Supporting Information

for

Molecular recognition of AT-DNA sequences by the induced CD pattern of dibenzotetraaza[14]annulene (DBTAA)–adenine derivatives

Marijana Radić Stojković¹, Marko Škugor¹, Łukasz Dudek², Jarosław Grolik², Julita Eilmes² and Ivo Piantanida ¹*

Address: ¹Laboratory for Study of Interactions of Biomacromolecules, Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, PO Box 180, HR-10002 Zagreb, Croatia and ²Department of Chemistry, Jagiellonian University, Ingardena 3 ,30-060 Kraków, Poland

Email: Ivo Piantanida - pianta@irb.hr

* Corresponding author

Additional NMR spectra for new compounds characterisation, additional UV-vis and CD spectra

¹H NMR spectrum of **AP3am**

ESI-HRMS spectrum of AP3am

ESI-HRMS spectrum of AP5

UV-vis experiments:

Figure S1. UV–vis spectra of **AP compounds** at $c = 1.6 \times 10^{-5} \text{ mol dm}^{-3}$; pH 7.0, sodium cacodylate/HCl buffer, $I = 0.05 \text{ mol dm}^{-3}$.

CD experiments:

Figure S2. CD titration of ctDNA ($c = 3.0 \times 10^{-5}$ mol dm⁻³) and poly dG–poly dC ($c = 3.0 \times 10^{-5}$ mol dm⁻³) with APH, AP3, AP3am, AP5 and AP6 at molar ratios r =[compound] / [polynucleotide] (pH 7.0, buffer sodium cacodylate, I = 0.05 mol dm⁻³).

Figure S3. CD titration of poly A–poly U ($c = 3.0 \times 10^{-5}$ mol dm⁻³) and poly dA–poly dT ($c = 3.0 \times 10^{-5}$ mol dm⁻³) with **DP77, APH**, **AP3, AP3am, AP5** and **AP6** at molar ratios r = [compound] / [polynucleotide] (pH 7.0, buffer sodium cacodylate, l = 0.05 mol dm⁻³).

Figure S4. CD titration of poly dAdT–poly dAdT ($c = 3.0 \times 10^{-5}$ mol dm⁻³) with **AP3**, **AP3am** and **AP6** at molar ratios r = [compound] / [polynucleotide] (pH 7.0, buffer sodium cacodylate, <math>I = 0.05 mol dm⁻³).

Table S1. Groove widths and depths for selected nucleic acid conformations [1].				
	Groove width [Å]		Groove depth [Å]	
	major	minor	major	minor
[b] poly dAdT–poly dAdT	11.2	6.3	8.5	7.5
[c] poly dA–poly dT	11.4	3.3	7.5	7.9
[a] poly rA–poly rU	3.8	10.9	13.5	2.8
[b] poly dGdC–poly dGdC	13.5	9.5	10.0	7.2
[a] A-helical structure (e.g. A-DNA). [b] B-helical structure (e.g. B-DNA); [c] C-helical				
structure (e.g. C-DNA).				

1 a) Saenger, W. *Principles of Nucleic Acid Structure*, Springer-Verlag: New York,
1983; b) Cantor, C. R.; Schimmel, P. R. *Biophysical Chemistry*, WH Freeman & Co:
San Francisco, 1980.