Supporting Information

for

Derivatives of the triaminoguanidinium ion, 3. Multiple *N*-functionalization of the triaminoguanidinium ion with isocyanates and isothiocyanates

Jan Szabo¹, Kerstin Karger¹, Nicolas Bucher^{1,2} and Gerhard Maas^{*1}

Address: ¹Institute of Organic Chemistry I, University of Ulm, Albert-Einstein-Allee 11,

D-89081 Ulm, Germany, Fax: (+49) 731-50-22803 and ²(new address) TUM

CREATE, Singapore 138602, Singapore

Email: Gerhard Maas* - gerhard.maas@uni-ulm.de

* Corresponding author

Experimental procedures, characterization data for synthesized compounds, and data for the X-ray crystal structure determinations

Table of contents

Experimental procedures and characterization of compounds	S2
X-ray crystal structure determinations	S16
References	S24

Experimental details and characterization of compounds

General information

¹H and ¹³C NMR spectra were recorded on Bruker Avance 400 (¹H: 400.13 MHz; ¹³C: 100.62 MHz) and Bruker Avance 500 spectrometers (¹H: 500.14 MHz, ¹³C: 125.76 MHz); δ values are reported in ppm and coupling constants are expressed in Hertz (Hz) (m_c = centered multiplet). The signal of the solvent was used as internal standard: ¹H spectra: δ (CHCl₃) = 7.26, δ ((CH₃)₂SO) = 2.50, δ (CH₃CN) = 1.94 ppm; ¹³C spectra: δ (CDCl₃) = 77.0, δ ((CD₃)₂SO) = 39.43, δ (CD₃CN) = 1.24 ppm. NMR spectra were measured at 293±2 K if not stated otherwise. When necessary, ¹³C signal assignments were derived from C,H COSY, HSQC and HMBC spectra. IR spectra: Bruker Vector 22; wave numbers $[cm^{-1}]$ and intensities (vs = very strong, s = strong, m = medium, w = weak, br = broad) are given. Elemental analyses: elementar vario MICRO cube. Mass spectra: Bruker Daltonics REFLEX III (MALDI-TOF spectra, detection N₂ laser with 337 nm, matrix trans-2-(3-(4-tert-butylphenyl)-2-methyl-2propenylidene)malononitrile), Bruker solariX (MALDI-TOF and ESI HRMS-spectra). Column chromatography was performed under hydrostatic pressure (silica gel Si 60, Macherey-Nagel, 0.063-0.2 mm). Melting points were determined with a Büchi Melting Point B-540 apparatus. The reactions were carried out under air atmosphere unless otherwise noted.

Materials. Phenyl isocyanate was purchased from ACROS, phenyl isothiocyanate from Fluka and *p*-toluenesulfonyl isocyanate from ABCR. Triaminoguanidium chloride (1) [1], 1,2,3-tris(benzylamino)guanidinium chloride (3) [2], (4-bromophenyl) isocyanate [3] and (4-methylphenyl) isothiocyanate [3] were prepared by published procedures.

Synthetic procedures

1,2,3-Tris(2-phenylpropyl-1-iminyl)quanidinium chloride (4): Triaminoguanidinium chloride (1) (10.0 g, 71.4 mmol) was dissolved in 100 mL of water and hydratropic aldehyde (29.4 mL, 221.3 mmol) was added. While the reaction mixture was kept in an ultrasonic bath for 2 h, a red viscous oil deposited, which was extracted several times with tert-butyl methyl ether and diethyl ether until it became colorless. After drying of the oil at 22 °C/0.05 mbar, a colorless solid was obtained (25.1 g, 51.3 mmol, 72 %), m.p. 134.8-135.2 °C. – IR (KBr): v = 3650–2250 (continous absorption with medium-strong maxima at 3617, 3314, 3027, 2971, 2930, 2873), 1952 (w), 1878 (w), 1810 (w), 1618 (vs, br, C=N), 1492 (s), 1451 (s), 1311 (s), 1099 (s), 1051 (s), 1019 (s), 762 (s), 700 (s) cm⁻¹. – ¹H NMR ((CD₃)₂SO, 400.13 MHz): δ = 1.45 (d, ³J = 6.2 Hz, 9 H, CHCH₃), 3.80 (m_c, 3 H, CHCH₃), 7.1–7.3 (m, 15 H, H_{Ph}), 8.11 (d, ${}^{3}J$ = 5.2 Hz, 3 H, CH=N), 11.68 (s, 3 H, C⁺NH) ppm. – 13 C NMR ((CD₃)₂SO, 100.62 MHz): δ = 18.49 (CH₃), 42.13 (CH), 126.97 (*p*-CH_{Ph}), 127.46 (CH_{Ph}), 128.80 (CH_{Ph}), 141.73 (*ipso*-C_{Ph}), 149.16 (C=N), 157.93 (C⁺(NH)₃) ppm. – MS (MALDI-TOF): *m*/*z* = 453 [M – CII^+ . – Anal. calcd. for $C_{28}H_{33}CIN_6$ (489.06): C, 68.77; H, 6.80; N, 17.18; found: C, 68.78; H, 6.93; N, 17.19.

1,2,3-Tris(2-phenylpropyl-1-amino)guanidinium tosylate (**5-OTs**): 1,2,3-Tris(2phenylpropyl-1-iminyl)guanidinium chloride (4) (3.92 8.0 mmol) g, and dimethylaminoborane (2.27 g, 38.5 mmol) were placed in a reaction flask and dichloromethane (50 mL) was added. A large excess of *p*-toluenesulfonic acid (33.15 g, 192.5 mmol) dissolved in CH₂Cl₂ and MeOH (3:1, 10 mL) was slowly added to the suspension (gas evolution) while stirring at room temperature. After 1.5 h a saturated solution of Na₂CO₃ (30 mL) was added, and the mixture was stirred for another hour.

S3

The organic phase was separated, and the aqueous phase was extracted with CH₂Cl₂. The combined organic layers were dried over Na₂SO₄ and the solvent was evaporated at 0.05 mbar/20 °C to leave a yellow, highly viscous oil, which was sufficiently pure for further transformations (4.26 g, 84 %). – IR (KBr): v = 3425(broad, m), 3273 (broad, s), 3060 (m), 3027 (m), 2962 (m), 2927 (m), 2871 (m), 1948 (w), 1876 (w), 1806 (w), 1653 (vs), 1602 (m), 1494 (m), 1453 (m), 1381 (w), 1193 (s), 1122 (m), 1033 (m), 1011 (m), 949 (w), 912 (w), 864 (w), 816 (w), 762 (m), 701 (vs), 682 (m), 566 (m) cm⁻¹. – ¹H NMR ((CD₃)₂SO, 500.16 MHz, 300 K): δ = 1.22-1.24 (m, 9 H, CHCH₃), 2.28 (s, 3 H, aryl-CH₃), 2.78–2.82 (m, 6 H, CHCH₂), 2.86–2.97 (m, 3 H, CHCH₂), 4.95–5.00 (m, 2 H, NH), 5.02–5.04 (m, 1 H, NH), 7.12/7.47 (AA'BB' spin system, ${}^{3}J = 7.9$ Hz, 4 H, H_{Ar}), 7.16–7.20 (m, 8 H, H_{Ph}), 7.26–7.30 (m, 7 H, H_{Ph}), 8.30 (broadend s, 3 H, C⁺NH) ppm. – ¹H NMR ((CD₃)₂SO, 500.16 MHz, 323 K): δ = 1.23 (d, ${}^{3}J$ = 6.5 Hz, 9 H, CHCH₃), 2.29 (s, 3 H, aryl-CH₃), 2.80–2.84 (m, 6 H, CHCH₂), 2.87–2.93 (m, 3 H, CHCH₂), 4.86 (s, 3 H, NH), 7.11/7.49 (AA'BB' spin system, ${}^{3}J =$ 7.9 Hz, 4 H, H_{Ar}), 7.17–7.21 (m, 8 H, H_{Ph}), 7.25–7.30 (m, 7 H, H_{Ph}), 8.04 (s, 3 H, C⁺NH) ppm. – ¹³C NMR ((CD₃)₂SO, 300 K): δ = 20.11 (CH₃), 20.77 (CH₃), 37.46 (CHCH₃), 57.69 (NCH₂CH), 125.48 (C_{Ar}), 126.20 (*p*-C_{Ph}), 126.93 (CH_{Ph}), 128.01 (C_{Ar}), 128.40 (CH_{Ph}), 137.53 (C_{Ar}), 145.20 (C_{Ph}), 145.79 (C_{Ar}), 157.16 (C⁺(NH)₃) ppm. - MS (MALDI-TOF): $m/z = 459 [M - OTs]^+$. – Anal. calcd. for C₃₅H₄₆O₃S (630.85): C, 66.64; H, 7.35; N, 13.32; S 5.08; found: C, 66.83; H, 7.29; N, 13.51; S, 4.93.

1,2,3-Tris(2-phenylpropyl-1-amino)guanidinium chloride (**5-CI**): 1,2,3-Tris(2-phenylpropyl-1-iminyl)guanidinium chloride (**4**) (0.502 g, 1.00 mmol) and dimethylaminoborane (0.282 g, 4.80 mmol) were placed in a reaction flask, and dichloromethane (20 mL) and hydrochloric acid (37 %, 7 mL) were added. The

suspension was stirred at room temperature, until the gas evolution had ceased (90 min). Work-up as described above for 5-OTs afforded a highly viscous yellow oil, which could not be purified further (0.466 g, 90 %). - IR (KBr): v = 3670-2640(continuous absorption with distinct maxima at 3424 (s), 3060 (m), 3027 (m), 2967 (m), 2928 (m), 2872 (m)), 1949 (w), 1876 (w), 1807 (w), 1633 (vs), 1599 (vs), 1542 (m), 1493 (m), 1451 (m), 1380 (m), 1126 (w), 1018 (w), 912 (w), 762 (m), 700 (s) cm⁻ ¹. – ¹H NMR ((CD₃)₂SO, 500.16 MHz, 300 K): δ = 1.22–1.24 (m, 9 H, CHCH₃), 2.77– 2.82 (m, 6 H, CHCH₂), 2.86–2.90 (m, 3 H, CHCH₂), 5.01 (s, 2 H, NH), 5.04 (s, 1 H, NH), 7.16–7.29 (m, 15 H, H_{Ph}), 8.45 (s, 3 H, C⁺NH) ppm. – ¹H NMR ((CD₃)₂SO, 500.16 MHz, 323 K): δ = 1.23 (d, ³J = 6.5 Hz, 9 H, CHCH₃), 2.79–2.85 (m, 6 H, CHCH₂N), 2.89 (narrow m, 3 H, CHCH₂), 4.94 (s, 3 H, NHCH₂), 7.17–7.30 (m, 15 H, H_{Ph}), 8.39 (s, 3 H, C⁺NH) ppm. – ¹³C NMR ((CD₃)₂SO, 100.62 MHz, 295 K): δ = 20.13 (CHCH₃), 37.47 (CHCH₃), 57.76 (NCH₂), 126.19 (p-C_{Ph}), 126.98 (CH_{Ph}), 128.41 (CH_{Ph}), 145.29 (C_{Ph}), 157.18 (C⁺(NH)₃) ppm. – MS (MALDI-TOF): m/z = 459 [M – Cl]⁺. – Anal. calcd. for C₂₈H₃₉ClN₆ (496.11): C, 67.79; H, 8.13; N, 16.94; found: C, 67.10; H, 7.50; N, 16.07. The salt could not be obtained in analytically pure form.

General procedure for the carbamoylation of salt **3** (products **7a–c**): Salt **3** (8.20 g, 20.0 mmol) was suspended in anhydrous CH_2CI_2 (400 mL) under an argon atmosphere. A solution of an isocyanate **6a–c** (66 mmol) in anhydrous CH_2CI_2 (120 mL) was added slowly. The reaction mixture was stirred for the time and at the temperature given for the individual compounds. The formed voluminous precipitate was collected by filtration, washed with CH_2CI_2 and dried (120 °C/0.05 mbar). Salts **7a–c** were found to be well soluble in methanol, acetone, and dimethyl sulfoxide.

1,2,3-*Tris*(1-*benzyl*-3-*phenylureido*)*guanidinium chloride* (**7a**): From **3** and **6a**. Stirring for 24 h at room temperature afforded a brittle white solid (13.98 g, 91 %), m. p. 183.3–186.2 °C. – IR (KBr): v = ~3550-2000 (little structured continuous absorption with a strong absorption band at 3033), 1674 (s), 1600 (s), 1546 (s), 1499 (s), 1445 (s), 1321 (m), 1247 (m), 1076 (w), 1028 (w), 933 (w), 899 (w), 854 (w), 750 (s), 692 (s), 650 (m), 592 (w), 500 (w), 437 (w) cm⁻¹. – ¹H NMR ((CD₃)₂SO, 400.13 MHz): δ = 3.81 (d, ²*J* = 15.2 Hz, 1 H, PhC*H*_AH_B), 4.64 (d, ²*J* = 15.2 Hz, 1 H, PhCH_AH_B), 7.02 (apparent s, 1 H, H_{Ph}), 7.28 (apparent s, 7 H, H_{Ph}), 7.90 (apparent s, 2 H, H_{Ph}), 10.40 (s, 1 H, CO-NH), 11.55 (s, 1 H, C⁺NH) ppm. – ¹³C NMR ((CD₃)₂SO, 100.62 MHz): δ = 52.17 (NCH₂), 120.36 (CH_{Ph}), 122.77 (CH_{Ph}), 127.50 (CH_{Ph}), 128.25 (CH_{Ph}), 128.31 (CH_{Ph}), 128.33 (CH_{Ph}), 135.96 (C_{Ph}), 139.58 (C_{Ph}), 155.02 (C=O), 157.47 (C⁺(NH)₃) ppm. – Anal. calcd. for C₄₃H₄₂ClN₉O₃ (767.31): C, 67.22; H, 5.51; N, 16.41; found: C, 67.10; H, 5.49; N, 16.32.

1,2,3-*Tris*(1-*benzyl*-3-(4-*bromophenyl*)*ureido*)*guanidinium chloride* (**7b**): From **3** and **6b**. Stirring for 30 min at 55 °C afforded a brittle white solid (17.48 g, 87 %), m. p. 201 °C (dec.). – IR (KBr): v = 3296 (br. m), 3031 (m), 1676 (s), 1634 (s), 1593 (s), 1538 (s), 1455 (m), 1399 (s), 1313 (m), 1241 (m), 1074 (m), 1011 (m), 924 (w), 821 (m), 755 (m), 701 (m) cm⁻¹. – ¹H NMR ((CD₃)₂SO, 400.13 MHz): $\delta = 3.75$ (d, ²*J* = 15.6 Hz, 1 H, PhC*H*_AH_B), 4.63 (d, ²*J* = 15.6 Hz, 1 H, PhCH_AH_B), 7.22–7.27 (m, 5 H, H_{Ar}), 7.48 (d, *J* = 8.5 Hz, 2 H, H_{Ar}), 7.85 (d, *J* = 7.8 Hz, 2 H, H_{Ph}), 10.39 (s, 1 H, CO-NH), 11.61 (s, 1 H, C⁺NH) ppm. – ¹³C NMR ((CD₃)₂SO, 100.62 MHz): $\delta = 52.19$ (NCH₂), 114.64 (C_{Ar}-Br); 122.14, 127.64, 128.25, 128.43, 131.26 (all CH_{Ph} and CH_{Ar}); 135.76, 139.96 (*ipso*-C_{Ph} and -C_{Ar}); 154.81 (C=O), 157.45 (C⁺(NH)₃) ppm. – Anal. calcd. for C₄₃H₃₉Br₃ClN₉O₃ (1004.99): C, 51.39; H, 3.91; N, 12.54; calcd. for C₄₃H₃₉Br₃ClN₉O₃ × 1 H₂O: C, 50.46; H, 4.04; N, 12.31; found: C, 50.47; H, 4.08; N, 12.29. 1,2,3-*Tris*(1-benzyl-3-(4-methylphenyl)ureido)guanidinium chloride (**7c**): From **3** and **6c**. Stirring for 4.5 h at 69 °C afforded a brittle white solid (14.26 g, 91 %), m. p. 184.7–185.9 °C. – IR (KBr): v = 3397 (m), 3284 (br. m), 3139 (br. m), 3033 (m), 2921 (m), 1666 (s), 1603 (s), 1518 (s), 1455 (m), 1409 (m), 1319 (m), 1245 (m), 1110 (w), 1073 (w), 1029 (w), 921 (w), 813 (m), 757 (m), 700 (m) cm⁻¹. – ¹H NMR ((CD₃)₂SO, 500.16 MHz): $\delta = 2.25$ (s, 3 H, CH₃), 3.82 (d, ²J = 15.5 Hz, 1 H, PhC*H*_AH_B), 4.58 (d, ²J = 15.5 Hz, 1 H, PhCH_AH_B), 7.08/7.75 (AA'BB' spin system, ³J = 8.1 Hz, 4 H, C₆H₄-4-CH₃), 7.22–7.27 (m, 5 H, H_{Ph}), 10.27 (s, 1 H, CO-NH), 11.47 (s, 1 H, C⁺NH) ppm. – ¹³C NMR ((CD₃)₂SO, 125.76 MHz): $\delta = 20.48$ (aryl-CH₃), 52.26 (NCH₂); 120.40, 127.48, 128.28, 128.32, 128.77 (all CH_{Ph} and CH_{Ar}); 131.59, 136.03, 137.00 (C_{Ph} and C_{Ar}); 155.08 (C=O), 157.53 (C⁺(NH)₃) ppm. – Anal. calcd. for C₄₆H₄₈ClN₉O₃ (810.38): C, 68.18; H, 5.97; N, 15.56; found: C, 68.15; H, 5.97; N, 15.72.

General procedure for the carbamoylation of salt **5-OTs** (products **7d–f**): Salt **5-OTs** (0.50 g, 0.8 mmol) was suspended in anhydrous CH_2CI_2 (20 mL) under an argon atmosphere, and a solution of an isocyanate **6a–c** (2.6 mmol) in anhydrous CH_2CI_2 (10 mL) was added slowly with stirring. A clear solution developed gradually. After cooling, a white solid was precipitated by addition of pentane, filtered off, washed with pentane, and dried at 50 °C/0.05 mbar.

1,2,3-Tris(*1-(2-phenylpropyl)-3-phenylureido)guanidinium tosylate* (**7d**): The reaction mixture of **5-OTs** and **6a** in CH₂Cl₂ was stirred at room temperature for 14 h. After work-up a white solid was obtained (0.71 g, 90 % yield), m. p. 173.8–174.3 °C. – IR (KBr): $v = \sim 3570-2500$ (continuous absorption with distinct maxima at 3289, 3135, 3058, 3029, 2966, 2931), 1944 (w), 1872 (w), 1777 (m), 1673 (s), 1597 (s), 1549 (s), 1499 (s), 1443 (s), 1383 (m), 1314 (s), 1231 (s), 1204 (s), 1120 (m), 1031 (m), 1011

(m), 896 (m), 813 (m), 754 (s), 695 (s) cm⁻¹. - ¹H NMR (CD₃CN, 400.13 MHz): δ = 1.12–1.37 (m, 9 H, CHCH₃), 2.27 (s, 3 H, aryl-CH₃), 2.85–4.35 (m, 9 H, CHCH₂), ~ 6.7–7.6 (m, 30 H, H_{Ph}), 7.04/7.60 (AA'BB' spin system, ${}^{3}J = 8.1$ Hz, 4 H, C₆H₄), ~ 8.1–10.0 (two very broad signals, 3 H, NH) ppm. ¹H NMR ((CD₃)₂SO, 500.16 MHz, 373 K): $\delta = 1.35$ (broadened s, 9 H, CHCH₃), 2.30 (s, 3 H, aryl-CH₃), 3.16 (broadened s, 3 H, CHCH₂), 3.61 and 3.95 (two broadened, unstructured signals, 6 H, CHCH₂), 7.0–7.5 (m, 30 H, H_{Ph}), 7.09/7.56 (AA'BB' spin system, ${}^{3}J$ = 7.9 Hz, 4 H, C₆H₄ of tosylate), 8.56 (broadened s, 3 H, NH), 10.33 (very broad coalescing signal, 3 H, NH) ppm. – ¹³C NMR (CD₃CN, 125.76 MHz, 320 K): δ = 20.64 (coalescing signal, CHCH₃), 21.40 (aryl-CH₃), 38.88 (CHCH₂), 58.0 (coalescing, CHCH₂N), 120.10 (C_{Ph}), 121.72 (broad, C_{Ph}), 124.79 (broad, C_{Ph}), 126.86 (tosylate-CH), 127.88 (broadened, C_{Ph}), 128.44 (tosylate-CH), 129.69 (C_{Ph}), 129.72 (C_{Ph}), 139.61 (broad, C_{Ph}), 140.78 (tosylate-C), 144.94 (tosylate C), 145.39 (coalescing, C_{Ph}), 156.61 (broad, coalescing signal, $C^{+}(NH)_{3}$ or C=O, the second signal was not detected) ppm. - MS (MALDI-TOF): $m/z = 816.9 [M - OTs]^{+}$. - Anal. calcd. for C₅₆H₆₁N₉O₆S (988.22): C, 68.06; H, 6.22; N, 12.76; S, 3.24; found: C, 67.88; H, 6.03; N, 12.71; S, 2.93.

1,2,3-*Tris*(1-(2-phenylpropyl)-3-(4-bromophenyl)ureido)guanidinium tosylate (**7e**): The reaction mixture **5-OTs** and **6b** in CH₂Cl₂ was stirred at room temperature for 20 h. After work-up a white solid was obtained (0.76 g, 78 % yield), m. p. 148.1–148.9 °C. – IR (KBr): $v = \sim 3700-2250$ (continuous absorption with medium-strong maxima at 3291, 3029, 2968, 2930), 1676 (s), 1595 (s), 1535 (vs), 1492 (vs), 1453 (m), 1400 (s), 1310 (m), 1286 (m), 1237 (s), 1180 (s), 1122 (m), 1074 (m), 1036 (m), 1011 (m), 820 (m), 762 (m), 702 (m), 683 (m) cm⁻¹. – ¹H NMR ((CD₃)₂SO, 400.13 MHz): $\delta = 1.23-1.45$ (m, 9 H, CHCH₃), 2.29 (s, 3 H, aryl-CH₃), 2.99–3.14 (m, 3 H, CHCH₂), s8 3.52–4.26 (m, 6 H, NCH₂), 6.95–7.60 (m, 31 H, H_{Ph} and H_{Ar}), 8.68–9.27 (m, 3 H, NH), 10.39–11.54 (m, 3 H, NH) ppm. – ¹H NMR ((CD₃)₂SO, 500.16 MHz, 373 K): δ = 1.31 (s, 9 H, CHC*H*₃), 2.30 (s, 3 H, aryl-CH₃), 3.13 (broad "s", 3 H, C*H*CH₂), 3.56 and 3.93 (two broad, unstructured and overlapping signals, 6 H, CHC*H*₂), ~ 7.10–7.60 (m, 27 H, H_{Ph}, H_{Ar}), 7.09/7.56 (AA'BB' spin system, ³*J* = 7.1 Hz, 4 H, C₆H₄ of tosylate), 8.74 (broad coalescing signal, 3 H, NH), 10.16 (almost vanishing, coalescing signal for 3 NH) ppm. – ¹³C NMR (CD₃CN, 125.76 MHz): δ = 20.35 (coalescing, CH*C*H₃), 21.33 (tosylate-CH₃), 38.54 (coalescing, CHCH₂), 57.7 (coalescing, CH*C*H₂N); 121.29, 123.06, 126.58 (tosylate-CH), 127.64, 128.20, 129.55 (tosylate-CH), 129.75, 132.36, 138.60, 140.88, 143.88 (tosylate-C), 144.92 (tosylate-C), 156.3 and 159.8 (broad signals, C⁺(NH)₃ and C=O) ppm. – MS (MALDI-TOF): *m*/*z* = 1052.3 [M – OTs]⁺. – Anal. calcd. for C₅₆H₅₈Br₃N₉O₆S (1224.91): C, 54.91; H, 4.77; N, 10.29; found: C 54.77, H 4.83, N 10.32.

1,2,3-*Tris*(1-(2-phenylpropyl)-3-(4-methylphenyl)ureido)guanidinium tosylate (**7f**): The reaction mixture was stirred at room temperature for 46 h. After work-up a white solid was obtained (0.61 g, 74 % yield), m. p. 132.6–134.3 °C. – IR (KBr): v = ~ 3700-2500 (continuous absorption with medium-strong maxima at 3301, 3030, 2967, 2924), 1672 (s), 1604 (s), 1518 (vs), 1453 (m), 1409 (m), 1318 (m), 1295 (w), 1240 (s), 1206 (m), 1176 (m), 1122 (m), 1035 (m), 1012 (m), 815 (m), 762 (m), 702 (m), 682 (m) cm⁻¹. – ¹H NMR (CD₃CN, 400.13 MHz): $\delta = 1.00-1.45$ (m, 9 H, CHC*H*₃), 2.26 (s, 3 H, tosylate-CH₃, superimposing a broadened s, 9 H, tolyl-CH₃), 2.8–4.3 (two partially overlapping broad multiplets, 9 H, C*H*C*H*₂), 6.8–7.4 (m, 27 H, H_{Ph} and H_{tolyl}), 7.09/7.56 (AA'BB' spin system, ³*J* = 8.1 Hz, 4 H, C₆H₄ of tosylate), 8.20–8.34 (m, 3 H, NH), 9.55 (s, 3 H, NH) ppm. ¹H NMR ((CD₃)₂SO, 500.16 MHz, 358 K): $\delta = 1.33$ (slightly broadened s, 9 H, CHC*H*₃), 2.28 (s, 9 H, tolyl-CH₃), 2.30 (s, 3 H, tosylate-SP

CH₃), 3.14/3.57/3.90 (three broadened, partially overlapping signals, 3 H each, CHCH₂), 7.03 (AA' part of an AA'BB' spin system, J = 7.8 Hz, 6 H, 4-MeC₆H₄), 7.09/7.55 (AA'BB' spin system, ${}^{3}J = 8.1$ Hz, 4 H, C₆H₄ of tosylate), 7.14–7.43 (m, 21 H, 15 H_{Ph} and 6 H_{BrC6H4}), 8.39 (broadened s, 3 H, NH), 9.80 (very broad, almost vanishing signal in coalescence, for 3 NH) ppm. – 13 C NMR (CD₃CN, 125.76 MHz, 320 K): $\delta = 20.46$ (CH₃), 20.98 (CH₃), 21.43 (CH₃), 38.98 (CHCH₂), 58.0 (coalescing, CHCH₂N); 121.80, 126.90 (tosylate-CH), 127.90, 128.48, 129.69 (tosylate-CH), 129.88, 130.19, 134.51, 137.07, 140.69 (tosylate-C), 145.18, 145.56 ppm (tosylate-C); 156.78 (coalescing, C⁺(NH)₃ or C=O, the second signal was not detected). – MS (MALDI-TOF): m/z = 858.6 [M – OTs]⁺. – Anal. calcd. for C₅₉H₆₇N₉O₆S (1030.30): C, 68.78; H, 6.55; N, 12.24; S, 3.11; found: C, 68.92; H, 6.54; N, 12.34; S, 2.86.

1,2,3-Tris(1-benzyl-3-phenylureido)quanidine (8): 1,2,3-Tris(1-benzyl-3phenylureido)guanidinium chloride (7a) (2.00 g, 2.60 mmol) was dissolved in methanol/acetone (75/50 mL) at ambient temperature. On addition of an aqueous sodium hydroxide solution (1 M, 50 mL), a pale-yellow color developed. After ten minutes, the formed white precipitate was filtered off, washed with water, and freezedried (1.68 g, 89 % yield); m. p. 120.2–126.1 °C. – IR (KBr): v = 3401 (w), 3307 (br, m), 3060 (w), 1675 (s), 1650 (vs), 1602 (s), 1516 (br, s), 1445 (s), 1327 (m), 750 (s), 693 (s) cm⁻¹. – ¹H NMR ((CD₃)₂SO, 400.13 MHz, 293 K): see Figure 1. ¹H NMR (D₆acetone, 400.13 MHz, 295 K): $\delta = 4.05$ (broad unstructured signal)/5.07 (d, J = 14.4Hz) (2 H. NCH^ACH^B). 4.17/4.85 (AB spin system. ${}^{2}J = 14.0$ Hz. 2 H. NCH^ACH^B). 4.59/4.67 (AB spin system with broadened lines, 2 H, NCH^ACH^B), 6.83–7.62 (several m, 30 H, H-phenyl), 8.07 (broadened, 1 H, NH), 8.26 (broadened, 2 H, NH), 8.51 (broadened, 1 H, NH), 8.60 (broadened, 1 H, NH) ppm. - ¹³C NMR ((CD₃)₂SO, 100.62 MHz, 295 K): δ = 49.59 (broad, NCH₂), 53.25 (broad, NCH₂); 117.56, 121.50, 122.29, 123.07, 126.82, 126.92, 127.39, 127.81, 128.35, 128.59, 128.82, 129.24 (all CH_{Ph}); 135.99, 138.02, 139.29, 139.73 (all C_{Ph}), 155.41 (CO), 157.24 (C=N) ppm. ¹³C NMR ((CD₃)₂SO, 100.62 MHz, 295 K): δ = 50.73, 51.07, 52.66 (3 NCH₂); 117.87 (broadened, 118.89 (broadened), 119.93 (broadened), 121.18, 121.86, 122.47, 126.16, 126.36, 126.88, 127.24, 127.51, 127.7 (broad, several signals), 128.16, 128.52 (all CH_{Ph}); 135.53, 138.6 (broad), 138.98 (broad) (all *ipso*-C_{Ph}); 155.2 (broad), 155.5 (broad), 156.73 (broadened) (C=O and C⁺(NH)₃). – MS (MALDI-TOF): *m/z* = 732.3 [M + H]⁺, 754.3 [M + Na]⁺, 770.3 [M + K]⁺, 613.3 [M – PhNCO]. – Anal. calcd. for C₄₃H₄₁N₉O₃ (731.33): C, 70.57; H, 5.65; N, 17.23; found: C, 70.57; H, 5.63; N, 17.07.

Figure S1. ¹H NMR spectrum of guanidine 8 ([D₆]DMSO, 400.13 MHz, at 295 K).

Figure S2. ¹H NMR spectrum of guanidine **8** ([D₆]acetone, 500.16 MHz at 290 K).

1,2-Bis(benzylamino)-3-[1-benzyl-3-(4-methylbenzenesulfonylureido)]guanidine (9): 1,2,3-Tris(benzylamino)guanidinium chloride (3) (4.00 g, 9.75 mmol) was dissolved in anhvdrous (130)mL) under argon atmosphere, and (4an methylbenzenesulfonyl) isocyanate (2.3 mL, 15.1 mmol), in anhydrous CHCl₃ (20 mL) was added slowly. The reaction solution, which gradually assumed a rose color, was stirred at room temperature for 66 h. To this opaque solution silica gel (5.0 g) was added, and the solvent was evaporated at reduced pressure. The adsorbed solid was placed on a silica gel column and was eluted several times with ethyl acetate (3 \times 60 mL) to remove several byproducts (TLC control). Subsequent elution with methanol/chloroform (1:1) furnished a dark yellow fraction, the solvent mixture of which was evaporated and replaced by methanol (30 mL). By addition of water the product could be precipitated as a white solid, which was filtered off, washed with

water and freeze-dried. A white powdry solid was obtained (1.68 g, 89 % yield), m. p. 176.2–177.2 °C. – IR (KBr): $v = \sim 3550-2700$ (continuous absorption with maxima at 3279 (s), 3152 (s), 3062 (m), 3030 (m), 2945 (m), 2865 (m)), 1666 (s), 1616 (vs), 1496 (m), 1446 (m), 1354 (m), 1309 (s), 1259 (vs), 1145 (s), 1084 (m), 858 (s), 701 (s), 666 (m) cm⁻¹. – ¹H NMR ((CD₃)₂SO, 400.13 MHz): δ = 2.31 (s, 3 H, CH₃), 3.55/3.70 (two broad, unstructured and overlapping signals, 4 H, 2 \times NHCH₂Ph), 4.22/4.62 (two broadened unstructured signals, 2 H, OCN-CH_AH_B), 5.30 (broadened s, 1 H, NHCH₂), 5.40 (broadened s, 1 H, NHCH₂), 7.12-7.28 (m, 15 H, H_{Ph}), 7.17/7.68 (AA'BB' spin system, 4 H, ${}^{3}J$ = 7.4 Hz, C₆H₄-4-CH₃), 8.42 (s, 1 H, NH), 8.76 (s, 1 H, NH), 9.02 (s, 1 H, NH) ppm. $-{}^{13}$ C NMR ((CD₃)₂SO, 125.76 MHz): δ = 20.91 (CH₃), 53.14 (OCN-CH₂), 54.38 (NCH₂), 54.59 (NCH₂); 127.05, 127.13, 127.34, 127.95, 128.17, 128.81, 129.00, 129.27, 136.74 (all CH_{Ar}); 136.90, 137.31, 139.26, 143.48 (all C_{Ar}); 157.2 and 160.33 (C=N and C=O) ppm. – MS (MALDI-TOF): m/z =572.5 $[M + H]^+$, 375.5 $[M - aryl-SO_2-NHCO + H]^+$. – Anal. calcd. for $C_{30}H_{33}N_7O_3S$ (571.69): C, 63.03; H, 5.82; N, 17.15; S, 5.61; found: C, 63.16; H, 5.85; N, 17.23; S, 5.53.

3-Benzyl-3-{[1-benzyl-4-phenyl)-5-thioxo-1,2,4-triazol-3-yl]amino}-1-phenylthiourea

(**10a**): 1,2,3-Tris(benzylamino)guanidinium chloride (**3**) (410 mg, 1.0 mmol) and phenyl isothiocyanate (477 μ L, 4.0 mmol) were dissolved in CHCl₃ (20 mL), and the reaction mixture was heated at reflux for 3.5 h. The clear solution was concentrated to leave a colorless oil. This oil was dissolved in hot 2-propanol (20 mL), and the solution was cooled at 0 °C under vigorous stirring until a colorless precipitate formed, which was filtered off and washed with several portions of pentane. Another crop of the product was obtained from the mother liquor by repeating the described work-up procedure. The combined batches of product were dried at 30 °C/0.025 S13

mbar, yielding a colorless powdry solid (298 mg, 57 % yield), m.p. 92.8–98.3 °C. – IR (KBr): $\nu = \sim 3300-2700$ (series of broad, medium, strong and weak absorptions, maxima at 3245, 3030), 1596 (s), 1512 (s), 1445 (s), 1413 (m), 1328 (s), 1246 (m), 1182 (m), 1076 (m), 1036 (m), 1000 (m), 980 (w), 753 (m), 697 (s) cm⁻¹. – ¹H NMR ((CD₃)₂SO, 400.13 MHz): $\delta = 5.1-5.3$ (broad signal in coalescence, 2 H, PhC*H*₂NNH), 5.28 (s, 2 H, PhC*H*₂N_{ring}), 7.19–7.50 (m, 20 H, H_{Ph}), 9.09 (s, 1 H, N-NH), 9.94 (s, 1 H, CS-NH) ppm. – ¹³C NMR ((CD₃)₂SO, 100.62 MHz): $\delta = 51.14$ (CH₂), 54.74 (CH₂); 125.52, 126.81, 127.43, 127.69, 127.97, 128.00, 128.04, 128.45, 128.49, 129.19, 129.25, 129.53 (all CH_{Ph}); 132.81, 135.85, 136.02, 139.94 (all C_{Ph}); 148.45 (C=N), 165.44 (N-CS-N), 181.74 (N-CS-NH) ppm. – HRMS (MALDI-TOF): *m/z* = 523.17333; C₂₉H₂₆N₆S₂ requires 5223.17331. – Anal. calcd. for C₂₉H₂₆N₆S₂ (522.69): C, 66.64; H, 5.01; N, 16.08; calcd. for C₂₉H₂₆N₆S₂ × 0.53 H₂O: C, 65.44; H, 5.12; N, 15.79; found: C, 65.45; H, 5.28; N, 15.97.

3-Benzyl-3-{[1-benzyl-4-(4-nitrophenyl)-5-thioxo-1,2,4-triazol-3-yl]amino}-1-(4-

nitrophenyl)thiourea (**10b**): 1,2,3-Tris(benzylamino)guanidinium chloride (**3**) (744 mg, 1.81 mmol) and (*p*-nitrophenyl) isothiocyanate (1.31 g, 7.27 mmol) were dissolved in CHCl₃ (50 mL), and the reaction mixture was heated at reflux for 4 h. The clear yellow solution was concentrated to leave a yellow solid, which was first recrystallized from 2-propanol (from the mother liquor, by-product **11b** could be isolated, see below). The filtered and dried solid was triturated with a small volume of hot ethanol, the undissolved product was filtered off, washed with several portions of pentane and dried in vacuo at 40 °C/0.025 mbar. A yellow powdry solid was obtained (754 mg, 68 % yield), m. p. 132.5–133.6 °C. – IR (KBr): ν = 3296 (w), 1596 (m), 1528 (s), 1449 (m), 1411 (m), 1327 (s), 1247 (m), 1181 (m), 1109 (m), 999 (w), 851 (m), 701 (s) cm⁻¹. – ¹H NMR ((CD₃)₂SO, 500.16 MHz): δ = 5.0–5.5 (broad signal in S14

coalescence, 2 H, PhC*H*₂-N-NH), 5.33 (s, 2 H, PhC*H*₂-N_{ring}), 7.28–7.42 (m, 10 H, H_{benzyl}), 7.70/8.22 (AA'BB' system, ${}^{3}J$ = 8.6 Hz, 4 H, C₆H₄-4-NO₂), 7.70/8.34 (AA'BB' system, ${}^{3}J$ = 8.6 Hz, 4 H, C₆H₄-4-NO₂), 9.52 (s, 1 H, N-NH), 10.27 (s, 1 H, CS-NH) ppm. – 13 C NMR ((CD₃)₂SO, 125.76 MHz): δ = 51.75 (CH₂), 55.11 (CH₂); 124.09, 124.93, 126.05, 128.07, 128.30, 128.59, 128.98, 129.57, 130.75 (all CH_{Ar}); 135.88, 136.20, 138.74, 144.22, 146.35, 148.22 (all C_{Ar}); 148.40 (C=N), 165.83 (N-CS-N), 181.45 (N-CS-NH) ppm. – Anal. calcd. for C₂₉H₂₄N₈O₄S₂ (612.68): C, 56.85; H, 3.95; N, 18.29; S, 10.47; found: C, 56.90; H, 4.09; N, 18.22, S, 10.48.

3-Benzyl-1,6-*bis*(4-*nitrophenyl)dithiourea* (**11b**): Following the instructions of the synthesis of **10b** the mother liquor after the recrystallization with 2-propanol was evaporated. The residue was then triturated with hot acetone, leaving an insoluble yellow solid, which was filtered off and dried *in vacuo*. An orange powder was obtained (232 mg, 26 % yield), m. p. 151.1–156.0 °C. – IR (KBr): v = 3448 (w), 2939 (w), 1615 (m), 1523 (br, s), 1331 (s), 1307 (s), 1254 (w), 1177 (w), 1106 (m), 1023 (w), 995 (m), 846 (m), 752 (w), 706 (w), 664 (w) cm⁻¹. – ¹H NMR ((CD₃)₂SO, 400.13 MHz): δ = 5.33 (s, 2 H, CH₂), 7.27/8.18 (AA'BB' spin system, ³*J* = 9.0 Hz, 4 H, C₆H₄-4-NO₂), 7.30 (d, *J* = 7.4 Hz, 1 H, H_{Ph}), 7.38 (t, *J* = 7.4 Hz, 2 H, H_{Ph}), 7.45 (d, *J* = 7.4 Hz, 2 H, H_{Ph}), 7.61/8.13 (AA'BB' spin system, ³*J* = 9.2 Hz, 4 H, C₆H₄-4-NO₂), 8.82 (s, 2 H, Aryl-NH-CS), 11.68 (s, 1 H, NNH) ppm. – ¹³C NMR ((CD₃)₂SO, 100.62 MHz): δ = 52.06 (CH₂); 116.73, 121.43, 125.42, 125.63, 127.87, 128.23, 128.70 (all CH_{Ar}); 135.92, 140.82, 142.43, 144.89, 145.90 (all C_{Ar}); 154.91 (C=S), 155.93 (C=S) ppm. – Anal. calcd. for C₂₁H₁₈N₆O₄S₂ (482.54): C, 52.27; H, 3.76; N, 17.42; S, 13.29; found: C, 52.19; H, 3.66; N, 17.38; S, 13.40.

X-ray crystal structure determinations

Data collection was performed on an Oxford Diffraction instrument (SuperNova, Dual Source, Atlas CCD). Software for structure solution and refinement: SHELXS/L-97 [4, 5]; molecule plots: ORTEP-3 [6, 7].

Single crystals of **7a** were obtained by crystallization from anhydrous acetonitrile. They became opaque within ten seconds outside of the mother liquor. Therefore, they were immediately coated with a fluorinated oil (Fomblin[®] YR-1800), a suitable crystal was chosen, mounted on the crystal holder of the diffractometer, and cooled to the temperature of the data collection. In the structure refinement procedure, all hydrogen atom positions were allowed to refine freely, except for the hydrogen atoms of the three acetonitrile molecules, which were placed in geometrically calculated positions and treated as riding on the adjacent carbon atom.

Single crystals of **8** and **10b** were obtained by diffusion of pentane from the vapor phase into solutions of the two compounds in ethyl acetate. Hydrogen atoms were included in the structure refinement procedure either in geometrically calculated positions or in positions taken from a ΔF map (all N–H hydrogen atoms) and treated as riding on their bond neighbors. In the unit cell of **8**, a region of residual electron density was observed, which most likely arose from highly disordered pentane molecules and could not be resolved. Its contribution to the reflection data set was removed using the SQUEEZE function of PLATON [8]; this led to a residual electron density of 0.28 e Å⁻³.

Further details are provided in Table 1. CCDC 1001264 (**7a**), 1001265 (**8**) and 1001266 (**10b**) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre *via* www.ccdc.cam.ac.uk/data_request/cif.

	7a	8	10b
Formula	$C_{43}H_{42}CIN_9O_3 \times 3$ (CH ₃ CN)	$C_{43}H_{41}N_9O_3$	$C_{29}H_{24}N_8O_4S_2$
<i>M</i> _r	768.31 + 123.16	731.85	612.68
Cryst. size, mm ³	$0.24 \times 0.20 \times 0.16$	$0.27 \times 0.15 \times 0.12$	$0.36 \times 0.14 \times 0.08$
Crystal system	triclinic	triclinic	orthorhombic
Space group	<i>P</i> -1	<i>P</i> -1	Pbcn
<i>a</i> , Å	12.3038(4)	12.1587(7)	23.9765(2)
<i>b</i> , Å	14.5135(6)	13.7650(8)	10.11359(7)
<i>c</i> , Å	15.6425(6)	14.9306(10)	23.5681(2)
a, deg	63.955(4)	117.387(6)	90
β, deg	76.030(3)	107.798(5)	90
γ, deg	81.703(3)	95.577(5)	90
V, Å ³	2433.1(2)	2027.3(2)	5715.01(8)
Ζ	2	2	8
$D_{\rm calcd}$, g cm ⁻³	1.22	1.20	1.42
μ (Mo K_{α}), mm ⁻¹	1.12	0.63	2.12
<i>F</i> (000), e	940	772	2544
Radiation	CuK_{α}	CuK_{α}	Cu <i>K</i> _a
Temperature, K	190(2)	190(2)	190(2)
hkl range	$-15 \leq h \leq +14, -18 \leq$	$-15 \leq h \leq +14, -17 \leq$	$-29 \le h \le +20, -8 \le$
	$k \le 17, -19 \le l \le +19$	$k \le 11, -17 \le l \le +18$	$k \le 12, -26 \le l \le +18$
θ range, deg	3.21 – 74.14	3.63 – 74.01	3.75 – 73.73
Refl. measured	34834	14310	10102
Refl. unique	9564	7954	5343
R _{int}	0.0350	0.0288	0.0267
Param. refined /	757 / 0	516 / 0	396 / 0
restraints			
$R(F)/wR(F^2)^a$ $(I \geq$	0.0465/0.1228	0.0477/0.1306	0.0419/0.1085
2 <i>o</i> (<i>l</i>))			
$R(F)/wR(F^2)^a$ (all	0.0623/0.1275	0.0609/0.1416	0.0511/0.1170
reflexions)			
$GoF(F^2)^a$	1.242	1.041	1.030
$\begin{array}{lll} \Delta \rho_{\text{fin}} & (\text{max/min}), \\ \text{e} \ \text{\AA}^{-3} & \end{array}$	0.24, -0.26	0.28, -0.19	0.55, -0.41

Table S1: Crystal structure data for 7a, 8, and 10b.

^a $R(F) = \Sigma ||F_o| - |F_c| / \Sigma |F_o|; \ wR(F^2) = [\Sigma(w(F_o^2 - F_c^2)^2) / \Sigma w(F_o^2)^2]^{1/2}; \ GoF = [\Sigma w(F_o^2 - F_c^2)^2 / (n_{obs} - n_{param})]^{1/2}.$

O(1)-C(2)	1.228(3)	C(24)-C(25)	1.387(4)
O(2)-C(16)	1.216(3)	C(25)-C(26)	1.381(4)
O(3)-C(30)	1.215(3)	C(26)-C(27)	1.356(6)
N(1)-C(1)	1.330(3)	C(27)-C(28)	1.370(6)
N(1)-N(2)	1.397(3)	C(28)-C(29)	1.403(5)
N(2)-C(2)	1.406(3)	C(31)-C(32)	1.384(4)
N(2)-C(9)	1.484(3)	C(31)-C(36)	1.388(4)
N(3)-C(2)	1.341(3)	C(32)-C(33)	1.386(4)
N(3)-C(3)	1.425(3)	C(33)-C(34)	1.376(5)
N(4)-C(1)	1.333(3)	C(34)-C(35)	1.368(6)
N(4)-N(5)	1.388(3)	C(35)-C(36)	1.395(5)
N(5)-C(16)	1.392(3)	C(37)-C(38)	1.493(4)
N(5)-C(23)	1.470(3)	C(38)-C(43)	1.383(5)
N(6)-C(16)	1.355(3)	C(38)-C(39)	1.384(4)
N(6)-C(17)	1.416(3)	C(39)-C(40)	1.386(6)
N(7)-C(1)	1.332(3)	C(40)-C(41)	1.372(7)
N(7)-N(8)	1.401(3)	C(41)-C(42)	1.356(7)
N(8)-C(30)	1.424(3)	C(42)-C(43)	1.386(6)
N(8)-C(37)	1.477(4)	N(10)-C(44)	1.123(4)
N(9)-C(30)	1.344(4)	C(44)-C(45)	1.457(4)
N(9)-C(31)	1.421(3)	N(11)-C(46)	1.128(4)
C(3)-C(8)	1.384(4)	C(46)-C(47)	1.454(5)
C(3)-C(4)	1.385(4)	N(12)-C(48)	1.141(7)
C(4)-C(5)	1.382(4)	C(48)-C(49)	1.443(7)
C(5)-C(6)	1.377(4)		
C(6)-C(7)	1.385(5)	C(1)-N(1)-N(2)	120.9(2)
C(7)-C(8)	1.384(4)	N(1)-N(2)-C(2)	116.05(19)
C(9)-C(10)	1.503(4)	N(1)-N(2)-C(9)	115.2(2)
C(10)-C(11)	1.384(4)	C(2)-N(2)-C(9)	117.9(2)
C(10)-C(15)	1.389(4)	C(2)-N(3)-C(3)	122.6(2)
C(11)-C(12)	1.382(5)	C(1)-N(4)-N(5)	118.7(2)
C(12)-C(13)	1.371(6)	N(4)-N(5)-C(16)	121.3(2)
C(13)-C(14)	1.370(6)	N(4)-N(5)-C(23)	117.3(2)
C(14)-C(15)	1.384(5)	C(16)-N(5)-C(23)	117.3(2)
C(17)-C(18)	1.389(4)	C(16)-N(6)-C(17)	125.3(2)
C(17)-C(22)	1.392(4)	C(1)-N(7)-N(8)	120.0(2)
C(18)-C(19)	1.391(5)	N(7)-N(8)-C(30)	117.5(2)
C(19)-C(20)	1.369(6)	N(7)-N(8)-C(37)	112.5(2)
C(20)-C(21)	1.374(6)	C(30)-N(8)-C(37)	116.6(2)
C(21)-C(22)	1.382(4)	C(30)-N(9)-C(31)	124.8(2)
C(23)-C(24)	1.508(4)	N(1)-C(1)-N(7)	120.7(2)
C(24)-C(29)	1.378(4)	N(1)-C(1)-N(4)	119.0(2)

N(7)-C(1)-N(4)	120.3(2)	N(5)-C(23)-C(24)	115.4(2)
O(1)-C(2)-N(3)	124.9(2)	C(29)-C(24)-C(25)	118.8(3)
O(1)-C(2)-N(2)	119.3(2)	C(29)-C(24)-C(23)	118.4(3)
N(3)-C(2)-N(2)	115.7(2)	C(25)-C(24)-C(23)	122.8(3)
C(8)-C(3)-C(4)	120.0(3)	C(26)-C(25)-C(24)	120.8(3)
C(8)-C(3)-N(3)	118.8(2)	C(27)-C(26)-C(25)	120.4(4)
C(4)-C(3)-N(3)	121.1(2)	C(26)-C(27)-C(28)	119.9(4)
C(5)-C(4)-C(3)	119.7(3)	C(27)-C(28)-C(29)	120.5(4)
C(6)-C(5)-C(4)	120.6(3)	C(24)-C(29)-C(28)	119.5(4)
C(5)-C(6)-C(7)	119.7(3)	O(3)-C(30)-N(9)	125.7(3)
C(8)-C(7)-C(6)	120.1(3)	O(3)-C(30)-N(8)	118.8(3)
C(7)-C(8)-C(3)	119.9(3)	N(9)-C(30)-N(8)	115.4(2)
N(2)-C(9)-C(10)	114.4(2)	C(32)-C(31)-C(36)	119.5(3)
C(11)-C(10)-C(15)	118.7(3)	C(32)-C(31)-N(9)	117.5(3)
C(11)-C(10)-C(9)	119.9(3)	C(36)-C(31)-N(9)	123.0(3)
C(15)-C(10)-C(9)	121.4(3)	C(31)-C(32)-C(33)	120.5(3)
C(12)-C(11)-C(10)	120.8(3)	C(34)-C(33)-C(32)	120.2(4)
C(13)-C(12)-C(11)	119.8(4)	C(35)-C(34)-C(33)	119.4(3)
C(14)-C(13)-C(12)	120.3(4)	C(34)-C(35)-C(36)	121.5(3)
C(13)-C(14)-C(15)	120.3(4)	C(31)-C(36)-C(35)	118.8(3)
C(14)-C(15)-C(10)	120.1(3)	N(8)-C(37)-C(38)	113.7(2)
O(2)-C(16)-N(6)	125.3(2)	C(43)-C(38)-C(39)	117.9(3)
O(2)-C(16)-N(5)	118.5(2)	C(43)-C(38)-C(37)	120.5(3)
N(6)-C(16)-N(5)	116.1(2)	C(39)-C(38)-C(37)	121.5(3)
C(18)-C(17)-C(22)	119.4(3)	C(38)-C(39)-C(40)	120.9(4)
C(18)-C(17)-N(6)	124.2(3)	C(41)-C(40)-C(39)	119.8(4)
C(22)-C(17)-N(6)	116.4(3)	C(42)-C(41)-C(40)	120.3(4)
C(17)-C(18)-C(19)	119.2(3)	C(41)-C(42)-C(43)	120.1(5)
C(20)-C(19)-C(18)	121.3(4)	C(38)-C(43)-C(42)	121.0(4)
C(19)-C(20)-C(21)	119.3(3)	N(10)-C(44)-C(45)	179.8(3)
C(20)-C(21)-C(22)	120.8(4)	N(11)-C(46)-C(47)	178.2(5)
C(21)-C(22)-C(17)	119.9(3)	N(12)-C(48)-C(49)	177.9(8)

Table S	3. Bond	distances	(Å)	and	angles	(°)	for	8
I able c	S. DUIIU	uistances	(A)	anu	anyles	()	101	ο.

O(1)-C(2)	1.2351(17)	C(25)-C(26)	1.383(3)
O(2)-C(16)	1.2348(16)	C(26)-C(27)	1.361(4)
O(3)-C(30)	1.2167(19)	C(27)-C(28)	1.365(4)
N(1)-C(1)	1.3049(18)	C(28)-C(29)	1.387(3)
N(1)-N(4)	1.4329(16)	C(31)-C(36)	1.376(3)
N(2)-C(1)	1.3821(18)	C(31)-C(32)	1.384(2)
N(2)-N(6)	1.4073(15)	C(32)-C(33)	1.386(3)
N(3)-C(1)	1.3512(17)	C(33)-C(34)	1.360(3)
N(3)-N(8)	1.4070(17)	C(34)-C(35)	1.376(3)
N(4)-C(2)	1.366(2)	C(35)-C(36)	1.370(3)
N(4)-C(9)	1.4652(19)	C(37)-C(38)	1.503(2)
N(5)-C(2)	1.362(2)	C(38)-C(39)	1.375(3)
N(5)-C(3)	1.406(2)	C(38)-C(43)	1.384(3)
N(6)-C(16)	1.3818(18)	C(39)-C(40)	1.390(3)
N(6)-C(23)	1.4603(17)	C(40)-C(41)	1.372(3)
N(7)-C(16)	1.3633(18)	C(41)-C(42)	1.365(3)
N(7)-C(17)	1.4271(19)	C(42)-C(43)	1.386(3)
N(8)-C(30)	1.423(2)		
N(8)-C(37)	1.4746(19)	C(1)-N(1)-N(4)	111.70(11)
N(9)-C(30)	1.352(2)	C(1)-N(2)-N(6)	116.40(11)
N(9)-C(31)	1.406(2)	C(1)-N(3)-N(8)	121.36(12)
C(3)-C(8)	1.381(2)	C(2)-N(4)-N(1)	118.13(11)
C(3)-C(4)	1.391(3)	C(2)-N(4)-C(9)	120.38(12)
C(4)-C(5)	1.386(3)	N(1)-N(4)-C(9)	117.33(12)
C(5)-C(6)	1.375(4)	C(2)-N(5)-C(3)	126.96(14)
C(6)-C(7)	1.369(4)	C(16)-N(6)-N(2)	115.22(11)
C(7)-C(8)	1.385(3)	C(16)-N(6)-C(23)	125.92(11)
C(9)-C(10)	1.506(2)	N(2)-N(6)-C(23)	113.60(11)
C(10)-C(15)	1.377(3)	C(16)-N(7)-C(17)	120.85(12)
C(10)-C(11)	1.380(3)	N(3)-N(8)-C(30)	115.52(12)
C(11)-C(12)	1.386(3)	N(3)-N(8)-C(37)	113.36(12)
C(12)-C(13)	1.374(4)	C(30)-N(8)-C(37)	113.59(12)
C(13)-C(14)	1.357(4)	C(30)-N(9)-C(31)	127.43(14)
C(14)-C(15)	1.386(3)	N(1)-C(1)-N(3)	124.98(13)
C(17)-C(22)	1.384(2)	N(1)-C(1)-N(2)	118.83(12)
C(17)-C(18)	1.386(2)	N(3)-C(1)-N(2)	116.18(12)
C(18)-C(19)	1.381(3)	O(1)-C(2)-N(5)	123.50(15)
C(19)-C(20)	1.385(3)	O(1)-C(2)-N(4)	121.79(14)
C(20)-C(21)	1.373(3)	N(5)-C(2)-N(4)	114.67(13)
C(21)-C(22)	1.386(3)	C(8)-C(3)-C(4)	118.95(17)
C(23)-C(24)	1.498(2)	C(8)-C(3)-N(5)	123.79(17)
C(24)-C(29)	1.377(3)	C(4)-C(3)-N(5)	117.09(15)
C(24)-C(25)	1.382(3)	C(5)-C(4)-C(3)	120.6(2)

C(6)-C(5)-C(4)	120.0(2)	C(25)-C(24)-C(23)	120.27(16)
C(7)-C(6)-C(5)	119.3(2)	C(24)-C(25)-C(26)	120.8(2)
C(6)-C(7)-C(8)	121.5(2)	C(27)-C(26)-C(25)	119.7(2)
C(3)-C(8)-C(7)	119.6(2)	C(26)-C(27)-C(28)	120.4(2)
N(4)-C(9)-C(10)	114.60(12)	C(27)-C(28)-C(29)	120.3(3)
C(15)-C(10)-C(11)	118.08(18)	C(24)-C(29)-C(28)	120.0(2)
C(15)-C(10)-C(9)	120.61(17)	O(3)-C(30)-N(9)	125.49(15)
C(11)-C(10)-C(9)	121.28(18)	O(3)-C(30)-N(8)	120.02(15)
C(10)-C(11)-C(12)	120.5(2)	N(9)-C(30)-N(8)	114.40(13)
C(13)-C(12)-C(11)	120.5(2)	C(36)-C(31)-C(32)	118.23(17)
C(14)-C(13)-C(12)	119.4(2)	C(36)-C(31)-N(9)	117.07(15)
C(13)-C(14)-C(15)	120.4(2)	C(32)-C(31)-N(9)	124.68(17)
C(10)-C(15)-C(14)	121.1(2)	C(31)-C(32)-C(33)	119.85(19)
O(2)-C(16)-N(7)	122.51(13)	C(34)-C(33)-C(32)	121.32(19)
O(2)-C(16)-N(6)	119.58(12)	C(33)-C(34)-C(35)	118.8(2)
N(7)-C(16)-N(6)	117.85(12)	C(36)-C(35)-C(34)	120.4(2)
C(22)-C(17)-C(18)	119.49(15)	C(35)-C(36)-C(31)	121.35(19)
C(22)-C(17)-N(7)	119.75(14)	N(8)-C(37)-C(38)	113.64(13)
C(18)-C(17)-N(7)	120.74(14)	C(39)-C(38)-C(43)	118.23(17)
C(19)-C(18)-C(17)	119.93(18)	C(39)-C(38)-C(37)	121.32(16)
C(18)-C(19)-C(20)	120.58(19)	C(43)-C(38)-C(37)	120.29(16)
C(20)-C(21)-C(22)	120.5(2)	C(38)-C(39)-C(40)	120.79(19)
C(21)-C(20)-C(19)	119.39(19)	C(41)-C(40)-C(39)	120.10(19)
C(17)-C(22)-C(21)	120.10(17)	C(42)-C(41)-C(40)	119.80(19)
N(6)-C(23)-C(24)	114.01(12)	C(41)-C(42)-C(43)	120.1(2)
C(29)-C(24)-C(25)	118.83(17)	C(38)-C(43)-C(42)	120.93(19)
C(29)-C(24)-C(23)	120.89(16)		

Table S4: Selected torsion	angles in the solid-state	structures of 7a and 8 (°)
----------------------------	---------------------------	--

Salt 7a		Guanidine 8	
C1-N4-N5-C16	115.3(3)	C1-N1-N4-C2	110.9(1)
C1-N1-N2-C2	127.3(2)	C1-N2-N6-C16	65.6(2)
C1-N7-N8-C30	118.9(3)	C1-N3-N8-C30	113.6(2)
C1-N1-N2-C9	-89.1(3)	C1-N1-N4-C9	-92.0(1)

C1-N4-N5-C23	-88.0(3)	C1-N2-N6-C23	-138.4(1)
C1-N7-N8-C37	-101.5(3)	C1-N3-N8-C37	-112.9(2)
N1-N2-C2-O1	153.0(2)	N1-N4-C2-O1	161.8(1)
N4-N5-C16-O2	165.8(2)	N2-N6-C16-O2	-13.3(2)
N7-N8-C30-O3	158.7(2)	N3-N8-C30-O3	146.3(2)
		N1-C1-N2-N6	35.9(2)
		N1-C1-N3-N8	-178.0(1)

Table S5: Bond distances (Å) and angles (°) for 10b.

S(1)-C(2)	1 664(2)	C(7)- $C(8)$ 1.389	(4)
S(2)-C(23)	1 672(2)	C(8)- $C(9)$ 1.000	(3)
N(1)-C(1)	1 388(3)	C(10)- $C(11)$ 1 497	(3)
N(1) - N(2)	1 / 13(2)	C(10) C(11) - 1.437 C(11) - C(16) - 1.372	(3)
N(2) - C(23)	1 377(2)	C(11) - C(12) - 1.387	(3)
N(2) = O(23)	1 494(2)	C(12) C(12) 1.307	(\mathbf{J})
N(2) - C(3)	1.404(2)	C(12)- $C(13)$ 1.301	(4) (5)
N(3)-C(1)	1.298(2)	C(13)-C(14) 1.354	(5)
N(3)-N(4)	1.381(3)	C(14)-C(15) 1.349	(5)
N(4)-C(2)	1.346(3)	C(15)-C(16) 1.436	(5)
N(4)-C(10)	1.466(3)	C(17)-C(18) 1.380	(3)
N(5)-C(1)	1.374(2)	C(17)-C(22) 1.385	(3)
N(5)-C(2)	1.382(3)	C(18)-C(19) 1.388	(3)
N(5)-C(17)	1.443(2)	C(19)-C(20) 1.379	(3)
N(6)-O(2)	1.223(3)	C(20)-C(21) 1.380	(3)
N(6)-O(1)	1.227(3)	C(21)-C(22) 1.392	(3)
N(6)-C(20)	1.471(3)	C(24)-C(25) 1.394	(3)
N(7)-C(23)	1.353(3)	C(24)-C(29) 1.396	(3)
N(7)-C(24)	1.412(2)	C(25)-C(26) 1.377	(3)
N(8)-O(4)	1.213(3)	C(26)-C(27) 1.380	(3)
N(8)-O(3)	1.217(3)	C(27)-C(28) 1.381	(3)
N(8)-C(27)	1.466(3)	C(28)-C(29) 1.386	(3)
C(3)-C(4)	1.516(3)		
C(4)-C(9)	1.385(3)	C(1)-N(1)-N(2)	116.18(14)
C(4)-C(5)	1.396(3)	C(23)-N(2)-N(1)	116.79(15)
C(5)-C(6)	1.391(3)	C(23)-N(2)-C(3)	122.59(17)
C(6)-C(7)	1.381(4)	N(1)-N(2)-C(3)	115.80(14)

C(1)-N(3)-N(4)	103.77(16)	C(16)-C(11)-C(10)	122.1(2)
C(2)-N(4)-N(3)	113.08(16)	C(12)-C(11)-C(10)	119.4(2)
C(2)-N(4)-C(10)	127.54(19)	C(13)-C(12)-C(11)	121.9(3)
N(3)-N(4)-C(10)	119.04(17)	C(14)-C(13)-C(12)	119.4(3)
C(1)-N(5)-C(2)	107.12(15)	C(15)-C(14)-C(13)	121.9(3)
C(1)-N(5)-C(17)	128.02(16)	C(14)-C(15)-C(16)	118.7(3)
C(2)-N(5)-C(17)	124.75(16)	C(11)-C(16)-C(15)	119.5(3)
O(2)-N(6)-O(1)	124.10(18)	C(18)-C(17)-C(22)	122.05(17)
O(2)-N(6)-C(20)	118.16(19)	C(18)-C(17)-N(5)	118.41(16)
O(1)-N(6)-C(20)	117.74(18)	C(22)-C(17)-N(5)	119.54(16)
C(23)-N(7)-C(24)	129.80(18)	C(17)-C(18)-C(19)	119.49(18)
O(4)-N(8)-O(3)	123.1(2)	C(20)-C(19)-C(18)	118.11(18)
O(4)-N(8)-C(27)	118.2(2)	C(19)-C(20)-C(21)	123.02(18)
O(3)-N(8)-C(27)	118.7(2)	C(19)-C(20)-N(6)	117.86(18)
N(3)-C(1)-N(5)	112.21(17)	C(21)-C(20)-N(6)	119.12(19)
N(3)-C(1)-N(1)	122.95(17)	C(20)-C(21)-C(22)	118.57(19)
N(5)-C(1)-N(1)	124.61(16)	C(17)-C(22)-C(21)	118.72(18)
N(4)-C(2)-N(5)	103.80(17)	N(7)-C(23)-N(2)	114.70(17)
N(4)-C(2)-S(1)	128.73(16)	N(7)-C(23)-S(2)	124.10(15)
N(5)-C(2)-S(1)	127.46(15)	N(2)-C(23)-S(2)	121.20(14)
N(2)-C(3)-C(4)	113.91(16)	C(25)-C(24)-C(29)	119.40(18)
C(9)-C(4)-C(5)	119.29(19)	C(25)-C(24)-N(7)	116.74(17)
C(9)-C(4)-C(3)	121.17(18)	C(29)-C(24)-N(7)	123.69(17)
C(5)-C(4)-C(3)	119.5(2)	C(26)-C(25)-C(24)	121.23(18)
C(6)-C(5)-C(4)	120.0(2)	C(25)-C(26)-C(27)	118.22(18)
C(7)-C(6)-C(5)	120.2(2)	C(26)-C(27)-C(28)	122.16(19)
C(6)-C(7)-C(8)	120.1(2)	C(26)-C(27)-N(8)	118.5(2)
C(7)-C(8)-C(9)	119.7(2)	C(28)-C(27)-N(8)	119.4(2)
C(4)-C(9)-C(8)	120.6(2)	C(27)-C(28)-C(29)	119.27(19)
N(4)-C(10)-C(11)	114.06(17)	C(28)-C(29)-C(24)	119.65(19)
C(16)-C(11)-C(12)	118.3(2)		

References

- Weiss, S.; Krommer, H. (SKW Trostberg AG), DE3341645 (A1), **1985**; Chem. Abstr. **1986**, *104*, 206730.
- Bucher, N.; Szabo, J.; Oppel, I. M.; Maas, G. Z. Naturforsch. 2012, 67b, 631– 642.
- 3. Busch-Petersen, J. U.S. Patent 2007/0,249,672, October 25, **2007**.
- Sheldrick, G. M., SHELXS/L-97, Program for the Solution and Refinement of Crystal Structures from Diffraction Data, University of Göttingen, Göttingen (Germany), 1997.
- 5. Sheldrick, G. M. Acta Crystallogr. 2008, A64, 112–122.
- Johnson, C. K.; Burnett, M. N., ORTEP-3 (version 1.0.2), Rep. ORNL-6895, Oak Ridge National Laboratory, Oak Ridge, TN (USA), **1996**.
- 7. Farrugia, L. J., ORTEP, Windows version, University of Glasgow, Glasgow (Scotland), **1997–2008**.
- (a) Spek, A. L. *Acta Crystallogr., Sect A* **1990**, *46*, C34. (b) Spek, A. L., PLATON, A Multipurpose Crystallographic Tool, Utrecht University, Utrecht, The Netherlands, **1998**.