M-H]+ = 4473.9)
Figure S7: (a) UV-vis and (b) fluorescence spectra of 1 in MeCN-buffer (10 mM sodium phosphate, pH 7.0): 20% MeCN (blue), 50% MeCN (green), 100% MeCN (red). All spectra were measured at $[1] = 1.0 \, \mu \text{M}$, $\lambda_{\text{ex}} = 580$ nm, 700 PMT.

Figure S8: (a) UV-vis and (b) fluorescence spectra of 10mer-Nr in MeCN-buffer (10 mM sodium phosphate, pH 7.0): 0% MeCN (black), 20% MeCN (blue), 50% MeCN (green), 100% MeCN (red). All spectra were measured at $[1] = 1.0 \, \mu \text{M}$, $\lambda_{\text{ex}} = 580$ nm, 700 PMT.
Figure S9: (a) UV-vis and (b) fluorescence spectra of 10mer-Nr: single stranded (black dotted), with 5'-d(AGTGATCTAC)-3' (blue), with 5'-d(AGTGTCTCTAC)-3' (red), with 5'-d(AGTCATCTAC)-3' (brown), with 5'-d(AGTGACCTAC)-3' (pink). All spectra were measured in 10 mM sodium phosphate buffer pH 7.0, [PNA] = 1.0 μM, [DNA] = 1.2 μM, λ_{ex} = 580 nm, 700 PMT.

Figure S10: (a) UV-vis and (b) fluorescence spectra of 10mer-Nr: single stranded (black dotted), with 5'-d(AGTGATCTAC)-3' (blue), with 5'-d(AGTGTCTCTAC)-3' (red), with 5'-d(AGTCATCTAC)-3' (brown), with 5'-d(AGTGACCTAC)-3' (pink), with 5'-d(AGTGATTCTAC)-3' (orange). All spectra were measured in 10 mM sodium phosphate buffer pH 7.0, [PNA] = 1.0 μM, [DNA] = 1.2 μM, λ_{ex} = 580 nm, 700 PMT.
Figure S11: (a) UV-vis and (b) fluorescence spectra of 10mer-Nr: single stranded (black dotted), with 5’-d(AGTGATCTAC)-3’ (blue), with 5’-d(AGTGACTCTAC)-3’ (red), with 5’-d(AGTCGATCTAC)-3’ (brown), with 5’-d(AGTGATCCTAC)-3’ (pink). All spectra were measured in 10 mM sodium phosphate buffer pH 7.0, [PNA] = 1.0 μM, [DNA] = 1.2 μM, λ_{ex} = 580 nm, 700 PMT.

Figure S12: (a) UV-vis and (b) fluorescence spectra of 10mer-Nr: single stranded (black dotted), with 5’-d(AGTGATCTAC)-3’ (blue), with 5’-d(AGTGACTCTAC)-3’ (red), with 5’-d(AGTGCCCTCTAC)-3’ (brown), with 5’-d(AGTGACCCCTAC)-3’ (pink), with 5’-d(AGTGACTCCAC)-3’ (orange). All spectra were measured in 10 mM sodium phosphate buffer pH 7.0, [PNA] = 1.0 μM, [DNA] = 1.2 μM, λ_{ex} = 580 nm, 700 PMT.
Figure S13: (a) UV-vis and (b) fluorescence spectra of 11merAA-Nr: single stranded (black dotted), with 5'-d(CGTATTTTATG)-3' (blue) and with 5'-d(CGTATTCTTTATG)-3' (red). All spectra were measured in 10 mM sodium phosphate buffer pH 7.0, [PNA] = 1.0 μM, [DNA] = 1.2 μM, λ_{ex} = 580 nm, 700 PMT.

Figure S14: (a) UV-vis and (b) fluorescence spectra of 11merCC-Nr: single stranded (black dotted), with 5'-d(CGTATAATATG)-3' (blue) and with 5'-d(CGTATACATATG)-3' (red). All spectra were measured in 10 mM sodium phosphate buffer pH 7.0, [PNA] = 1.0 μM, [DNA] = 1.2 μM, λ_{ex} = 580 nm, 700 PMT.
Figure S15: (a) UV-vis and (b) fluorescence spectra of 11merGG-Nr: single stranded (black dotted), with 5'-d(CGTATCCTATG)-3' (blue) and with 5'-d(CGTATCCCTATG)-3' (red). All spectra were measured in 10 mM sodium phosphate buffer pH 7.0, [PNA] = 1.0 µM, [DNA] = 1.2 µM, λ_ex = 580 nm, 700 PMT.

Figure S16: (a) UV-vis and (b) fluorescence spectra of 11merTT-Nr: single stranded (black dotted), with 5'-d(CGTATAATATG)-3' (blue) and with 5'-d(CGTATACATATG)-3' (red). All spectra were measured in 10 mM sodium phosphate buffer pH 7.0, [PNA] = 1.0 µM, [DNA] = 1.2 µM, λ_ex = 580 nm, 700 PMT.
Figure S17: (a) UV-vis and (b) fluorescence spectra of 10mer-Nr and its DNA hybrids before (---) and after (—) addition of β-cyclodextrin (10 mM): single stranded (black), with 5’-d(AGTGATCTAC)-3’ (blue), 5’-d(AGTGCTCTAC)-3’ (red), with 5’-d(AGTGACTCTAC)-3’ (green). All spectra were measured in 10 mM sodium phosphate buffer pH 7.0, [PNA] = 1.0 μM, [DNA] = 1.2 μM, λex = 580 nm, 700 PMT.

Figure S18: Photographs of 11merXX-Nr hybrids with DNA under black light (405 nm): (a) 11merAA-Nr and 5’-d(CGTATTTTATG)-3’ (b) (a) 11merAA-Nr and 5’-d(CGTATTTTATG)-3’ (c) 11merCC-Nr and 5’-d(CGTATGGTATG)-3’ (d) 11merCC-Nr and 5’-d(CGTATCTCTAG)-3’ (e) 11merTT-Nr and 5’-d(CGTATAATATG)-3’ (f) 11merTT-Nr and 5’-d(CGTATCCTATG)-3’ (g) 11merGG-Nr and 5’-d(CGTATCCTATG)-3’ (h) 11merGG-Nr and 5’-d(CGTATCCTATG)-3’; Conditions: 10 mM phosphate buffer pH 7.0, [PNA] = 10 μM and [DNA] = 12 μM