Supporting Information

for

Reversibly locked thionucleobase pairs in DNA to

study base flipping enzymes

Christine Beuck¹ and Elmar Weinhold^{*2}

Address: ¹The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA and ²Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, D-52056 Aachen, Germany

Email: Elmar Weinhold - elmar.weinhold@oc.rwth-aachen.de

*Corresponding author

Derivation of equation (1) and Figures S1 and S2

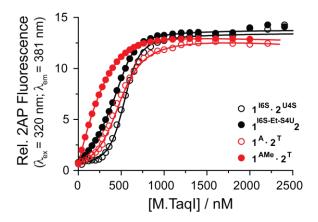
Derivation of equation (1)

The thermodynamic constants $K_D^{unlocked}$, $K_{D,init}$ and K_{flip} for the two-step binding model shown in Figure 5a are defined as follows:

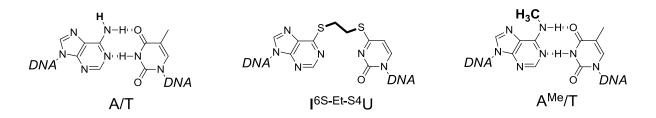
$$K_{D}^{\text{unlocked}} = \frac{[DNA] \cdot [E]}{[E \cdot DNA]} = \frac{[DNA] \cdot [E]}{[A] + [B]}$$
(4)
$$K_{D,\text{init}} = \frac{[DNA] \cdot [E]}{[A]}$$
(5)
$$K_{\text{flip}} = \frac{[B]}{[A]}$$
(6)

with [DNA], concentration of unbound DNA; [E], concentration unbound enzyme; [E . DNA] concentration of all enzyme-DNA complexes; [A], concentration of initial complex with innerhelical target base; [B], concentration of complex with flipped target base and [E . DNA] = [A] + [B].

Taking the inverse of eq. (4) and separating the terms:


$$\frac{1}{K_{D}^{unlocked}} = \frac{[A] + [B]}{[DNA] \cdot [E]} = \frac{[A]}{[DNA] \cdot [E]} + \frac{[B]}{[DNA] \cdot [E]}$$
(7)

Substituting with eqs. (5) and (6), $\frac{[A]}{[DNA] \cdot [E]} = \frac{1}{K_{D,init}}$ and $\frac{[B]}{[DNA] \cdot [E]} = \frac{K_{flip}}{K_{D,init}}$, gives


$$\frac{1}{K_{D}^{\text{unlocked}}} == \frac{1}{K_{D,\text{init}}} + \frac{K_{\text{flip}}}{K_{D,\text{init}}} = \frac{1 + K_{\text{flip}}}{K_{D,\text{init}}}$$
(8)

Taking the inverse again yields equation (1):

$$K_{D}^{\text{unlocked}} = \frac{K_{D,\text{init}}}{1 + K_{\text{flip}}}$$
(1)

Figure S1: Direct comparison of competition binding titrations of DNA with unlocked duplex $1^{16S} \cdot 2^{U4S}$ (black open circles), locked duplex $1^{16S-Et-S4U}2$ (black closed cicles), A/T substrate duplex $1^{A} \cdot 2^{T}$ (red open circles) and A^{Me}/T product duplex $1^{AMe} \cdot 2^{T}$ (red closed circles) with M.Taql. Increasing amounts of M.Taql were added to a mixture of the DNA of interest and a fluorescent DNA with known K_D that contains the target base analog 2-aminopurine (2AP). A more delayed increase in the 2AP fluorescence indicates tighter binding of the non-fluorescent DNA.

Figure S2: Comparison of the substrate A/T (left) and product A^{Me}/T (right) base pair of adenine-specific DNA MTases, with the cross-linked $I^{6S-Et-S4}U$ thionucleoside base pair (middle) used to mimic the innerhelical position of the target base in the initial M.TaqI-DNA complex before base flipping. The cross-linked base pair is missing the methyl group and therefore might be a better mimic for the A/T substrate than for the A^{Me}/T product in DNA.