Supporting Information

for

A green approach to the synthesis of novel phytosphingolipidyl β-cyclodextrin designed to interact with membranes

Yong Miao, Florence Djedaïni-Pilard and Véronique Bonnet*

Address: LG2A FRE-CNRS 3517 Institut de Chimie de Picardie FR CNRS 3085, SFR Condorcet, UPJV, 33 rue St Leu 80039 Amiens France

Email: Véronique Bonnet* - veronique.bonnet@u-picardie.fr *Corresponding author

Experimental and analytical data

Experimental

Materials and methods

Native β-cyclodextrin was obtained from Wacker Chemicals (Germany). Ethyl decanoate, ethyl laurate, ethyl myristate, ethyl stearate and COMU were purchased from Sigma-Aldrich. Lipase immobilized from *Mucor miehei*, Lipozyme®, was purchased from Fluka Chemie GmbH (Germany). Phytosphingosine was purchased from TCI. Other chemicals were purchased from Sigma-Aldrich. All the solvents

employed for the reactions were distilled once before use. Deuterated solvents were purchased from Euriotop (France).

Stepwise control of the reactions has been readily achieved using ESI-MS in the positive ion mode using a ZQ 4000 quadrupole mass spectrometer (Waters-Micromass, Manchester, UK). Reaction media were diluted in MeOH (0.001 mg/ml) and the solutions were filtered before introducing. In the same conditions, the structure elucidation of the final products was further confirmed by High-Resolution Mass Spectrometry (ESI-HRMS) using electrospray infusion mode performed in positive mode on a QTOF Ultima Global instrument (Waters-Micromass, Manchester, UK). An external calibration was done. Data acquisition and processing were performed with MASS LYNX 4.0 software. ¹H NMR and ¹³C NMR spectra were recorded with a Bruker AVANCE DPX 300 at 300.16 and 75.78 MHz, respectively, and a Bruker AVANCE DRX 600 spectrometer at 600 and 150.1 MHz, respectively, in deuterated chloroform (CDCl₃) at 25 °C. All compounds were characterized by 1H-1H (COSY) and 1H-13C (HSQC) correlation experiments. Chemical shifts are given in δ -units measured downfield from Me₄Si at 0 ppm using the residual solvent signal as secondary reference.

6¹-Amino-6¹-deoxy-2¹,3¹-di-O-methyl-hexakis(2^{11-VII}, 3^{11-VII}, 6^{11-VII} -tri-O-

methyl)cyclomaltoheptaose (1)

1 was obtained in four steps from 10 g of native cyclodextrin, as described in the literature [1]. It was purified by column chromatography on silica gel (CH₂Cl₂/MeOH 9/1 (v/v), $R_{\rm f} = 0.5$), giving an overall yield of 30%. The analytical data are in good agreement with the literature [1].

6^I-Succinylamino-6^I-deoxy-2^I,3^I-di-*O*-methyl-hexakis(2^{II-VII}, 3^{II-VII}, 6^{II-VII} -tri-*O*-methyl)cyclomaltoheptaose (2)

1 g (10 mmol, 47 eq.) of succinic anhydride was introduced to a flask of 10 ml, and the medium was stirred magnetically at 135°C until the solid was completely melted (about 5 minutes). Then 300 mg of product **1** (212 µmol, 1 eq.) was added to the melt medium, and the reaction was stirred magnetically for 10 minutes. The reaction was cooled down to room temperature, and 5 ml of MeOH was added, ultrasonic cleaner was employed to break down the solid. Then mixture was filtered, and the solution was concentrated under vacuum. The crude was purified on silica gel (CH₂Cl₂/MeOH 9/1 (v/v), Rf = 0.5), giving 220 mg (yield = 70%). The analytical data are in good agreement with the literature [2].

6-(N-(3S,4R)-1,3,4-trihydroxyoctadecan-2-yl)succinylamido- 6^{l} -deoxy- $2^{l},3^{l}$ -di-O-methyl-hexakis(2^{ll-Vll} , 3^{ll-Vll} , 6^{ll-Vll} -tri-O-methyl)cyclomaltoheptaose (3)

To a solution of 100 mg of **2** (66 µmol, 1eq) in 30 ml of fresh distilled DMF, 57 mg of COMU (133 µmol, 2 eq.) was added. The reaction was stirred magnetically at room temperature under argon for 1 hour. Then, 209 mg of phytosphingosine (660 µmol, 10 eq.) in 10 ml of DMF was added to the reaction. The mixture was stirred magnetically at room temperature under argon for 24 hours. The crude was purified

on silica gel (from pure EtOAc to EtOAc/MeOH 7/3(v/v)), giving 73 mg of solid (yield = 61%).

¹H-NMR (300 MHz, CDCl₃) δ (ppm) 7.1 (s, 2H, 2NHCO), 5.3-5.0 (m, 7H, H^{I-VII}_{1CD}), 4.4-3.0 (m, 50H, H^{I-VII}_{2CD}, H^{I-VII}_{3CD}, H^{I-VII}_{4CD}, H^{I-VII}_{5CD}, H^{I-VII}_{6CD} + *O*H_{v,w,x} + CH_{e,f,g} + C_uH₂), 3.6 (s, 18H, *O*_{6CD}CH₃), 3.5 (s, 21H, *O*_{3CD}CH₃), 3.4 (s, 21H, *O*_{2CD}CH₃), 2.6-2.4 (m, 4H, C_bH₂ and C_cH₂), 0.9 (t, 3H, CH₃, J = 7Hz)

¹³C-NMR (75 MHz, CDCl₃) δ (ppm) 173.30 (2C, C(=O)_{a,d}), 99.25 (7C, C^{I-VII}_{1CD}), 82.20-80.46 (28C, C^{I-VII}_{2CD}, C^{I-VII}_{3CD}, C^{I-VII}_{4CD}, C^{I-VII}_{5CD}), 71.20 (8C, C^{I-VII}_{6CD}, C_{f,g}H), 61.40 (1C, C_uH₂), 58.90 (21C, O_{2CD}CH₃, O_{3CD}CH₃, O_{6CD}CH₃, C_eH), 40.00 (1C, C^I_{6CD}), 33.60 (1C, C_hH₂), 30.40 (2C, C_{b-c}H₂), 29.40 (10C, C_{j-s}H₂), 25.90 (1C, C_iH₂), 22.70 (1C, C_tH₂), 14.10 (1C, CH₃)

MS for $C_{84}H_{152}N_2O_{39}Na$ calcd 1835.9899, found 1835.9869

General procedure for the synthesis of compound 4, 5, 6 and 7

To a solution of 100 mg of compound **3** (55 µmol, 1 equiv) in 2 ml of corresponding fatty ester (excess), 100 mg of Lipozyme[®] was added. The reaction was set under rotary evaporator at 50 °C during 8 to 14 hours depending on the corresponding fatty ester. Lipozyme was filtered, and the solution was purified directly on silica gel (from pure EtOAc to EtOAc/MeOH 4:1(v/v)), giving white solid. Yields: **4** (80mg): 74%, **5** (75mg): 68%, **6** (72mg): 64%, **7** (69mg): 60%.

6-(*N*-(1-decanoyloxy-(3*S*,4*R*)-dihydroxyoctadecan-2-yl)succinamido-6^l-deoxy-2^l,3^l-di-*O*-methyl-hexakis(2^{ll-VII}, 3^{ll-VII}, 6^{ll-VII} -tri-*O*-methyl)cyclomaltoheptaose (4)

¹H-NMR (600 MHz, CDCl₃) δ (ppm) 6.55 (d, 1H, N_(d-e)Hco, J = 6 Hz), 6.39 (t, 1H, N_aHco, J = 6 Hz), 5.11 (m, 7H, H^{I-VII}_{1CD}), 4.29-4.36 (m, 3H, C_vH₂ and C_eH), 3.80 (m, 14H, H^{I-VII}_{6CD}), 3.32-3.68 (m, 83H, H^{I-VII}_{3CD}, H^{I-VII}_{4CD}, H^{I-VII}_{5CD}, O_{6CD}CH₃, O_{3CD}CH₃, O_{2CD}CH₃, CH_{f,g}), 3.17 (m, 7H, H^{I-VII}_{2CD}), 2.54-2.64 (m, 2H, C_cH₂), 2.41 (m, 2H, C_bH₂), 2.29 (t, 2H, C_zH₂, J = 7.51 Hz), 1.67 (m, 1H, C_hH^a), 1.59 (m, 2H, C_a'H₂), 1.51 (m, 1H, C_iH^a), 1.37 (m, 1H, C_hH^b), 1.31 (m, 1H, C_iH^b), 1.24 (m, 34H, C_{j-t}H₂, C_{b'-g'}H₂), 0.86 (t, 6H, C_uH₃ and C_h'H₃, J = 7.0 Hz)

¹³C-NMR (150 MHz, CDCl₃) δ (ppm) 174.43, 172.58, 172.52 (3C, C(=O)_{a,d,y}), 99.23-98.68 (7C, C^{I-VII}_{1CD}), 82.27-79.73 (28C, C^{I-VII}_{2CD}, C^{I-VII}_{3CD}, C^{I-VII}_{4CD}, C^{I-VII}_{5CD}), 71.20 (8C, C^{I-VII}_{6CD}, C_{f,g}H), 63.08 (1C, C_vH₂), 61.69-58.45 (20C, *O*_{2CD}CH₃, *O*_{3CD}CH₃, *O*_{6CD}CH₃), 51.78 (1C, C_eH), 40.21 (1C, C^I_{6CD}), 34.38 (1C, C_zH₂), 33.63 (1C, C_hH₂), 31.98, 32.05 (2C, C_sH₂, C_f·H₂), 31.57,31.89 (2C, C_{b-c}H₂), 29.41 (13C, C_{j-f}H₂, C_{b'-e}·H₂), 26.15 (1C, C_iH₂), 25.02 (1C, C_a·H₂), 22.79, 22.81 (2C, C_tH₂, C_g·H₂), 14.25, 14.23 (2C, C_h·H₃, C_uH₃)

MS for $C_{94}H_{170}N_2O_{40}Na$ calcd 1990.1228 found 1990.1191

6-(*N*-(1-dodecanoyloxy-(3*S*,4*R*)-dihydroxyoctadecan-2-yl)succinamido-6^l-deoxy-2^l,3^l-di-*O*-methyl-hexakis(2^{ll-VII}, 3^{ll-VII}, 6^{ll-VII} -tri-*O*-methyl)cyclomaltoheptaose (5)

¹H-NMR (600 MHz, CDCl₃) δ (ppm) 6.55 (d, 1H, N_(d-e)Hco, J = 6 Hz), 6.39 (t, 1H, N_aHco, J = 6 Hz), 5.11 (m, 7H, H^{I-VII}_{1CD}), 4.29-4.36 (m, 3H, C_vH₂ and C_eH), 3.80 (m, 14H, H^{I-VII}_{6CD}), 3.32-3.68 (m, 83H, H^{I-VII}_{3CD}, H^{I-VII}_{4CD}, H^{I-VII}_{5CD}, *O*_{6CD}CH₃, *O*_{3CD}CH₃, *O*_{2CD}CH₃, CH_{f,g}), 3.17 (m, 7H, H^{I-VII}_{2CD}), 2.54-2.64 (m, 2H, C_cH₂), 2.41 (m, 2H, C_bH₂), 2.29 (t, 2H, C_zH₂, J = 7.51 Hz), 1.67 (m, 1H, C_hH^a), 1.59 (m, 2H, C_a'H₂), 1.51 (m, 1H, C_iH^a), 1.37 (m, 1H, C_hH^b), 1.31 (m, 1H, C_iH^b), 1.24 (m, 38H, C_{j-t}H₂, C_{b'-t}'H₂), 0.86 (t, 6H, C_uH₃ and C_h'H₃, J = 7.0 Hz)

¹³C-NMR (150 MHz, CDCl₃) δ (ppm) 174.39, 172.55, 172.52 (3C, C(=O)_{a,d,y}), 99.17-98.62 (7C, C^{I-VII}_{1CD}), 82.27-79.59 (28C, C^{I-VII}_{2CD}, C^{I-VII}_{3CD}, C^{I-VII}_{4CD}, C^{I-VII}_{5CD}), 71.20 (8C, C^{I-VII}_{6CD}, C_{f,g}H), 63.00 (1C, C_vH₂), 61.63-58.40 (20C, *O*_{2CD}CH₃, *O*_{3CD}CH₃, *O*_{6CD}CH₃), 51.62 (1C, C_eH), 40.17 (1C, C^I_{6CD}), 34.33 (1C, C_zH₂), 33.62 (1C, C_hH₂), 31.98, 32.00 (2C, C_sH₂, C_h·H₂), 31.50,31.78 (2C, C_{b-c}H₂), 29.41 (15C, C_{j-t}H₂, C_{b'-g}·H₂), 26.15 (1C, C_iH₂), 24.79 (1C, C_a·H₂), 22.76 (2C, C_tH₂, C_i·H₂), 14.20 (2C, C_j·H₃, C_uH₃) MS for C₉₆H₁₇₄N₂O₄₀Na calcd 2018.1541, found 2018.1521 6-(*N*-(1-myristoyloxy-(3*S*,4*R*)-dihydroxyoctadecan-2-yl)succinamido-6^l-deoxy-2^l,3^l-di-*O*-methyl-hexakis(2^{ll-VII}, 3^{ll-VII}, 6^{ll-VII} -tri-*O*-methyl)cyclomaltoheptaose (6)

¹H-NMR (600 MHz, CDCl₃) δ (ppm) 6.55 (d, 1H, N_(d-e)Hco, J = 6 Hz), 6.39 (t, 1H, N_aHco, J = 6 Hz), 5.11 (m, 7H, H^{I-VII}_{1CD}), 4.29-4.36 (m, 3H, C_vH₂ and C_eH), 3.80 (m, 14H, H^{I-VII}_{6CD}), 3.32-3.68 (m, 83H, H^{I-VII}_{3CD}, H^{I-VII}_{4CD}, H^{I-VII}_{5CD}, O_{6CD}CH₃, O_{3CD}CH₃, O_{2CD}CH₃, CH_{f,g}), 3.17 (m, 7H, H^{I-VII}_{2CD}), 2.54-2.64 (m, 2H, C_cH₂), 2.41 (m, 2H, C_bH₂), 2.29 (t, 2H, C_zH₂, J = 7.51 Hz), 1.67 (m, 1H, C_hH^a), 1.59 (m, 2H, C_{a'}H₂), 1.51 (m, 1H, C_iH^a), 1.37 (m, 1H, C_hH^b), 1.31 (m, 1H, C_iH^b), 1.24 (m, 42H, C_{j-t}H₂, C_{b'-k'}H₂), 0.86 (t, 6H, C_uH₃ and C_{h'}H₃, J = 7.0 Hz)

¹³C-NMR (150 MHz, CDCl₃) δ (ppm) 174.40, 172.57, 172.50 (3C, C(=O)_{a,d,y}), 99.23-98.82 (7C, C^{I-VII}_{1CD}), 82.26-79.72 (28C, C^{I-VII}_{2CD}, C^{I-VII}_{3CD}, C^{I-VII}_{4CD}, C^{I-VII}_{5CD}), 70.00-74.50 (8C, C^{I-VII}_{6CD}, C_{f,g}H), 63.10 (1C, C_vH₂), 61.69-58.43 (20C, *O*_{2CD}CH₃, *O*_{3CD}CH₃, *O*_{6CD}CH₃), 51.76 (1C, C_eH), 40.22 (1C, C^I_{6CD}), 34.37 (1C, C_zH₂), 33.58 (1C, C_hH₂), 32.04 (2C, C_sH₂, C_j'H₂), 31.60,31.91 (2C, C_{b-c}H₂), 29.23-29.92 (17C, C_{j-r}H₂, C_{b'-i'}H₂), 26.14 (1C, C_iH₂), 25.02 (1C, C_{a'}H₂), 22.81 (2C, C_tH₂, C_{k'}H₂), 14.20,14.38 (2C, C_i'H₃, C_uH₃)

MS for $C_{98}H_{178}N_2O_{40}Na$ calcd 2046.1854, found 2046.1753

6-(*N*-(1-octadecanoyloxy-(3*S*-4*R*)-dihydroxyoctadecan-2-yl)succinamido)-6^Ideoxy-2^I,3^I-di-*O*-methyl-hexakis(2^{II-VII} , 3^{II-VII} , 6^{II-VII} -tri-*O*-methyl)cyclomaltoheptaose (7)

¹H-NMR (600 MHz, CDCl₃) δ (ppm) 6.55 (d, 1H, N_(d-e)Hco, J = 6 Hz), 6.39 (t, 1H, N_aHco, J = 6 Hz), 5.11 (m, 7H, H^{I-VII}_{1CD}), 4.29-4.36 (m, 3H, C_vH₂ and C_eH), 3.80 (m, 14H, H^{I-VII}_{6CD}), 3.32-3.68 (m, 83H, H^{I-VII}_{3CD}, H^{I-VII}_{4CD}, H^{I-VII}_{5CD}, *O*_{6CD}CH₃, *O*_{3CD}CH₃, *O*_{2CD}CH₃, CH_{f,g}), 3.17 (m, 7H, H^{I-VII}_{2CD}), 2.54-2.64 (m, 2H, C_cH₂), 2.41 (m, 2H, C_bH₂), 2.29 (t, 2H, C_zH₂, J = 7.51 Hz), 1.67 (m, 1H, C_hH^a), 1.59 (m, 2H, C_{a'}H₂), 1.51 (m, 1H, C_iH^a), 1.37 (m, 1H, C_hH^b), 1.31 (m, 1H, C_iH^b), 1.24 (m, 50H, C_{j-t}H₂, C_{b'-o'}H₂), 0.86 (t, 6H, C_uH₃ and C_{h'}H₃, J = 7.0 Hz)

¹³C-NMR (150 MHz, CDCl₃) δ (ppm) 174.40, 172.63, 172.54 (3C, C(=O)_{a,d,y}), 99.23-98.67 (7C, C^{I-VII}_{1CD}), 82.26-79.72 (28C, C^{I-VII}_{2CD}, C^{I-VII}_{3CD}, C^{I-VII}_{4CD}, C^{I-VII}_{5CD}), 70.00-74.50 (8C, C^{I-VII}_{6CD}, C_{f,g}H), 63.13 (1C, C_vH₂), 61.69-58.43 (20C, *O*_{2CD}CH₃, *O*_{3CD}CH₃, *O*_{6CD}CH₃), 51.76 (1C, C_eH), 40.24 (1C, C^I_{6CD}), 34.36 (1C, C_zH₂), 33.52 (1C, C_hH₂), 32.04 (2C, C_sH₂, C_n·H₂), 31.60,31.91 (2C, C_{b-c}H₂), 29.23-29.92 (21C, C_{j-r}H₂, C_{b'-m}·H₂), 26.14 (1C, C_iH₂), 25.02 (1C, C_a·H₂), 22.81 (2C, C_tH₂, C_o·H₂), 14.24 (2C, C_p·H₃, C_uH₃) MS for C₁₀₂H₁₈₆N₂O₄₀Na calcd 2102.2480, found 2102.2424

References

1. Djedaini-Pilard, F.; Azaroual-Bellanger, N.; Gosnat, M.; Vernet, D.; Perly, B. *J. Chem. Soc., Perkin Trans. 2,* **1995**, 723-730.

2. Angelova, A.; Fajolles, C.; Hocquelet, C.; Djedaïni-Pilard, F.; Lesieur, S.; Bonnet, V.; Perly, B.; Lebas, G.; Mauclaire, L. *J. Colloid Interface Sci.*, **2008**, *322*, 304-314.

¹H NMR, ¹³C NMR and HRMS spectra of compounds 3, 4, 5, 6 and 7

Compound 3

Elemental Composition Report

Page 1

Single Mass Analysis Tolerance = 5.0 PPM / DBE: min = -1.5, max = 150.0 Isotope cluster parameters: Separation = 1.0 Abundance = 1.0%

Monoisotopic Mass, Even Electron Ions 2567 formula(e) evaluated with 4 results within limits (up to 50 closest results for each mass)

25-Jun-2010 VB DC6D-LOC	m-2010 C6D-LOCK 12 (0.311) AM (Cen,5, 80.00, Ar,0.0,294.94,0.00,LS 5); Sm (SG, 2x3.00); Cm (10:12) 1835.9859 1836.9956							
%			1837.9984					
			183	39,0017				
1832.0	725 1833.00851835	8127	Frank Lines	1839,9939	1841.0314	1842.96441844.2777	1846.7184	
1832.	0 1834.0	1836.0	1838.0	1840.0	10120	10110 10	102	
				1040.0	1042.0	1844.0 184	45.U	
Minimum: Maximum:		2.0	5.0 1	1.5	1042.0	1844.0 184	40.0	
Minimum: Maximum: Mass	Calc. Mass	2.0 mDa	5.0 1 PPM D	1.5 50.0 BE Scor	e For	mula	40.0	

Shift of ¹³C chemical shift of $CH_2(v)$ compared to chemical shifts of CH(f,g) showing clearly the regioselectivity of the O-Acylation.

Isotope cluster parameters: Separation = 1.0 Abundance = 1.0% Monoisotopic Mass, Odd and Even Electron Ions 807 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass) NYCDS-C10 9 (0.804) AM (Cen.5. 80.00, Ar,5000.0.490.89, 1.00,LS 10); Sm (SG, 2x3.60); Cm (9:11) 100 1009.2176 1909.2176 1909.00 1909.00 1909.00 1909.00 1909.00 1900.0						0%	ndance -	10 44				
Monoisotopic Mass, Odd and Even Electron Ions 807 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass) MYCDS-C10 9 (0.884) AM (Cen.5, 80.00, Ar, 5000.0,490.88, 1.00,LS 10); Sm (SG, 2x3.00); Cm (9:11) 1990 1990 1990 1989.2178 1989.20 1989.20 1989.20 1989.20 1989.20 1989.20 1989.20 1989.20 1989.20 1989.20 1980.20 1980.20 1980.20 1980.20 1980.20 1980.20 1980.20 1980.20 1980.20 1990.5073 1990.5988 1990.5073 1990.5988 1990.50						.079	indance -	1.0 ADL	paration =	eters: Sep	uster param	Isotope cli
MYCDS-C10 9 (0.084) AM (Cen.5. 80.00, Ar,5000.0,490.86,1.00,LS 10); Sm (SG, 2x3.00); Cm (8:11) 100 1990.1191 1990.5073 1990.5986 1990.20 1990.5073 1990.5986 1990.20 1990.40 1990.80 1990.00 1990 Minimum: 5.0 2.0 50.0 Mass Calc. Mass nDa P?M DBE Score Formula 1990.1191 1990.1228 -3.7 -1.8 10.5 1 C94 H170 N2 040 Na)	n mass	s for eac	closest res	its (up to 50	ectron lons s within lim	nd Even Ek vith 1 result	c Mass, Odd a (e) evaluated v	Monoisotopi 807 formula
100 1990.2178 1990.2178 1990.207 1990.207 1990.5073 1990.5986 1990.207 1990.40 1990.60 1990.80 1900.80 1900.80 1900.80 1900.	1: TOF MS E					Cm (9:11)	n (SG, 2x3.00	1.00,LS 10); S	000.0,490.89,	5, 80.00, Ar,5	(0.684) AM (Cen.	MYCDS-C10 9
1989.2176 1989.6184 1990.5073 1990.5986 1989.20 1989.40 1989.60 1989.80 1990.20 1990.40 1990.80 1991.80 Minimum: -1.5 -1.5 30.0 1990.80 1991.80 1990.80 1991.80 <th>2.9</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>1191</th> <th>1990</th> <th></th> <th></th> <th></th> <th>100</th>	2.9						1191	1990				100
4 1989.2178 1989.6184 1990.5073 1990.5988 1989.20 1989.40 1989.60 1989.80 1990.20 1990.40 1990.80 1991 Minimum: 5.0 2.0 50.0 50.0 50.0 50.0 50.0 1990.1228 -3.7 -1.8 10.5 1 C94 H170 N2 040 Na												1
1989.2178 1989.20 1989.20 1989.40 1989.60 1989.60 1989.60 1990.00 1990.20 1990.60 1990.60 1990.80 1												~
1989.2178 1989.60 1989.60 1990.00 1990.20 1990.60 190.60 190.60 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>~</td></t<>												~
1 1989.2178 1989.6184 1990.5073 1990.5085 1996.20 1989.40 1989.60 1989.80 1990.20 1990.40 1990.60 19												1
1989.20 1989.40 1989.60 1989.60 1990.00 1990.20 1990.40 1990.60 1990.60 1991 Minimum: Maximum: 5.0 2.0 50.0 Mass Calc. Mass mDa PPM DBE Score Formula 1990.1191 1990.1228 -3.7 -1.8 10.5 1 C94 H170 N2 O40 Na		****		0.598	1073 19	1990				1989.6184	2176	0 1985
MARINUM: Maximum: S.O 2.0 50.0 Mass Calc. Mass mDa PPM DBE Score Formula 1990.1191 1990.1228 -3.7 -1.8 10.5 1 C94 H170 N2 040 Na	1991.00	10	1990.8	0	1990.6	990.40	1990.20	1990.00	1989.80	1989.60	1989.40	1989.20
Mass Calc. Mass mDa PPM DBE Score Formula 1990.1191 1990.1228 -3.7 -1.8 10.5 1 C94 H170 N2 O40 Na								50.0	2.0	5.0		Maximum:
1990.1191 1990.1228 -3.7 -1.8 10.5 1 C94 H170 H2 O40 Na					ala	Form	Score	DBE	PPM	mDa	Calc. Mass	Mass
		Na	040	N2	8170	C94	1	10.5	-1.8	-3.7	1990.1228	1990.1191

Product 5¹H NMR

Elemental Composition Report

5

Page 1

Single Mass Analysis

Tolerance = 2.0 PPM / DBE: min = -1.5, max = 50.0 Isotope cluster parameters: Separation = 1.0 Abundance = 1.0%

Monoisotopic Mass, Odd and Even Electron Ions 804 formula(e) evaluated with 2 results within limits (up to 50 closest results for each mass)

Elemental Composition Report

Page 1

Single Mass Analysis Tolerance = 5.0 PPM / DBE: min = -1.5, max = 50.0 Isotope cluster parameters: Separation = 1.0 Abundance = 1.0%

Monoisotopic Mass, Odd and Even Electron Ions 798 formula(e) evaluated with 2 results within limits (up to 50 closest results for each mass)

Elemental Composition Report

(1)

Page 1

Single Mass Analysis

Tolerance = 5.0 PPM / DBE: min = -1.5, max = 50.0 Isotope cluster parameters: Separation = 1.0 Abundance = 1.0%

Monoisotopic Mass, Odd and Even Electron Ions 792 formula(e) evaluated with 3 results within limits (up to 50 closest results for each mass)

