Supporting Information

for

Total synthesis and cytotoxicity of the marine natural product malevamide D and a photoreactive analog

Werner Telle¹, Gerhard Kelter², Heinz-Herbert Fiebig², Peter G. Jones³ and Thomas Lindel^{*1}

Address: ¹Institute of Organic Chemistry, TU Braunschweig, Hagenring 30, 38106 Braunschweig, Germany, ²Oncotest Institute for Experimental Oncology GmbH, Am Flughafen 12–14, 79108 Freiburg, Germany and ³Institute of Inorganic and Analytical Chemistry, TU Braunschweig, Hagenring 30, 38106 Braunschweig, Germany

Email: Thomas Lindel - th.lindel@tu-braunschweig.de

*Corresponding author

Procedures of synthesis and biotest, X-ray data and ¹H, ¹³C NMR spectra of selected compounds

1. Synthesis

General: Chemicals were obtained from Aldrich, Merck, Abbott, and ABCR in high quality. NMR spectra were recorded with Bruker DPX-200, AVII 300, AV III-400, DRX-400, and AV II-600 spectrometers. ¹⁹F NMR chemical shifts are referenced to Cl₃CF as external standard. Mass spectra were taken on Finnigan MAT 95 XLT or Thermofinnigan MAT95 XL spectrometers (EI) or on an LTQ Orbitrap Velos spectrometer (ESI). GC–MS analyses were performed with an Agilent 6890 gas chromatograph and an Agilent 5975b mass spectrometer. IR spectra were measured with a Bruker Tensor 27 spectrometer equipped with a diamond ATR unit. UV–vis spectra were recorded with a Varian Cary 100 Bio UV–vis spectrometer. Optical rotations were determined with a Dr. Kernchen Propol Automatic polarimeter. Melting points were measured with a Büchi 530 apparatus. A SP Differential calorimeter from Rheometric Scientific was used for DSC measurements.

(S)-Benzyl methyl(3-methyl-1-oxobutan-2-yl)carbamate (5). A solution of alcohol 4 (13.310 g, 52.9 mmol, 1.0 equiv) in dry DMSO (60 mL, 845 mmol, 16.0 equiv) was treated under argon with dry NEt₃ (37 mL, 263 mmol, 5.0 equiv) and stirred for 15 min at ambient temperature. After cooling to 0 °C, pyridine-SO₃-complex (41.95 g, 263 mmol, 5.0 equiv) was added and the reddish reaction mixture was stirred for additional 50 min. The reaction was stopped by addition of water (150 mL). The mixture was extracted with TBME (4 × 400 mL). The combined extracts were washed with 25% aqueous citric acid (100 mL), water (100 mL), saturated NaHCO₃ solution (100 mL), and brine (100 mL). The Et₂O phase was dried over MgSO₄. After filtration and removal of the solvent the product was purified by flash chromatography on silica gel [PE/EtOAc (5:1)] to yield aldehyde **5** (12.26 g, 49.1 mmol, 91%) as a colorless oil. **TLC** [silica gel, PE/EtOAc (5:1)]: $R_f = 0.43$. [α]³⁰_D –35.5 (*c* 1.45, CHCl₃). ¹H NMR (400 MHz, CDCl₃, 2 rotamers, ratio 2:1): $\delta = 9.69$ (s, 0.65 H, CHO), 9.65 (s, 0.35 H, CHO), 7.40-7.27 (m, 5 H, C₆H₅), 5.17 (s, 1.35 H, CH₂), 5.15 (s, 0.65 H, CHO), 9.65 (s, 0.35 H, CHO), 7.40-7.27 (m, 1 H, CH(CH₃)₂), 1.13 (d, 2 H, ³J = 6.6 Hz, CH(CH₃)₂), 1.08 (d, 1 H, NCH₃), 2.34-2.17 (m, 1 H, CH(CH₃)₂), 1.13 (d, 2 H, ³J = 6.6 Hz, CH(CH₃)₂), 1.08 (d, 1 H, NCH₃)

S2

 ${}^{3}J = 6.4$ Hz, CH(CH₃)₂), 0.94 (d, 2 H, ${}^{3}J = 6.8$ Hz, CH(CH₃)₂), 0.90 (d, 1 H, ${}^{3}J = 7.0$ Hz, CH(CH₃)₂). 13 C NMR (100 MHz, CDCl₃, major rotamer): $\delta = 198.9$ (1C, CHO), 157.0 (1C, NCO), 136.4 (1C, PhC_q), 128.4 (2C, *m*Ph-*C*), 128.0 (1C, *p*Ph-*C*), 127.7 (2C, *o*Ph-*C*), 70.8 (1C, NCH), 67.5 (1C, CH₂), 32.5 (1C, NCH₃), 26.5 (1C, CH(CH₃)₂), 20.0 (1C, CH(CH₃)₂), 19.4 (1C, CH(CH₃)₂). IR (ATR): $\tilde{\nu} = 3034$ cm⁻¹ (w), 1731 (m), 1693 (s), 1453 (m), 1399 (m), 1367 (m), 1298 (m), 1160 (m), 1131 (m), 769 (m), 736 (m), 697 (s). UV (MeOH): λ_{max} (Ig ε) = 257 nm (2.36), 207 (3.92). MS (EI, 70 eV): *m/z* (%) = 220 [M-CHO]⁺ (16), 176 (23), 108 [BnOH]⁺ (32), 91 [Bn]⁺ (100), 79 (16), 65 (21), 51 (10). HRGCMS (EI, 70 eV): calcd. for C₁₄H₁₉NO₃ [M]⁺ 249.13539; found 249.13711.

(3S,4S)- and (3R,4S)-tert-Butyl 4-((benzyloxycarbonyl)(methyl)amino)-3-hydroxy-5methylhexanoate (6). To a solution of LDA, freshly prepared from diisopropylamine (17.5 mL, 123.0 mmol, 2.56 equiv) and *n*-BuLi (2.5 N in *n*-hexane, 48 mL, 120.0 mmol, 2.50 equiv) in dry THF (250 mL) was added at -78 °C t-BuOAc (8.5 mL, 62.9 mmol, 1.3 equiv). It was stirred for 2 h, and was allowed to warm to -5 °C. Upon recooling to -78 °C a solution of aldehyde 5 (11.96 g, 48.0 mmol, 1.0 equiv) in dry THF (30 mL) was added slowly. The reaction mixture was stirred at -78 °C for 1 h and quenched with ice cold water (80 mL) followed by water (500 mL). When the ice had melted, the mixture was extracted with Et₂O (2 × 400 mL, 3 × 300 mL). The organic phases were combined and washed with water (100 mL) and brine (100 mL). After drying over MgSO₄ and removal of the solvent the residue was purified by double chromatography on silica gel [PE/acetone (20:1)] to yield (3*S*,4*S*)-6 (6.552 g, 17.93 mmol, 37%) and (3*R*,4*S*)-6 (8.205 g, 21.9 mmol, 47%) as colorless oils. (3*S*,4*S*)-**6: TLC** [silica gel, PE/acetone (10:1)]: $R_{\rm f} = 0.22$. [α]^{26.8}_D –55.2 (*c* 1.45, CHCl₃). ¹**H NMR** (400 MHz, CDCl₃, 2 rotamers, ratio 2:1): δ = 7.38-7.27 (m, 5 H, C₆H₅), 5.17 (d, 0.65 H, ${}^{2}J$ = 12.5 Hz, OCH₂), 5.15 (d, 0.35 H, ${}^{2}J$ = 12.3 Hz, OCH₂), 5.13 (d, 0.65 H, ${}^{2}J$ = 12.5 Hz, OCH_2), 5.12 (d, 0.35 H, ²J = 12.3 Hz, OCH_2), 4.32 (ddd, 0.65 H, ³J = 3.9 Hz, ³J = 3.9 Hz, ${}^{3}J$ = 12.4 Hz, CHOH), 4.26 (dddd, 0.35 H, ${}^{3}J$ = 3.0 Hz, ${}^{3}J$ = 3.0 Hz, ${}^{3}J$ = 3.0 Hz, ${}^{3}J$ = 9.3 Hz, C*H*OH), 3.80-3.14 (m, 1 H, O*H*), 3.52 (dd, 0.6 H, ³*J* = 2.6 Hz, ³*J* = 10.6 Hz, NC*H*), 3.34 (d, 0.4 H, ${}^{3}J$ = 2.0 Hz, NC*H*), 2.962 (s, 2 H, NC*H*₃), 2.958 (s, 1 H, NC*H*₃), 2.46-2.16 (m, 1 H, *CH*(CH₃)₂), 2.33 (dd, 1 H, ${}^{3}J$ = 9.6 Hz, ${}^{2}J$ = 17.1 Hz, *CH*₂COO), 2.25 (dd, 1 H, ${}^{3}J$ = 2.7 Hz, ${}^{2}J$ = 19.7 Hz, *CH*₂COO), 1.46 (s, 6 H, C(*CH*₃)₃), 1.45 (s, 3 H, C(*CH*₃)₃), 1.06 (d, 2 H, ${}^{3}J$ = 6.5 Hz, *CH*(*CH*₃)₂), 1.02 (d, 1 H, ${}^{3}J$ = 6.6 Hz, *CH*(*CH*₃)₂), 0.88 (d, 2 H, ${}^{3}J$ = 6.6 Hz, *CH*(*CH*₃)₂), 0.83 (d, 1 H, ${}^{3}J$ = 6.7 Hz, *CH*(*CH*₃)₂). 13 **C NMR** (100 MHz, CDCl₃, major rotamer): δ = 173.0 (1C, *CH*₂COO), 157.5 (1C, *NCO*), 136.8 (1C, *PhC*_q), 128.4 (2C, *mPh-C*), 127.8 (1C, *pPh-C*), 127.4 (2C, *oPh-C*), 81.4 (1C, *C*(*CH*₃)₃), 67.9 (1C, *CHOH*), 67.1 (1C, *OCH*₂), 64.3 (1C, *NCH*), 39.4 (1C, *CH*₂COO), 31.0 (1C, *NCH*₃), 28.0 (3C, *C*(*CH*₃)₃), 25.9 (1C, *CH*(*CH*₃)₂), 20.0 (1C, *CH*(*CH*₃)₂), 19.7 (1C, *CH*(*CH*₃)₂). **IR** (ATR): \tilde{v} = 3469 cm⁻¹ (br, w), 1695 (s), 1678 (s), 1310 (m), 1152 (s), 1111 (m), 751 (m), 735 (m), 697 (m). **UV** (MeOH): λ_{max} (lg ε) = 205 nm (3.98), 257 (2.52). **MS** (EI, 70 eV): *m/z* (%) = 220 [M-CH(OMe)CH₂CO₂*t*Bu]^{*} (10), 206 (14), 191 (100), 176 (21), 158 (31), 107 (10), 91 [Bn]⁺ (53), 79 (12), 57 [*t*Bu]⁺ (41), 43 (13). **MS** (ESI): 388 [M+Na]^{*} (100), 332 [M-*t*Bu+H+Na]^{*} (35). **HRMS** (ESI): calcd. for C₂₀H₃₁NO₅Na [M+Na]^{*} 388.20944; found 388.20869.

(3*R*,4*S*)-**6. TLC** [silica gel, PE/acetone (10:1)]: $R_f = 0.18$. [α]²⁷_D –5.0 (*c* 1.45, CHCl₃). ¹**H NMR** (400 MHz, CDCl₃, 2 rotamers, ratio 3:2): $\delta = 7.37-7.27$ (m, 5 H, C₆*H*₅), 5.17 (d, 0.4 H, ²*J* = 12.4 Hz, OC*H*₂), 5.16 (d, 0.6 H, ²*J* = 12.4 Hz, OC*H*₂), 5.12 (d, 0.6 H, ²*J* = 12.4 Hz, OC*H*₂), 5.09 (d, 0.4 H, ²*J* = 12.4 Hz, OC*H*₂), 4.30-4.22 (m, 0.6 H, C*H*OH), 4.22-4.11 (m, 0.4 H, C*H*OH), 3.95-3.79 (m, 0.4 H, NC*H*), 3.79-3.60 (m, 0.6 H, NC*H*), 3.51 (brs, 0.6 H, O*H*), 3.32 (d, 0.4 H, ³*J* = 3.0 Hz, O*H*), 2.86 (s, 1.8 H, NC*H*₃), 2.80 (s, 1.2 H, NC*H*₃), 2.40 (dd, 1 H, ³*J* = 2.7 Hz, ²*J* = 19.7 Hz, C*H*₂COO), 2.29 (dd, 1 H, ³*J* = 9.5 Hz, ²*J* = 16.8 Hz, C*H*₂COO), 2.25-2.05 (m, 1 H, C*H*(CH₃)₂), 1.46 (s, 5.4 H, C(C*H*₃)₃), 1.45 (s, 3.6 H, C(C*H*₃)₃), 1.05 (d, 1.8 H, ³*J* = 6.7 Hz, CH(C*H*₃)₂), 1.01 (d, 1.2 H, ³*J* = 6.8 Hz, CH(C*H*₃)₂), 0.93 (d, 2 H, ³*J* = 6.8 Hz, CH(C*H*₃)₂), (d, 1.8 H, ³*J* = 6.8 Hz, CH(C*H*₃)₂), 0.92-0.88 (m, 1.2 H, CH(C*H*₃)₂). ¹³C NMR (100 MHz, CDCl₃, major rotamer): δ = 172.3 (1C, CH₂COO), 157.3 (1C, NCO), 136.8 (1C, PhC_q), 128.4 (2C, *m*Ph-*C*), 127.8 (1C, *p*Ph-*C*), 127.5 (2C, *o*Ph-*C*), 81.3 (1C, *C*(CH₃)₃), 69.4 (1C, CHOH), 67.1 (1C, OCH₂), 63.2 (1C, NCH), 40.0 (1C, CH₂COO), 30.8 (1C, NCH₃), 28.0 (3C, C(CH₃)₃), 27.9 (1C, CH(CH₃)₂), 20.5 (1C, CH(CH₃)₂), 19.9 (1C, CH(CH₃)₂). **IR** (ATR): $\tilde{\nu} = 3460 \text{ cm}^{-1}$ (br, w), 1305 (m), 1148 (s), 769 (m), 736 (m), 697 (m). **UV** (MeOH): λ_{max} (lg ε) = 205 nm (3.97), 257 (2.40). **MS** (ESI): m/z (%) = 753 [2M+Na]⁺ (49), 388 [M+Na]⁺ (100). **HRMS** (ESI): calcd. for C₂₀H₃₁NO₅Na [M+Na]⁺ 388.20944; found 388.20879.

(3*R*,4*S*)-*tert*-Butyl 4-((benzyloxycarbonyl)(methyl)amino)-3-methoxy-5-methyl-

hexanoate (7). Under argon, a solution of (3R,4S)-6 (1.734 g, 4.74 mmol, 1.0 equiv) in dry 1,2-DCE (60 mL) was treated with powdered MS (4 Å) and stirred for 10 min. 1,8-Bis(dimethylamino)naphthalene (2.541 g, 11.85 mmol, 2.5 equiv) was added. The suspension was cooled to 0 °C and Me₃OBF₄ (1.822 g, 12.32 mmol, 2.6 equiv) was added and the reaction mixture was stirred for 2 h at 0 °C and 16 h at ambient temperature. The suspension was filtered and washed with DCM (2 × 40mL). The solvent was removed in vacuo and the remaining slurry was purified by chromatography on silica gel [PE/EtOAc (4:1)] to yield methyl ether (3R,4S)-7 (1.561 g, 4.12 mmol, 87%) as colorless oil. Alcohol (3*R*,4*S*)-6 (65 mg, 0.18 mmol, 4%) was recovered. TLC [silica gel, PE/EtOAc (8:1)]: $R_{\rm f}$ = 0.58. $[\alpha]^{22}_{\rm D}$ -17.7 (*c* 1.0, MeOH). ¹H NMR (400 MHz, CDCI₃, 2 rotamers, ratio 5:4): δ = 7.37-7.27 (m, 5 H, C₆H₅), 5.17 (d, 0.55 H, ²J = 12.6 Hz, OCH₂), 5.16 (d, 0.45 H, ^{2}J = 12.3 Hz, OCH₂), 5.11 (d, 0.45 H, ^{2}J = 12.3 Hz, OCH₂), 5.10 (d, 0.55 H, ^{2}J = 12.6 Hz, OCH₂), 4.18-3.78 (m, 2 H, OCHCH), 3.40 (s, 1.7 H, OCH₃), 3.31 (s, 1.3 H, OCH₃), 2.81 (s, 1.7 H, NCH₃), 2.80 (s, 1.3 H, NCH₃), 2.49-2.30 (m, 2 H, CH₂COO), 2.08-2.01 (m, 1 H, $CH(CH_3)_2$, 1.45 (s, 5 H, $C(CH_3)_3$), 1.44 (s, 4 H, $C(CH_3)_3$), 1.02 (d, 1.7 H, 3J = 6.7 Hz, $CH(CH_3)_2)$, 0.97 (d, 1.3 H, ${}^{3}J = 6.7$ Hz, $CH(CH_3)_2)$, 0.92, (d, 1.7 H, ${}^{3}J = 6.8$ Hz, $CH(CH_3)_2)$, 0.90 (d, 1.3 H, ${}^{3}J$ = 6.7 Hz, CH(CH₃)₂). ${}^{13}C$ NMR (100 MHz, CDCl₃, major rotamer): δ = 171.2 (1C, CH₂COO), 157.2 (1C, NCO), 137.0 (1C, PhC_a), 128.4 (2C, mPh-C), 127.9 (1C, pPh-C), 127.5 (2C, oPh-C), 80.6 (1C, C(CH₃)₃), 78.5 (1C, CHOCH₃), 67.0 (1C, OCH₂), 62.1 (1C, NCH), 57.8 (1C, OCH₃), 38.6 (1C, CH₂COO), 28.0 (3C, C(CH₃)₃), 27.8 (1C, CH(CH₃)₂), 20.2 (1C, CH(CH₃)₂), 20.0 (1C, CH(CH₃)₂). **IR** (ATR): $\tilde{\nu}$ = 2973 cm⁻¹ (w), 1696 (s), 1306 (m), 1148 (s), 1100 (m), 698 (m). UV (MeOH): λ_{max} (lg ϵ) = 205 nm (3.96), 257 (2.34). GC-MS (EI, 70 eV): m/z (%) = 323 [M-^tBu+H]⁺ (1), 306 [M-tBuO]⁺ (1), 280 (2), 262 (2), 236 (9), 220 [M-CH(OMe)CH₂CO₂^tBu]⁺ (34), 128 (12), 91 [C₆H₅CH₂] (100).

(3*R*,4*S*)-*tert*-Butyl 4-((S)-2-(benzyloxycarbonylamino)-N,3-dimethylbutanamido)-3methoxy-5-methylhexanoate (9) [1]. Solution A: Pd/C (5%, 600 mg) was added to a solution of Cbz-MMMAH-Ot-Bu (7, 605 mg, 1.6 mmol, 1.0 equiv) in MeOH (10 mL). The suspension was stirred under hydrogen atmosphere at ambient temperature for 1 h. The suspension was filtered over a Celite pad followed by washing with MeOH. The washings and the filtrate were combined and the solvent was removed under vacuum. The remaining yellow oil was dissolved in dry DCM (5 mL). Solution B: To a solution of Cbz-Valine (1.205 g, 4.8 mmol, 3.0 equiv) in DCM (10 mL) of NEt₃ (0.9 mL, 4.0 equiv) was added. The solution was cooled to 0 °C and DEPCI (0.46 mL, 2.0 equiv) was added dropwise. Solution A was added. The reaction mixture was stirred for 2 h at 0 °C and 16 h at ambient temperature. The reaction mixture was diluted with DCM and washed with 2 N HCI, water, saturated bicarbonate solution, and brine. After evaporation of the solvent the crude peptide was purified by column chromatography (silica, PE/EtOAc: 10:1) to yield product 9 as a colorless oil (610 mg, 1.28 mmol, 80%). **TLC** [PE/EtOAc (3:1)]: $R_{\rm f} = 0.40.$; $[\alpha]^{24}_{\rm D} - 15.0$ (*c* 0.7, CHCl₃). (lit. : $[\alpha]^{27}_{D}$ –32.190 (*c* 1.0, MeOH). ¹**H NMR** (400 MHz, CDCl₃, 2 rotamers, ratio 5:1): δ = 7.37-7.26 (m, 5 H, C₆H₅), 5.66 (d, 0.15 H, ³J = 9.0 Hz, NH), 5.54 (d, 0.85 H, ³J = 9.2 Hz, NH), 5.11 (d, 0.15 H, ^{2}J = 12.4 Hz, OCH₂), 5.09 (s, 1.7 H, OCH₂), 5.04 (d, 0.15 H, ^{2}J = 12.4 Hz, OCH₂), 4.73 (dd, 0.15 H, ^{3}J = 9.0 Hz, ^{3}J = 4.7 Hz, NHCH), 4.70-4.55 (m, 1 H, CH₃NC*H*), 4.51 (dd, 0.85 H, ${}^{3}J$ = 5.9 Hz, ${}^{3}J$ = 9.2 Hz, NHC*H*), 3.98-3.92 (m, 0.15 H, OC*H*), 3.92-3.81 (m, 0.85 H, OCH), 3.35 (s, 2.55 H, OCH₃), 3.34 (s, 0.45 H, OCH₃), 2.98 (s, 2.55 H, NCH₃), 2.78 (s, 0.45 H, NCH₃), 2.44 (dd, 1 H, ^{2}J = 15.7 Hz, ^{3}J = 2.0 Hz, CH₂COO), 2.23 (dd, 1 H, ${}^{2}J = 15.7$ Hz, ${}^{3}J = 9.0$ Hz, CH₂COO), 2.07-1.81 (m, 2 H, NHCHCH(CH₃)₂, CH₃NCHCH(CH₃)₂), 1.46 (s, 7.65 H, C(CH₃)₃), 1.45 (s, 1.35 H, C(CH₃)₃), 1.007 (d, 3 H, ${}^{3}J$ = 6.6 Hz, NHCHCH(CH₃)₂), 1.003 (d, 3 H, ${}^{3}J$ = 6.6 Hz, CH₃NCHCH(CH₃)₂), 0.92 (d, 3 H, ${}^{3}J = 6.8$ Hz, NHCHCH(CH₃)₂), 0.84 (d, 3 H, ${}^{3}J = 6.4$ Hz, CH₃NCHCH(CH₃)₂). ${}^{13}C$ NMR (100 MHz, CDCl₃, major rotamer): δ = 173.2 (1C, CH₃NCO), 171.0 (1C, CH₂COO), 156.4 (1C, NHCO), 136.5 (1C, Ph*C*_q), 128.4 (2C, *m*Ph-*C*), 127.9 (1C, *p*Ph-*C*), 127.8 (2C, *o*Ph-*C*), 80.8 (1C, *C*(CH₃)₃), 78.2 (1C, OCH), 66.7 (1C, OCH₂), 58.3 (1C, CH₃NCH), 57.7 (1C, OCH₃), 56.0 (1C, NHCH), 38.5 (1C, *C*H₂COO), 31.5 (1C, N*C*H₃), 31.0 (1C, NHCH*C*H(CH₃)₂), 28.0 (3C, C(CH₃)₃), 27.0 (1C, CH₃NCH*C*H(CH₃)₂), 20.02 (1C, CH₃NCHCH(CH₃)₂), 19.96 (1C, CH₃NCHCH(*C*H₃)₂), 19.6 (1C, NHCHCH(*C*H₃)₂), 17.1 (1C, NHCHCH(*C*H₃)₂). **IR** (ATR): $\tilde{\nu}$ = 3249 cm⁻¹ (w), 2967 (m), 1721 (s), 1636 (s), 1524 (m), 1499 (m), 1455 (m), 1367 (m), 1298 (m), 1258 (m), 1233 (m), 1149 (s), 1097 (s), 1024 (m), 737 (m), 697 (m). **UV** (MeOH): λ_{max} (Ig ε) = 205 nm (4.17), 257 (2.38). **MS** (ESI): *m*/*z* (%) = 979 [2M+Na]⁺ (96), 501 [M+Na]⁺ (100), 479 [M+H]⁺ (20). **HRMS** (ESI): calcd. for C₂₆H₄₂N₂O₅Na [M+Na]⁺ 501.29351; found 501.29350.

(3*R*,4*S*)-*tert*-Butyl 4-((S)-2-((2S,3S)-2-(dimethylamino)-3-methylpentanamido)-N,3dimethylbutanamido)-3-methoxy-5-methylhexanoate (11). Solution A: Pd/C (5%, 220 mg) was added to a solution of dipeptide 9 (213 mg, 0.44 mmol, 1.0 equiv) in MeOH (5 mL). The suspension was stirred under hydrogen atmosphere at ambient temperature for 1.5 h. The suspension was filtered over a Celite pad followed by washing with MeOH. The washings and the filtrate were combined and the solvent was removed under vacuum. The remaining yellow oil was dissolved in dry DCM (2 mL). Solution B: A suspension of N,Ndimethylisoleucine (210 mg, 1.32 mmol, 3.0 equiv) in DCM (5 mL) was treated with NEt₃ (0.25 mL, 4.0 equiv). The clear solution was cooled to 0 °C and DEPC (100 µL, 2.0 equiv) was added followed by 10 min of stirring. Solution A was added dropwise. The reaction mixture was stirred for 2 h at 0 °C and 16 h at ambient temperature. The reaction mixture was diluted with DCM and extracted with 25% citric acid. The aqueous solution was treated with bicarbonate and extracted three times with chloroform. The combined extracts were washed with brine. The solvent was removed to yield tripeptide 11 (213 mg, 0.37 mmol, 83%) as a colorless oil. **TLC** (EtOAc): $R_{\rm f}$ = 0.35. $[\alpha]^{28}{}_{\rm D}$ –20.0 (*c* 0.15, MeOH). ¹H NMR (400 MHz, CDCl₃): δ = 6.99 (d, 1 H, ³J = 9.1 Hz, NH), 4.77 (dd, 1 H, ³J = 9.1 Hz, ³J = 6.6 Hz,

S7

CHNH), 4.73-4.55 (m, 1 H, CH₃NCH), 3.98-3.78 (m, 1 H, CH₃OCH), 3.36 (s, 3 H, OCH₃), 3.02 (s, 3 H, CH₃NCH), 2.54 (d, 1 H, ${}^{3}J$ = 5.9 Hz, CHN(CH₃)₂), 2.45 (dd, 1 H, ${}^{2}J$ = 15.4 Hz, ${}^{3}J$ = 1.8 Hz, CH₂CO), 2.31 (dd, 1 H, ${}^{2}J$ = 15.4 Hz, ${}^{3}J$ = 9.6 Hz, CH₂CO), 2.22 (s, 6 H, N(CH₃)₂), 2.10-1.96 (m, 1 H, NHCHCH(CH₃)₂), 1.96-1.74 (m, 2 H, CH₃NCHCH(CH₃)₂, CH₃CH₂CH), 1.62-1.50 (m, 1 H, CH₃CH₂), 1.46 (s, 9 H, C(CH₃)₃), 1.28-1.12 (m, 1 H, CH_3CH_2), 1.02 (d, 3 H, ${}^{3}J = 6.8$ Hz, NHCHCH(CH_3)₂), 0.99 (d, 3 H, ${}^{3}J = 6.6$ Hz, CH₃NCHCH(CH₃)₂), 0.96 (d, 3 H, ${}^{3}J$ = 6.7 Hz, NHCHCH(CH₃)₂), 0.93 (t, 3 H, ${}^{3}J$ = 7.4 Hz, $CH_{3}CH_{2}$), 0.91 (d, 3 H, ${}^{3}J = 6.7$ Hz, $CH_{3}CH_{2}CHCH_{3}$), 0.81 (d, 3 H, ${}^{3}J = 6.6$ Hz, CH₃NCHCH(CH₃)₂). ¹³C NMR (100 MHz, CDCl₃): δ = 173.2 (1C, CH₃NCO), 171.9 (1C, NHCO), 171.0 (1C, COO), 80.8 (1C, C(CH₃)₃), 78.1 (1C, OCH), 74.8 (1C, (CH₃)₂NCH), 58.2 (1C, CH₃NCH), 57.8 (1C, OCH₃), 53.7 (1C, NHCH), 43.0 (2C, (CH₃)₂N), 38.5 (1C, CH₂COO), 34.4 (1C, CH₃CH₂CHCH₃), 31.7 (1C, NCH₃), (30.9 (1C, NHCHCH), 28.0 (3C, C(CH₃)₃), 26.90 (1C, CH₃NCHCH), 26.87 (1C, CH₃CH₂), 20.0 (1C, CH₃NCHCH(CH₃)₂), 19.9 (1C, CH₃NCHCH(CH₃)₂), 19.7 (1C, NHCHCH(CH₃)₂), 18.1 (1C, NHCHCH(CH₃)₂), 14.7 (1C, $CH_3CH_2CHCH_3$), 11.9 (1C, CH_3CH_2). **IR** (ATR): $\tilde{v} = 3297 \text{ cm}^{-1}$ (w), 2963 (m), 2928 (m), 1730 (m), 1622 (s), 1368 (m), 1151 (s), 1099 (m). **UV** (MeOH): λ_{max} (lg ε) = 202 nm (4.20). **MS** (ESI): m/z (%) = 993 [2M+Na]⁺ (25), 971 [2M+H]⁺ (8), 508 [M+Na]⁺ (48), 486 [M+H]⁺ (100). **HRMS** (ESI): calcd. for $C_{26}H_{32}N_3O_5[M+H]^+$ 486.39015; found 486.39041.

(2*S*,3*S*)-1-((*S*)-1-(((2*R*,3*S*)-1-Carboxy-2-methoxy-4-methylpentan-3-yl)(methyl)amino)-3methyl-1-oxobutan-2-ylamino)-*N*,*N*,3-trimethyl-1-oxopentan-2-aminium 2,2,2trifluoroacetate (12). A solution of peptide 11 (80 mg, 0.164 mmol, 1.0 equiv) in DCM/trifluoroacetic acid (4 mL, 1:1) was stirred at 0 °C 1.5 h. The solvent was removed and the residue was solved in DCM (50 mL) and evaporated to dryness. Acetate 12 (89 mg, 0.164 mmol, quant.) was obtained as a yellow oil. **TLC** (silica gel RP-18, MeOH): $R_f = 0.84$. [α]²²_D -127.0 (*c* 1.59, CHCl₃). ¹H NMR (600 MHz, CDCl₃): $\delta = 9.54$ (brs, 1 H, CH₂CO₂*H*), 6.30 (brs, 2 H, CHN *H*, (CH₃)₂N*H*⁺), 4.91 (dd, 1 H, ³*J* = 9.6 Hz, ³*J* = 9.6 Hz, *CH*NH), 4.59 (dd, 1 H, ³*J* = 3.6 Hz, ³*J* = 8.7 Hz, CH₃NC*H*), 4.12 (d, 1 H, ³*J* = 10.3 Hz, (CH₃)₂NH⁺C*H*), 3.56-3.51 (m,

S8

1 H, CHOCH₃), 3.37 (s, 3 H, OCH₃), 3.17 (s, 3 H, (CH₃)₂NH⁺), 3.10 (s, 3 H, NCH₃), 2.90 (s, 3 H, $(CH_3)_2NH^+$), 2.70 (dd, 1 H, ${}^{3}J = 9.4$ Hz, ${}^{2}J = 16.3$ Hz, CH_2CO_2H), 2.59 (dd, 1 H, ${}^{3}J$ = 9.4 Hz, ${}^{2}J$ = 16.3 Hz, CH₂CO₂H), 2.19-2.10 (m, 1 H, CH₃NCHCH(CH₃)₂), 2.07-1.97 (m, 2 H, NHCHC H, CH₃CH₂CH), 1.75-1.67 (m, 1 H, CH₃CH₂), 1.13-1.02 (m, 1 H, CH₃CH₂), 1.02 (d, 3 H, ${}^{3}J$ = 7.1 Hz, NHCHCH(CH₃)₂), 1.01 (d, 3 H, ${}^{3}J$ = 7.1 Hz, NHCHCH(CH₃)₂), 0.97 (d, 3 H, ${}^{3}J = 6.7$ Hz, CH₃NCHCH(CH₃)₂), 0.95 (t, 3 H, ${}^{3}J = 7.3$ Hz, CH₃CH₂), 0.90 (d, 3 H, ${}^{3}J$ = 6.6 Hz, CH₂CHCH₃), 0.72 (d, 3 H, ${}^{3}J$ = 6.8 Hz, CH₃NCHCH(CH₃)₂). ${}^{13}C$ NMR (150 MHz, $CDCI_3$): $\delta = 173.9$ (1C, CH_2CO_2H), 172.4 (1C, CH_3NCO), 167.0 (1C, NHCO), 161.5 (q, 1C, ${}^{2}J_{CF}$ = 39.4 Hz, CF₃CO), 116.1 (q, 1C, ${}^{1}J_{CF}$ = 288.0 Hz, CF₃), 79.8 (1C, CHOCH₃), 70.5 (1C, (CH₃)₂NH⁺CH), 59.9 (1C, CH₃NCH), 56.9 (1C, OCH₃), 54.4 (1C, NHCH), 43.3 (1C, (CH₃)₂NH⁺), 38.0 (1C, (CH₃)₂NH⁺), 34.9 (1C, CH₂CO), 34.1 (1C, CH₃CH₂CH), 32.5 (1C, NHCHCH(CH₃)₂), 31.8 (1C, NCH₃), 27.1 (1C, CH₃NCHCH(CH₃)₂), 24.3 (1C, CH₃CH₂), 20.9 (1C, CH₃NCHCH(CH₃)₂), 19.9 (1C, CH₃NCHCH(CH₃)₂), 18.7 (1C, NHCHCH(CH₃)₂), 18.6 (1C, NHCHCH(CH₃)₂), 15.4 (1C, CH₂CHCH₃), 11.2 (1C, CH₂CH₃). ¹⁹**F NMR** (376 MHz, CDCl₃): $\delta = -76.17$ (s, 3F, CF₃). **IR** (ATR): $\tilde{\nu} = 3429 \text{ cm}^{-1}$ (w), 1669 (s), 1632 (m), 1176 (s), 1132 (s), 1099 (m), 910 (m), 799 (m), 722 (s). **UV** (MeOH): λ_{max} (lg ε) = 203 nm (4.06). **MS** (ESI): m/z (%) = 881 [2M+Na]⁺ (11), 452 [M+Na]⁺ (32), 430 [M+H]⁺ (100). **HRMS** (ESI): calcd. for $C_{22}H_{43}N_3O_5Na [M+Na]^+ 452.30949$; found 452.30952.

(S)-2-((3R,4R,7S)-7-Benzyl-4,11,11-trimethyl-5-oxo-10,10-diphenyl-2,6,9-trioxa-10-

siladodecan-3-yl)pyrrolidinium 2,2,2-trifluoroacetate (13). A solution of *N*-Boc-Dap-PPD-O1-TBDPS [2] (59 mg, 0.09 mmol, 1.0 equiv) in DCM/trifluoroacetic acid (4 mL, 1:1) was stirred at 0 °C 1 h. The solvent was removed and the residue was dissolved in DCM (10 mL) and evaporated to dryness. This procedure was repeated another two times. Acetate 13 (60 mg, 0.09 mmol, quant.) was obtained as a yellow oil. TLC (EtOAc): $R_{\rm f} = 0.38$ (free amine). $[\alpha]_D^{27}$ –42.3 (*c* 0.15, CHCl₃). ¹H NMR (600 MHz, CDCl₃): δ = 10.15 (brs, 1 H, NH₂⁺), 8.20 (brs, 1 H, NH₂⁺), 7.64 (dd, 4 H, ³*J* = 7.9 Hz, ³*J* = 7.9 Hz, *m*Ph-*H*(Si)), 7.43-7.41 (m, 2 H, *p*Ph-*H*(Si)), 7.39-7.35 (m, 4 H, *o*Ph-*H*(Si)), 7.27-7.23 (m, 2 H, *m*Ph-*H*(PPD)), 7.21-7.16 (m, 3

H, oPh-H(PPD), pPh-H(PPD)), 5.27-5.20 (m, 1 H, OCH₂CH), 3.76-3.68 (m, 1 H, CH₃OCH), 3.74 (dd, 1 H, ${}^{3}J$ = 5.2 Hz, ${}^{2}J$ = 11.0 Hz, OCH₂), 3.71 (dd, 1 H, ${}^{3}J$ = 4.1 Hz, ${}^{2}J$ = 11.0 Hz, OCH₂), 3.49-3.42 (m, 1 H, NCH), 3.36 (s, 3 H, OCH₃), 3.23-3.12 (m, 2 H, NCH₂), 3.00 (dd, 1 H, ${}^{3}J = 5.5$ Hz, ${}^{2}J = 14.0$ Hz, PhCH₂), 2.86 (dd, 1 H, ${}^{3}J = 5.5$ Hz, ${}^{2}J = 14.0$ Hz, PhCH₂), 2.62-2.56 (m, 1 H, CHCH₃), 1.94-1.85 (m, 1 H, NCH₂CH₂), 1.81-1.72 (m, 1 H, NCH₂CH₂), 1.72-1.60 (m, 2 H, NCHCH₂), 1.15 (d, 3 H, ${}^{3}J$ = 7.1 Hz, CHCH₃), 1.06 (s, 9 H, C(CH₃)₃). ¹³**C NMR** (150 MHz, CDCl₃): δ = 173.1 (1C, CHCOO), 162.0 (q, 1C, ²J_{CF} = 37.5 Hz, F₃CCOO), 137.1 (1C, PhC_a(PPD)), 135.5 (4C, *m*Ph-*C*(Si)), 133.1 (2C, PhC_a(Si)), 129.8 (2C, pPh-C(Si)), 129.3 (2C, oPh-C(PPD)), 128.4 (2C, mPh-C(PPD)), 127.7 (4C, oPh-C(Si)), 126.6 (1C, pPh-C(PPD)), 116.3 (q, 1C, ¹ J_{CF} = 282.1 Hz, CF_3), 79.7 (1C, $CHOCH_3$), 75.5 (1C, OCH₂CH), 64.3 (1C, OCH₂), 60.8 (1C, NCH), 59.8 (1C, OCH₃), 45.2 (1C, NCH₂), 41.7 (1C, CHCH₃), 36.7 (1C, PhCH₂), 26.8 (3C, C(CH₃)₃), 24.0 (1C, NCHCH₂), 23.9 (1C, NCH₂CH₂), 19.3 (1C, $C(CH_3)_3$), 13.1 (1C, $CHCH_3$). ¹⁹**F NMR** (376 MHz, $CDCI_3$): $\delta = -76.07$ (s, 3F, CF_3). **IR** (ATR): \tilde{v} = 2934 cm⁻¹ (w), 1672 (s), 1199 (s), 1177 (s), 1131 (s), 1111 (s), 825 (m), 798 (m), 741 (m), 721 (m), 701 (s). **UV** (MeOH): λ_{max} (lg ϵ) = 205 nm (4.43), 259 (2.94), 264 (2.92), 289 (2.31). **MS** (ESI): m/z (%) = 560 [M-CF₃COO]⁺ (100). **HRMS** (ESI): calcd. for C₃₄H₄₆NO₄Si [M+H]⁺ 560.31906; found 560.31913.

(2R,3R)-((S)-1-(tert-Butyldiphenylsilyloxy)-3-phenylpropan-2-yl) 3-((S)-1-(diethoxyphosphoryl)pyrrolidin-2-yl)-3-methoxy-2-methylpropanoate (31) and (2R,3R)-((S)-1-(tert-butyldiphenylsilyloxy)-3-phenylpropan-2-yl) 3-((S)-1-((3R,4S)-4-((S)-2-((2S,3S)-2-(dimethylamino)-3-methylpentanamido)-N,3-dimethylbutanamido)-3-

methoxy-5-methylhexanoyl)pyrrolidin-2-yl)-3-methoxy-2-methylpropanoate (14). Acetates 12 (54 mg, 0.1 mmol, 1.0 equiv) and 13 (67 mg, 0.1 mmol, 1.0 equiv) were dissolved in DCM (6 mL). The solution was treated with NEt₃ (85 μ L, 0.6 mmol, 6 equiv) and cooled to 0 °C. DEPC (20 μ L, 0.13 mmol, 1.3 equiv) was added and the reaction mixture was stirred for 16 h with warming to ambient temperature. The reaction mixture was diluted with DCM to 50 mL and washed successively with sat. bicarbonate, water, and brine. Evaporation

S10

of the solvent yielded an oil which was subjected to reverse phase column chromatography (RP-18, MeOH). Phosphonate 31 (6 mg, 0.008 mmol, 8%) eluted first followed by peptide 14 (67 mg, 0.068 mmol, 68%). Both compounds were isolated as colorless oils. 31: TLC (silica gel RP-18, MeOH): $R_{\rm f} = 0.76$. $[\alpha]^{22}_{\rm D} - 4.3$ (*c* 0.28, CHCl₃). ¹H NMR (600 MHz, CDCl₃): δ = 7.67-7.61 (m, 4 H, mPh-H(Si)), 7.45-7.40 (m, 2 H, pPh-H(Si)), 7.40-7.34 (m, 4 H, oPh-H(Si), 7.26-7.16 (m, 5 H, $CH_2C_6H_5$), 5.17 (dddd, 1 H, ${}^{3}J = 4.6$ Hz, ${}^{3}J = 5.6$ Hz, ${}^{3}J = 6.1 \text{ Hz}, {}^{3}J = 7.7 \text{ Hz}, \text{ OCH}_{2}CH$, 4.05–3.90 (m, 4 H, P(OCH₂CH₃)₂), 3.73 (dd, 1 H, ${}^{3}J = 4.7$ Hz, ${}^{2}J = 10.9$ Hz, OCH₂CH), 3.68 (dd, 1 H, ${}^{3}J = 4.5$ Hz, ${}^{2}J = 10.9$ Hz, OCH₂CH), 3.56–3.50 (m, 1 H, NCH), 3.49 (dd, 1H ${}^{3}J$ = 5.4 Hz, ${}^{3}J$ = 5.4 Hz, CHOCH₃), 3.37–3.28 (m, 1 H, NCH₂), 3.27 (s, 3 H, OCH₃), 3.06 (dd, 1 H, ${}^{3}J$ = 6.2 Hz, ${}^{2}J$ = 13.8 Hz, PhCH₂), 3.07–2.99 (m, 1 H, NCH₂), 2.91 (dd, 1 H, ${}^{3}J$ = 7.7 Hz, ${}^{2}J$ = 13.8 Hz, PhCH₂), 2.67–2.61 (m, 1 H, CHCOO), 1.89–1.80 (m, 2 H, NCHCH₂CH₂), 1.75–1.67 (m, 2 H, NCHCH₂CH₂), 1.27 (dt, 3 H, ${}^{4}J_{HP} = 0.7 \text{ Hz}, {}^{3}J = 7.1 \text{ Hz}, P(OCH_{2}CH_{3})_{2}), 1.24 \text{ (dt, } 3 \text{ H}, {}^{4}J_{HP} = 0.7 \text{ Hz}, {}^{3}J = 7.1 \text{ Hz},$ $P(OCH_2CH_3)_2)$, 1.15 (d, 3 H, ${}^{3}J = 7.0$ Hz, $CHCH_3)$, 1.07 (s, 9 H, $C(CH_3)_3)$. ${}^{13}C$ NMR (150 MHz, CDCl₃): δ = 174.9 (1C, COO), 137.4 (1C, PhC_a(PPD)), 135.6 (4C, mPh-C(Si)), 133.3 (2C, PhC_a(Si)), 129.7 (2C, pPh-C(Si)), 129.4 (2C, oPh-C(PPD)), 128.4 (2C, mPh-C(PPD)), 127.7 (4C, oPh-C(Si)), 126.4 (1C, pPh-C(PPD)), 83.7 (d, 1C, ${}^{3}J_{CP}$ = 3.3 Hz, CHOCH₃), 75.1 (1C, OCHCH₂O), 63.9 (1C, OCHCH₂O), 62.3 (d, 1C, ${}^{2}J_{CP}$ = 5.9 Hz, P(OCH₂CH₃)₂), 62.1 (d, 1C, ${}^{2}J_{CP}$ = 5.7 Hz, P(OCH₂CH₃)₂), 60.4 (d, 1C, ${}^{2}J_{CP}$ = 3.6 Hz, NCH), 60.3 (1C, OCH₃), 47.2 (d, 1C, ${}^{2}J_{CP}$ = 3.3 Hz, NCH₂), 41.8 (1C, CHCH₃), 36.7 (1C, PhCH₂), 26.79 (d, 1C, ${}^{3}J_{CP}$ = 6.2 Hz, NCHCH₂), 26.77 (3C, C(CH₃)₃), 25.6 (d, 1C, ${}^{3}J$ = 5.6 Hz, NCH₂CH₂), 19.3 (1C, C(CH₃)₃), 16.3 $(1C, {}^{3}J_{CP} = 6.7 \text{ Hz}, P(OCH_{2}CH_{3})_{2}), 16.2 (1C, {}^{3}J_{CP} = 6.7 \text{ Hz}, P(OCH_{2}CH_{3})_{2}), 11.8 (1C,$ CH*C*H₃). ³¹**P NMR** (162 MHz, CDCl₃): δ = 9.42 (s, 1P, N*P*O₃) **IR** (ATR): $\tilde{\nu}$ = 3029 cm⁻¹ (w), 1730 (m), 1259 (m), 1105 (m), 1027 (s), 959 (m), 793 (m), 742 (m), 701 (s), 588 (m). UV (MeOH): λ_{max} (lg ε) = 206 nm (4.44), 253 (2.98), 259 (3.04), 264 (3.03). **MS** (ESI): m/z (%) = 1413 [2M+Na]⁺ (67), 718 [M+Na]⁺ (100), 696 [M+H]⁺ (43). **HRMS** (ESI): calcd. for C₃₈H₅₄NO₇PSiNa [M+Na]⁺ 718.32994; found 718.33026.

14: TLC [silica gel RP-18, MeOH]: $R_{\rm f}$ = 0.30. $[\alpha]^{24}_{\rm D}$ –24.4 (*c* 0.16, CHCl₃). ¹H NMR (600 MHz, CDCl₃, 2 conformers, ratio 3:1): δ = 7.69-7.61 (m, 4 H, *m*Ph-*H*(Si)), 7.47-7.33 (m, 6 H, oPh-*H*(Si), pPh-*H*(Si)), 7.26-7.14 (m, 5 H, CH₂C₆H₅), 7.05-6.95 (m, 1 H, N*H*), 5.26 (ddd, 0.25 H, ${}^{3}J = 5.3$ Hz, ${}^{3}J = 9.0$ Hz, ${}^{3}J = 9.0$ Hz, OCH₂CHO), 5.20 (ddd, 0.75 H, ${}^{3}J = 4.5$ Hz, ${}^{3}J = 7.1$ Hz, ${}^{3}J = 11.4$ Hz, OCH₂CHO), 4.83 (dd, 0.25 H, ${}^{3}J = 6.7$ Hz, ${}^{3}J = 9.2$ Hz, NHCH), 4.79-4.75 (m, 1 H, NHC H, CH₃NCH), 4.72-4.60 (m, 0.75 H, CH₃NCH), 4.20-4.08 (m, 1 H, CH₃NCHC*H*O), 3.98 (ddd, 1 H, ${}^{3}J$ = 3.8 Hz, ${}^{3}J$ = 3.8 Hz, ${}^{3}J$ = 7.6 Hz, CH₂NC*H*), 3.92 (dd, 1 H, ${}^{3}J$ = 3.3 Hz, ${}^{3}J$ = 7.3 Hz, CH₂NCHCHO), 3.80-3.60 (m, 3 H, OCH₂, NCH₂), 3.47-3.24 (m, 7 H, NCH₂, CH₃NCHCHOCH₃, CH₂NCHCHOCH₃), 3.08-2.99 (m, 3 H, NCH₃), 2.97-2.76 (m, 2 H, PhCH₂), 2.57-2.50 (m, 1 H, CH₃NCH), 2.50-2.36 (m, 2 H, CH₃OCHCH₂, CH₃CHCOO), 2.31-2.16 (m, 7 H, (CH₃)₂NC H, CH₃OCHCH₂), 2.13-1.77 (m, 5 H, NCHCH₂CH₂, CH₃NCHC*H*(CH₃)₂, NHCHC*H*(CH₃)₂, CH₃CH₂C*H*), 1.73-1.43 (m, 3 H, NCHC*H*₂C*H*₂, CH₃CH₂), 1.26-1.15 (m, 4 H, CH₃CH₂, CH₃CHCOO), 1.09-1.04 (m, 9 H, C(CH₃)₃), 1.04-0.88 (m, 15 H, CH₃CH₂CHCH₃, NHCHCH(CH₃)₂, CH₃NCHCH(CH₃)₂), 0.85-0.81 (m, 3 H, CH₃NCHCH(CH₃)₂). ¹³C NMR (150 MHz, CDCl₃, main conformer): δ = 174.0 (1C, COO), 173.7 (1C, CH₂NCO), 173.3 (1C, CH₃NCO), 172.0 (1C, NHCO), 137.3 (1C, PhC_a(PPD)), 135.5 (4C, *m*Ph-*C*(Si)), 133.3 (2C, PhC_a(Si)), 129.7 (2C, *p*Ph-*C*(Si)), 129.1 (2C, oPh-C(PPD)), 128.3 (2C, mPh-C(PPD)), 127.7 (4C, oPh-C(Si)), 126.4 (1C, pPh-C(PPD)), 81.5 (1C, CH₂NCHCHO), 78.0 (1C, CH₃NCHCHO), 75.0 (1C, OCH₂CHO), 74.9 (1C, (CH₃)₂NCH), 63.9 $(1C, OCH_2CHO), 61.6 (1C, CH_2NCHCHOCH_3), 60.4 (1C, CH_2NCHCHOCH_3), 60.$ CH₃NCHCHOCH₃), 59.1 (1C, CH₂NCH), 57.9 (1C, CH₃NCH), 53.7 (1C, NHCH), 47.2 (1C, NCH₂), 43.1 (2C, (CH₃)₂N), 42.7 (1C, CH₃CHCOO), 37.8 (1C, CH₂CO), 36.6 (1C, PhCH₂), 34.4 (1C, CH₃CHCH₂), 31.9 (CH₃NCH), 27.1 (1C, CH₃NCHCH(CH₃)₂), 26.9 (1C, CH₃CH₂), 26.8 (3C, C(CH₃)₃), 25.0 (1C, NCHCH₂), 24.7 (1C, NCH₂CH₂), 20.04 (1C, CH₃NCHCH(CH₃)₂), 20.02 (1C, CH₃NCHCH(CH₃)₂), 19.3 (1C, NHCHCH(CH₃)₂), 19.2 (1C, C(CH₃)₃), 18.2 (1C, NHCHCH(CH₃)₂), 14.7 (1C, CH₃CHCH₂), 13.7 (1C, CH₃CHCOO), 12.0 (1C, CH₂CH₃). **IR** (ATR): \tilde{v} = 3301 cm⁻¹ (w), 2961 (m), 2932 (m), 1639 (s), 1623 (s), 1413 (m), 1097 (s), 1037 (m), 738 (m), 701 (s). **UV** (MeOH): λ_{max} (lg ε) = 205 nm (4.42), 253 (2.85), 259 (2.87), 264 (2.85). **MS** (EI, 70 eV): m/z (%) = 913 [M-tBu]⁺ (2), 881 (2), 481 [Me₂lleValMMMAH-C₄H₇N]⁺ (2), 315 (4), 241 [Me₂lleVal]⁺ (3), 199 (10), 114 [Me₂CHsBu]⁺ (100). **MS** (ESI): m/z (%) = 993 [M+Na]⁺ (77), 971 [M+H]⁺ (100). **HRMS** (ESI): calcd. for C₅₆H₈₆N₄O₈SiNa [M+Na]⁺ 993.61071; found 993.60990.

Malevamide D (1). Silylether 14 (50 mg, 0.051 mmol, 1.0 equiv) was dissolved in THF (3 mL) and treated with TBAF·3H₂O (80 mg, 0.254 mmol, 5.0 equiv). The solution was stirred for 3 h at ambient temperature. The solvent was removed and chloroform was added to the residue. The solution was washed successively with water and brine. After evaporation of the solvent the remaining oil was purified by column chromatography [RP-18, MeOH/water (4:1)]. Malevamide D (1, 27 mg, 0.036 mmol, 71%) was obtained as a colorless oil. TLC [silica RP-18, MeOH/H₂O (4:1)]: $R_{\rm f}$ = 0.23. $[\alpha]^{28}_{\rm D}$ –36.7 (*c* 0.09, MeOH). ¹H NMR (600 MHz, CDCl₃, 2 conformers **a**,**b**, ratio 1:1): δ = 7.32-7.19 (m, 5 H, C₆H₅), 7.02 (d, 1 H, ³J = 8.6 Hz, NH), 5.21 $(ddd, 0.5 H, {}^{3}J = 6.3 Hz, {}^{3}J = 2.5 Hz, {}^{3}J = 13.6 Hz, OCH_{2}CH-a), 4.88 (brs, 1 H, OH), 4.74 (dd, 1)$ ³J = 7.2 Hz, ³J = 8.6 Hz, NHC*H*), 4.72-4.64 (m, 1 H, CH₃NC*H*), 4.30-4.22 (m, 1 H, OC*H*₂-**b**, OCH-b), 4.16-4.00 (m, 2.5 H, CH₃NCHCHO, CH₂CHCHO, CH₂NCH-b), 3.95-3.90 (m, 0.5 H, ddd, ${}^{3}J = 0.8$ Hz, ${}^{3}J = 4.5$ Hz, ${}^{3}J = 8.3$ Hz, NCHCH₂-a), 3.83 (d, 0.5 H, ${}^{3}J = 9.1$ Hz, OCH₂-b), 3.76-3.67 (m, 1 H, OCH₂-a), 3.52-3.39 (m, 2 H, NCH₂), 3.42 (s, 1.5 H, CH₂NCHCHOCH₃-a), 3.41 (s, 1.5 H, CH₂NCHCHOCH₃-b), 3.33 (s, 1.5 H, CH₃NCHCHOCH₃-a), 3.30 (s, 1.5 H, CH₃NCHCHOCH₃-b), 3.05-2.99 (m, 3 H, CH₃NCHCHO), 2.99-2.87 (m, 1.5 H, PhCH₂-a, PhCH₂-**b**), 2.70 (dd, 0.5 H, ${}^{3}J$ = 6.7 Hz, ${}^{2}J$ = 13.8 Hz, PhCH₂-**b**), 2.532 (d, 0.5 H, ${}^{3}J$ = 5.8 Hz, $(CH_3)_2NCH$, 2.529 (d, 0.5 H, ³J = 5.8 Hz, $(CH_3)_2NCH$), 2.50-2.39 (m, 1.5 H, $CH_3CHCOO-b$, CH₃OCHCH₂), 2.36-2.28 (m, 1.5 H, CH₃CHCOO-a, CH₃OCHCH₂), 2.23-2.20 (m, 6 H, (CH₃)₂N), 2.11-1.92 (m, 3 H, NCHCH₂CH₂, NHCHCH), 1.90-1.74 (m, 4 H, CH₃CH₂C H, NCHC H_2 C H_2 , CH₃NCHCH(CH₃)₂), 1.60-1.51 (m, 1 H, CH₃C H_2), 1.28 (d, 1.5 H, ³J = 6.9 Hz, $CH_3CHCOO-b$), 1.22-1.10 (m, 1 H, CH_3CH_2), 1.15 (d, 1.5 H, ${}^3J = 6.9$ Hz, $CH_3CHCOO-a$), 1.03-0.98 (m, 6 H, CH₃NCHCH(CH₃)₂, NHCHCH(CH₃)₂), 0.97-0.89 (m, 9 H, NHCHCH(CH₃)₂, $CH_{3}CH_{2}CHCH_{3}$), 0.82 (d, 3 H, ³J = 6.5 Hz, CH₃NCHCH(CH₃)₂). ¹³C NMR (150 MHz, CDCl₃, conformer-16a): δ = 173.5 (1C, NHCHCO), 173.24 (1C, CHCOO), 172.0 (1C, NHCO), 170.5 (1C, CH₂NCO), 137.1 (1C, PhC₀), 129.5 (2C, oPh-C), 128.4 (2C, mPh-C), 126.5 (1C, pPh-C), 81.4 (1C, CH₂NCHCHO), 78.1 (1C, CH₃NCHCHO), 76.0 (1C, OCH₂CH), 74.9 (1C, (CH₃)₂NCH), 63.0 (1C, OCH₂), 61.4 (1C, CH₂CHCHOCH₃), 59.83 (1C, CH₂NCH), 58.3 (1C, CH₃NCH), 57.9 (1C, CH₃NCHCHOCH₃), 53.8 (1C, NHCH), 48.12 (1C, NCH₂), 45.5 (1C, CHCOO), 43.1 (2C, N(CH₃)₂), 37.7 (1C, CH₃OCHCH₂), 36.6 (1C, PhCH₂), 34.4 (1C, CH₃CH₂CH), 32.0 (1C, NCH₃), 30.9 (1C, NHCHCH), 27.0 (1C, CH₃NCHCH(CH₃)₂), 26.9 (1C, CH₃CH₂), 24.923 (1C, NCHCH₂), 24.3 (1C, NCH₂CH₂), 20.1 (1C, CH₃NCHCH(CH₃)₂), 20.0 (1C, CH₃NCHCH(CH₃)₂), 19.4 (1C, NCHCH(CH₃)₂), 18.3 (1C, NCHCH(CH₃)₂), 14.7 (1C, CH₃CHCOO), 14.6 (1C, CH₂CHCH₃), 12.0 (1C, CH₃CH₂). ¹³C NMR (150 MHz, CDCl₃, Me₂lleValMMMAH-(Dap-PPD)-16b): δ = 173.9 (1C, CHCOO), 170.4 (1C, CH₂NCO), 137.9 (1C, PhC_n), 129.3 (2C, oPh-C), 128.3 (2C, mPh-C), 126.4 (1C, pPh-C), 81.2 (1C, CH₂NCHCHO), 69.8 (1C, OCH₂CH), 69.0 (1C, OCH₂), 61.3 (1C, CH₂CHCHOCH₃), 59.80 (1C, CH₂NCH), 48.13 (1C, NCH₂), 44.6 (1C, CHCOO), 39.7 (1C, PhCH₂), 24.919 (1C, NCH₂CH₂), 24.2 (1C, NCHCH₂), 14.8 (1C, CH₃CHCOO). **IR** (ATR): \tilde{v} = 3380 cm⁻¹ (w), 2962 (m), 2930 (m), 1731 (m), 1621 (s), 1450 (m), 1414 (m), 1095 (s), 1039 (m), 701 (m). UV (MeOH): λ_{max} (lg ε) = 203 nm (4.00). **MS** (ESI): m/z (%) = 755 [M+Na]⁺ (100), 733 [M+H]⁺ (70). **MS** (EI, 70 eV): m/z (%) = 732 [M]⁺ (<1), 675 [M-sBu]⁺ (1), 641 [M-Bn]⁺ (2), 481 [Me₂lleValMMAH-C₄H₇N]⁺ (2), 449 (1), 396 (2), 364 (2), 304 (1), 241 [Me₂lleVal]⁺ (3), 172 (3), 134 (4), 114 $[Me_2CHsBu]^+$ (100), 91 $[Bn]^+$ (10), 70 (7). **HRMS** (ESI): calcd. for $C_{40}H_{68}N_4O_8Na [M+Na]^+$ 755.49294; found 755.49257.

2-((1*S*,2*S*)-1-(Dimethylamino)-2-methylbutyl)-4-isopropyloxazol-5-yl diethyl phosphate (18). A solution of carbamate (3*R*,4*S*)-7 (190 mg, 0.5 mmol, 0.43 equiv) in MeOH (10 mL) was treated with Pd/C (5%, 200 mg) under argon. The atmosphere was changed to hydrogen and the black suspension was stirred for 48 h at ambient temperature. The catalyst was filtered off and the celite pad was washed with MeOH followed by removement of the solvent in vacuo. The remaining oil was dissolved in dry DMF (5 mL). A solution of acid **15**

(0.300 g, 1.16 mmol, 1.0 equiv) in dry DMF (6 mL) was added. After cooling to 0 °C, dry NEt₃ (0.7 mL, 5.03 mmol, 4.3 equiv) und DEPC (0.4 mL, 2.9 mmol, 2.5 equiv) were added and the reaction mixture was stirred with warming to rt for 18 h. EtOAc (80 mL) was added and the solution was washed with saturated bicarbonate solution and brine. The organic phase was dried over MgSO₄ and the solvent was removed in vacuo. Chromatography (silica, EtOAc) yielded oxazole 18 as yellow oil (0.153 g, 0.41 mmol, 35%). TLC (silica gel, EtOAc): $R_{\rm f} = 0.48. \ [\alpha]^{25}_{\rm D} - 39.7 \ (c \ 0.63, \ {\rm CHCl}_3).$ ¹H NMR (400 MHz, ${\rm CDCl}_3$): $\delta = 4.34-4.19 \ (m, 4 \ H, 1)$ $P(OCH_2CH_3)_2)$, 3.25 (d, 1 H, ³J = 10.4 Hz, NCH), 2.89 (dsept, 1 H, ⁶J_{PH} = 1.0 Hz, ³J = 6.9 Hz, CH(CH₃)₂), 2.21 (s, 6 H, N(CH₃)₂), 2.07-1.95 (m, 1 H, CH₃CH₂CHCH₃), 1.77-1.64 (m, 1 H, CH_2CH), 1.39 (dt, 6 H, ${}^{4}J_{PH}$ = 0.9 Hz, ${}^{3}J$ = 7.1 Hz, P(OCH₂CH₃)₂), 1.24 (d, 6 H, ${}^{3}J$ = 6.8 Hz, $(CH_3)_2$ CH), 1.25-1.12 (m, 1 H, CH₂CH), 0.91 (t, 3 H, ³J = 7.4 Hz, CH₃CH₂CH), 0.78 (d, 3 H, ${}^{3}J$ = 6.7 Hz, CH₂CHCH₃). ${}^{13}C$ NMR (100 MHz, CDCl₃): d = 155.0 (1C, NCO), 143.9 (d, 1C, ${}^{2}J_{CP}$ = 10.0 Hz, OCO), 124.2 (d, 1C, ${}^{3}J_{CP}$ = 6.2 Hz, CCH(CH₃)₂), 67.8 (1C, NCH), 65.3 (d, 2C, CH_3CH_2CH , 24.6 (1C, $CH(CH_3)_2$), 21.3 (2C, $CH(CH_3)_2$), 16.1 (2C, ${}^3J_{CP}$ = 6.7 Hz, P(OCH₂CH₃)₂), 15.8 (1C, CH₂CHCH₃), 10.4 (1C, CH₃CH₂CH). **IR** (ATR): $\tilde{\nu}$ = 3411 cm⁻¹ (w), 2967 (m), 1662 (m), 1285 (m), 1026 (s), 982 (m), 951 (m), 909 (m), 875 (m), 808 (m). UV (CHCl₃): λ_{max} (lg ε) = 294 nm (3.32), 240 (3.45). **MS** (EI, 70 eV): m/z (%) = 319 [M-sBu]⁺ (100), 137 [M-OP(OEt)₂]⁺ (53), 114 [Me₂NCH(sBu)]⁺ (25), 85 (13), 42 (10). **MS** (ESI): 775 [2M+Na]⁺ (100), 753 [2M+H]⁺ (7), 399 [M+Na]⁺ (86), 377 [M+H]⁺ (34). **HRMS** (ESI): calcd. for C₁₇H₃₃N₂O₅PNa [M+Na]⁺ 399.20193; found 399.20175.

1-(4-(2,3-Dihydroxypropyl)phenyl)-2,2,2-trifluoroethanone oxime (20). Ketone 19 (2.063 g, 7.2 mmol, 1.0 equiv) and H₂NOH·HCl (7.460 g, 10.4 mmol, 1.5 equiv) were dissolved in pyridine (10 mL) and refluxed for 2 h. The solvent was removed in vacuo. The residue was extracted with Et₂O (100 mL), washed with saturated aqueous NH₄Cl (15 mL) and brine (15 mL) and dried over MgSO₄. Removing the solvent in vacuo yielded diol **20** (1.513 g, 5.75 mmol, 80%) as pale yellow solid. **TLC** (silica gel, EtOAc): $R_{\rm f} = 0.52$. **M. p.**:

113-114 °C. ¹**H** NMR (400 MHz, DMSO-*d*₆): δ = 12.66 (s, 1 H, NO*H*), 7.38 (d, 2 H, ³*J* = 8.3 Hz, *o*C₆H₄-*H*), 7.34 (d, 2 H, ³*J* = 8.3 Hz, *m*C₆H₄-*H*), 4.65 (d, 1 H, ³*J* = 5.4 Hz, CHO*H*), 4.63 (t, 1 H, ³*J* = 5.6 Hz, CH₂O*H*), 3.70-3.60 (m, 1 H, C*H*OH), 2.83 (dd, 1 H, ²*J* = 13.6 Hz, ³*J* = 4.3 Hz, C₆H₄C*H*₂), 2.55 (dd, 1 H, ²*J* = 13.6 Hz, ³*J* = 8.2 Hz, C₆H₄C*H*₂). ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 144.7 (q, 1C, ²*J*_{CF} = 30.8 Hz, *C*N), 142.2 (1C, *p*C₆H₄-C), 129.6 (2C, *m*C₆H₄-*C*), 128.1 (2C, *o*C₆H₄-C), 124.0 (1C, *ipso*C₆H₄-C), 121.2 (q, 1C, ¹*J*_{CF} = 274.0 Hz, F₃C), 72.2 (1C, CHOH), 65.4 (CH₂OH), 39.6 (1C, C₆H₄CH₂). ¹⁹F NMR (376 MHz, DMSO-*d*₆): – 57.33 (s, 0.13F, C*F*₃), –60.39 (s, 2.87F, C*F*₃). **IR** (ATR): $\hat{\nu}$ = 3231 cm⁻¹ (m), 1341 (m), 1180 (s), 1110 (s), 1036 (m), 1011 (s), 962 (s), 809 (s), 741 (m), 712 (m), 686 (m), 539 (m). **UV** (MeOH): λ_{max} (Ig ε) = 243 nm (3.93), 203 (4.20). **MS** (ESI): *m*/*z* (%) = 302 [M+K]⁺ (27), 286 [M+Na]⁺ (100). **HRMS** (ESI): calcd. for C₁₁H₁₂F₃NO₃Na [M+Na]⁺ 286.06615; found 286.06616.

1-(4-((2,2-Dimethyl-1,3-dioxolan-4-yl)methyl)phenyl)-2,2,2-trifluoroethanone oxime (21). Diol **20** (1.372 g 5.2 mmol, 1 equiv) was dissolved in dry DMF (8 mL). To this solution 2,2-dimethoxypropane (8 mL, 64.5 mmol, 12.4 equiv) and *p*-TsOH·H₂O (45 mg, 0.24 mmol, 0.05 equiv) were added. After stirring for 1 h at ambient temperature the reaction was stopped by addition of saturated bicarbonate solution (150 mL). The reaxtion mixture was extracted with TBME (3 × 100 mL). The extracts were combined and washed with water (20 mL) and brine (20 mL). After drying over MgSO₄ and removal of the solvent in vacuo acetonide **21** (1.491 g, 4.92 mmol, 95%) was obtained as colorless solid. **TLC** [silica gel, PE/EtOAc (1:1)]: *R*_f = 0.59. **M. p**.: 73-74 °C. ¹H NMR (400 MHz, CDCl₃, *E/Z*-isomers, ratio 11:1): *δ* = 9.55 (brs, 0.08 H, NO*H*), 9.36 (brs, 0.92 H, NO*H*), 7.47 (d, 1.84 H, ³*J* = 8.3 Hz, *o*C₆H₄-*H*), 7.42 (d, 0.16 H, ³*J* = 7.8 Hz, *o*C₆H₄-*H*), 7.33 (d, 1.84 H, ³*J* = 8.3 Hz, *m*C₆H₄-*H*), 7.27 (d, 0.16 H, ³*J* = 7.8 Hz, *m*C₆H₄-*H*), 7.33 (d, 1.84 H, ³*J* = 8.3 Hz, *m*C₆H₄-*H*), 7.27 (d, 0.16 H, ³*J* = 7.8 Hz, *m*C₆H₄-*H*), 7.33 (d, 1.84 H, ³*J* = 8.3 Hz, *m*C₆H₄-*H*), 7.27 (d, 0.16 H, ³*J* = 7.8 Hz, *m*C₆H₄-*H*), 7.33 (d, 1.84 H, ³*J* = 8.3 Hz, *m*C₆H₄-*H*), 7.27 (d, 0.16 H, ³*J* = 7.8 Hz, *m*C₆H₄-*H*), 7.33 (d, 1.84 H, ³*J* = 8.3 Hz, *m*C₆H₄-*H*), 7.27 (d, 0.16 H, ³*J* = 7.8 Hz, *m*C₆H₄-*H*), 7.33 (d, 1.84 H, ³*J* = 8.3 Hz, *m*C₆H₄-*H*), 7.27 (d, 0.16 H, ³*J* = 7.8 Hz, *m*C₆H₄-*H*), 7.33 (d, 1.84 H, ³*J* = 8.6 Hz, ²*J* = 8.2 Hz, OC*H*₂), 3.68 (dd, 1 H, ³*J* = 6.8 Hz, ²*J* = 8.2 Hz, OC*H*₂), 3.03 (dd, 1 H, ³*J* = 6.6 Hz, ²*J* = 13.9 Hz, C₆H₄C*H*₂), 2.84 (dd, 1 H, ³*J* = 6.3 Hz, ²*J* = 13.9 Hz, C₆H₄C*H*₂), 1.46 (d, 3 H, C(C*H*₃)₂). 1.37 (d, 3 H, C(C*H*₃)₂). 1³³C NMR (100 MHz, CDCl₃): *δ* = 147.2 (q, 1C, ²*J*_{CF} = 32.2 Hz, *C*N), 140.3 (1C, *p*C₆H₄-*C*), 129.3 (2C, *m*C₆H₄-*C*), 128.8 (2C, *o*C₆H₄-*C*), 124.4 (1C, *ipso*C₆H₄-*C*), 120.7 (q, 1C, ¹*J*_{CF} = 274.6 Hz, F₃C), 109.6 (1C, *C*(CH₃)₂), 76.3 (1C, OCH), 68.9 (1C, OCH₂), 39.9 (1C, C₆H₄CH₂), 26.9 (1C, C(*C*H₃)₂), 25.6 (1C, C(*C*H₃)₂). ¹⁹**F** NMR (376 MHz, CDCl₃): δ = -62.78/-66.82 (s, 0.25/2.75F, C*F*₃). **IR** (ATR): $\tilde{\nu}$ = 3301 cm⁻¹ (w), 1376 (m), 1337 (m), 1213 (m), 1180 (s), 1154 (m), 1118 (s), 1063 (m), 1032 (m), 1009 (s), 960 (s), 830 (s), 723 (m), 693 (m). **UV** (MeOH): λ_{max} (Ig ε) = 242 nm (3.95), 204 (4.20). **MS** (ESI): *m/z* (%) = 342 [M+K]⁺ (41), 326 [M+Na]⁺ (100), 304 [M+H]⁺ (33). **HRMS** (ESI): calcd. for C₁₄H₁₆F₃NO₃Na [M+Na]⁺ 326.09745; found 326.09749.

(E)- and (Z)-1-(4-((2,2-Dimethyl-1,3-dioxolan-4-yl)methyl)phenyl)-2,2,2-trifluoroethanone O-tosyl oxime (E)-(22) and (Z)-(22). Ketone 19 (1.423 g, 4.9 mmol, 1.0 equiv) was dissolved in EtOH (10 mL). H₂NOH·HCI (378 mg, 5.4 mmol, 1.1 equiv) and NaOH (217 mg, 5.4 mmol, 1.1 equiv) were added and the reaction mixture was refluxed for 4 h followed by 4 d at ambient temperature. H₂NOH·HCl (378 mg, 5.4 mmol, 1.1 equiv) and NaOH (217 mg, 5.4 mmol, 1.1 equiv) were added and the reaction mixture was refluxed for another 4 h. EtOH (4 mL), H₂NOH·HCI (1.135 g, 16.2 mmol, 3.3 equiv) and NaOH (652 mg, 16.2 mmol, 3.3 equiv) were added. The reaction mixture was stirred for 1 h under reflux and 16 h at ambient temperature. Pyridine (1 mL), H₂NOH·HCl (3.780 g, 54.0 mmol, 11.0 equiv) and NaOH (2.172 g, 5.4 mmol, 11.0 equiv) were added and the mixture was heated to reflux for 4 h. The reaction mixture cooled down to ambient temperature while stirring was continued for 18 h. Die suspension was filtered and the solvent was removed in vacuo. Oxime 21 (E/Z: 11:10, 1.364 g, 4.5 mmol, 91%) was obtained after chromatography (PE/EtOAc 1:1) as colorless solid. The solid was dissolved in dry DCM (12 mL) and dry NEt₃ (0.82 mL, 5.85 mmol, 1.3 equiv) was added. The reaction mixture was cooled to 0 °C. Tosyl chloride (900 mg, 4.72 mmol, 1.05 equiv) was added and the reaction mixture was stirred for 18 h with warming to ambient temperature. The suspension was diluted with DCM (100 mL) and washed successively with 2 N HCl (10 mL), water (10 mL), saturated bicarbonate solution (10 mL), and brine (10 mL). The organic phase was dried over MgSO₄. After the solvent was

removed in vacuo the remaining oil was subjected to column chromatography [silica, PE/EtOAc (5:1)]. First eluted was (E)-22 (39 mg, 0.085 mmol, 2%), followed by an E/Zmixture of 22 (1.578 g, 3.5 mmol, 71%) and (Z)-22 (20 mg, 0.043 mmol, 1%). (E)-22 was obtained as colorless solid and (Z)-22 was obtained as colorless oil. (E)-22: TLC [silica gel, PE/EtOAc (5:1)]: $R_{\rm f}$ = 0.45. **M. p.**: 86-88 °C. ¹**H NMR** (400 MHz, CDCl₃): δ = 7.89 (d, 2 H, ${}^{3}J = 8.4 \text{ Hz}, oC_{6}H_{4}-H(Ts)), 7.38 \text{ (d, 2 H, }{}^{3}J = 8.0 \text{ Hz}, mC_{6}H_{4}-H(Ts)), 7.37-7.34 \text{ (m, 4 H, }$ oC_6H_4 -H(PPD), mC_6H_4 -H(PPD)), 4.38-4.31 (m, 1 H, CH_2CH), 4.04 (dd, 1 H, ²J = 8.2 Hz, ${}^{3}J = 6.0$ Hz, CH₂O), 3.65 (dd, 1 H, ${}^{2}J = 8.2$ Hz, ${}^{3}J = 6.7$ Hz, CH₂O), 2.99 (dd, 1 H, ^{2}J = 13.9 Hz, ^{3}J = 7.0 Hz, C₆H₄CH₂), 2.84 (dd, 1 H, ^{2}J = 13.9 Hz, ^{3}J = 5.8 Hz, C₆H₄CH₂), 2.46 (s, 3 H, C₆H₄CH₃), 1.43 (s, 3 H, C(CH₃)₂), 1.36 (s, 3 H, C(CH₃)₂). ¹³C NMR (100 MHz, CDCl₃): δ = 153.7 (q, 1C, ²J_{CF} = 33.3 Hz, NC), 146.1 (1C, pC₆H₄-C(Ts)), 142.0 (1C, pC₆H₄-C(PPD)), 131.1 (1C, *ipsoC*₆H₄-C(Ts)), 129.8 (2C, *m*C₆H₄-C(Ts)), 129.6 (2C, *m*C₆H₄-C(PPD)), 129.2 (2C, oC₆H₄-C(Ts)), 128.6 (2C, oC₆H₄-C(PPD)), 122.6 (1C, *ipso*C₆H₄-C(PPD)), 119.6 (q, 1C, ${}^{1}J_{CF}$ = 277.7 Hz, CF₃), 109.3 (1C, C(CH₃)₂) 75.9 (1C, CHO), 68.9 (1C, CH₂O), 40.0 (1C, C₆H₄CH₂), 26.9 (1C, C(CH₃)₂), 25.6, (1C, C(CH₃)₂), 21.6 (1C, C₆H₄CH₃). ¹⁹**F NMR** (376 MHz, CDCl₃): $\delta = -66.93$ (s, 3F, CF₃). **IR** (ATR): $\tilde{\nu} = 3400 \text{ cm}^{-1}$ (br, w), 1385 (m), 1194 (s), 1180 (s), 1145 (s), 1092 (m), 1062 (m), 1002 (m), 891 (m), 814 (m), 779 (s), 731 (m), 705 (m), 673 (s), 653 (m), 546 (s). **UV** (MeOH): λ_{max} (lg ε) = 203 nm (4.44), 229 (4.28), 256 (4.08). **MS** (ESI): m/z (%) = 937 [2M+Na]⁺ (64), 480 [M+Na]⁺ (100), 458 [M+H]⁺ (9). **HRMS** (ESI): calcd. for C₂₁H₂₂F₃NO₅SNa [M+Na]⁺ 480.10630; found 480.10639.

(*Z*)-22: TLC [silica gel, PE/EtOAc (5:1)]: $R_{\rm f} = 0.35$. ¹H NMR (400 MHz, CDCl₃): $\delta = 7.90$ (d, 2 H, ³J = 8.4 Hz, oC_6H_4 -H(Ts)), 7.41-7.34 (m, 4 H, mC_6H_4 -H(Ts)), oC_6H_4 -H(PPD)), 7.29 (d, 2 H, ³J = 8.4 Hz, mC_6H_4 -H(PPD)), 4.36-4.33 (m, 1 H, OCH), 4.01 (dd, 1 H, ²J = 8.2 Hz, ³J = 6.0 Hz, OCH₂), 3.63 (dd, 1 H, ²J = 8.2 Hz, ³J = 6.7 Hz, OCH₂), 2.97 (dd, 1 H, ²J = 13.9 Hz, ³J = 7.0 Hz, $C_6H_4CH_2$), 2.33 (dd, 1 H, ²J = 13.9 Hz, ³J = 5.9 Hz, $C_6H_4CH_2$), 2.46 (s, 3 H, $C_6H_4CH_3$), 1.43 (s, 3 H, $C(CH_3)_2$), 1.34 (s, 3 H, $C(CH_3)_2$). ¹³C NMR (100 MHz, CDCl₃): $\delta = 153.8$ (q, 1C, ² $J_{CF} = 33.3$ Hz, NC), 145.9 (1C, pC_6H_4 -C(Ts)), 142.1 (1C, pC_6H_4 -C(PPD)), 131.5 (1C, $ipsoC_6H_4$ -C(Ts)), 129.9 (2C, mC_6H_4 -C(Ts)), 129.6 (2C, mC_6H_4 -C(PPD)), 129.1

(2C, oC_6H_4 -C(Ts)), 129.0 (2C, oC_6H_4 -C(PPD)), 126.0 (1C, $ipsoC_6H_4$ -C(PPD)), 117.4 (q, 1C, ${}^1J_{CF}$ = 284.0 Hz, CF_3), 109.4 (1C, $C(CH_3)_2$), 76.1 (1C, OCH), 68.9 (1C, OCH_2), 40.0 (1C, $C_6H_4CH_2$), 27.0 (1C, $C(CH_3)_2$), 25.6 (1C, $C(CH_3)_2$), 21.6 (1C, $C_6H_4CH_3$). ¹⁹F NMR (376 MHz, $CDCI_3$): δ = -61.88 (s, 3F, CF_3). **IR** (ATR): $\tilde{\nu}$ = 3402 cm⁻¹ (br, w), 1385 (m), 1177 (s), 1156 (s), 1092 (m), 1063 (m), 1022 (m), 989 (m), 878 (m), 806 (s), 731 (m), 705 (m), 662 (m), 643 (m), 622 (m), 547 (s). **UV** (MeOH): λ_{max} (lg ε) = 202 nm (4.37), 226 (4.24), 265 (4.09). **MS** (ESI): m/z (%) = 458 [M+H]⁺ (9), 480 [M+Na]⁺ (100), 937 [2M+Na]⁺ (64).

(*E*)-(22): To a solution of oxime 21 (1.371 g, 4.5 mmol, 1.0 equiv, *E*/*Z*= 11:1) in dry DCM (12 mL) dry NEt₃ (0.82 mL, 5.85 mmol, 1.3 equiv) was added and cooled to 0 °C. Tosyl chloride (900 mg, 4.72 mmol, 1.05 equiv) was added and the reaction mixture was stirred with warming to ambient temperature for 18 h. The suspension was diluted with DCM (100 mL) and washed with 2 N HCl (10 mL), water (10 mL), saturated bicarbonate solution (10 mL) and brine (10 mL). The organic phase was dried over MgSO₄ and the solvent was removed in vacuo. Chromatography on silica [PE/EtOAc (5:1)] yielded tosyloxime (*E*)-22 as colorless oil (1.714 g, 3.75 mmol, 83%), which crystallized overnight to broad colorless plates. ¹⁹F NMR (376 MHz, CDCl₃): δ = –61.90/–66.93 (s, 0.17/2.83F, C*F*₃).

3-(4-((2,2-Dimethyl-1,3-dioxolan-4-yl)methyl)phenyl)-3-(trifluoromethyl)diaziridine (23). Ammonia (ca. 50 mL) was condensed at -40 °C. A solution of tosyloxime (*E*)-**22** (1.215 g, 2.67 mmol, 1.0 equiv) in TBME (10 mL) was added. After 2 h the cooling was switched off and the ammonia was evaporated by warming to ambient temperature for 16 h. The suspension was filtered, and the residue was washed with TBME (2·30 mL). Removal of the solvent yielded diaziridine **23** (803 mg, 2.66 mmol, quant.) as a colorless solid. **TLC** [silica gel, PE/EtOAc (4:1)]: $R_f = 0.38$. **M. p.**: 72-75 °C. ¹H **NMR** (400 MHz, CDCl₃): $\delta = 7.54$ (d, 2 H, ³J = 8.4 Hz, oC_6H_4 -H), 7.28 (d, 2 H, ³J = 8.4 Hz, mC_6H_4 -H), 4.314 (dddd, 0.5 H, ³J = 6.4 Hz, ³J = 6.3 Hz, ³J = 6.3 Hz, OCH), 4.00-H, 4.308 (dddd, 0.5 H, ³J = 6.4 Hz, ³J = 6.7 Hz, ³J = 6.3 Hz, OCH), 4.01-3.96 (m, 1 H, OCH₂), 3.63 (dd, 0.5 H, ³J = 6.7 Hz, ³*J* = 8.2 Hz, OC*H*₂), 3.62 (dd, 0.5 H, ³*J* = 6.8 Hz, ³*J* = 8.1 Hz, OC*H*₂), 2.99 (dd, 1 H, ²*J* = 13.9 Hz, ³*J* = 6.7 Hz, C₆H₄C*H*₂), 2.81 (dd, 1 H, ²*J* = 13.9 Hz, ³*J* = 6.2 Hz, C₆H₄C*H*₂), 2.79 (d, 1 H, ³*J* = 8.8 Hz, N*H*), 2.22 (d, 1 H, ³*J* = 8.8 Hz, N*H*), 1.43 (s, 3 H, C(C*H*₃)₂), 1.34 (s, 3 H, C(C*H*₃)₂). ¹³**C NMR** (100 MHz, CDCl₃): δ = 140.0 (1C, *p*C₆H₄-C), 129.9 (1C, *ipso*C₆H₄-C), 129.5 (2C, *m*C₆H₄-C), 128.2 (2C, *o*C₆H₄-C), 123.5 (q, 1C, ¹*J*_{CF} = 278.3 Hz, *C*F₃), 109.3 (1C, *C*(CH₃)₂), 76.27 (0.5C, O*C*H), 76.23 (0.5C, O*C*H), 68.9 (1C, O*C*H₂), 57.80 (q, 0.5C, ²*J*_{CF} = 35.9 Hz, *C*N), 57.78 (q, 0.5C, ²*J*_{CF} = 35.9 Hz, *C*N), 39.87 (0.5C, C₆H₄CH₂), 39.84 (0.5C, C₆H₄CH₂), 26.9 (1C, C(CH₃)₂), 25.6 (1C, C(CH₃)₂). ¹⁹**F NMR** (376 MHz, CDCl₃): δ = -75.96/-75.93 (s, 1.5/1.5F, C*F*₃). **IR** (ATR): $\tilde{\nu}$ = 3240 cm⁻¹ (m), 1376 (m), 1231 (m), 1157 (s), 1140 (s), 1070 (m), 951 (m), 867 (m), 804 (m), 710 (m), 645 (m), 570 (m). **UV** (MeOH): λ_{max} (Ig ε) = 259 nm (2.40), 217 (3.98). **MS** (EI, 70 eV): *m*/*z* (%) = 301 [M-H]⁺ (1), 287 [M-CH₃]⁺ (10), 101 [C₅H₉O₂]⁺ (100), 73 (16), 43 (83). **HRMS** (EI, 70 eV): calcd. for C₁₄H₁₆F₃N₂O₂[M-H]⁺ 301.11584; found 301.11573.

3-(4-((2,2-Dimethyl-1,3-dioxolan-4-yl)methyl)phenyl)-3-(trifluoromethyl)-3H-diazirine

(24). Diaziridine 23 (707 mg, 2.34 mmol, 1.0 equiv) was dissolved in Et₂O (30 mL) and cooled to 0 °C. Dry NEt₃ (0.72 mL, 5.15 mmol, 2.2 equiv) was added, followed by dropwise addition (15 min) of iodine solution (713 mg, 2.81 mmol, 1.2 equiv) in Et₂O (25 mL). The solution was stirred for 1 h at ambient temperature, diluted with Et₂O (30 mL) and washed with water, saturated thiosulfate solution and brine. The organic phase was dried over MgSO₄. The solvent was removed in vacuo. The remaining yellow oil was identified as diazirine 24 (700 mg, 2.33 mmol, 99%). TLC [silica gel, PE/EtOAc (2:1)]: $R_f = 0.64$. ¹H NMR (400 MHz, CDCl₃): $\delta = 7.26$ (d, 2 H, ³J = 8.3 Hz, mC_6H_4 -H), 7.13 (d, 2 H, ³J = 8.3 Hz, oC_6H_4 -H), 4.34-4.26 (m, 1 H, OCH), 3.99 (dd, 1 H, ²J = 8.1 Hz, ³J = 6.8 Hz, OCH₂), 2.96 (dd, 1 H, ²J = 13.9 Hz, ³J = 6.8 Hz, OCH₂), 2.96 (dd, 1 H, ²J = 13.9 Hz, ³J = 6.8 Hz, CDCl₃): $\delta = 139.6$ (1C, pC_6H_4 -C), 129.7 (2C, mC_6H_4 -C), 127.4 (1C, *ipso*C₆H₄-C), 126.6 (2C, oC_6H_4 -C), 122.1 (q, 1C, ¹ $_{CF} = 273.1$ Hz, CF_3), 109.3 (1C, $C(CH_3)_2$),

76.1 (1C, OCH), 68.8 (1C, OCH₂), 39.8 (1C, C₆H₄CH₂), 28.3 (q, 1C, ${}^{2}J_{CF}$ = 40.4 Hz, CN), 27.0 (1C, C(CH₃)₂), 25.6 (1C, C(CH₃)₂). ¹⁹**F** NMR (376 MHz, CDCI₃): δ = -65.72 (s, 3F, CF₃). **IR** (ATR): $\tilde{\nu}$ = 2988 cm⁻¹ (w), 1230 (m), 1182 (m), 1150 (s), 100 (m), 938 (m). **UV** (MeOH): λ_{max} (lg ε) = 201 nm (3.91), 222 (4.09), 361 (2.43). **MS** (EI, 70 eV): m/z (%) = 285 [M-CH₃]⁺ (8), 257(3), 197 (3), 177 (7), 172 (4), 151 (6), 128 (6), 101 [C₅H₉O₂]⁺ (100), 73 (11), 43 (53). **HRMS** (ESI): calcd. for C₁₄H₁₅F₃N₂O₂Na [M+Na]⁺ 323.09778; found 323.09783.

3-(4-(3-(Trifluoromethyl)-3H-diazirin-3-yl)phenyl)propane-1,2-diol (25). To a solution of acetonide 24 (700 mg, 2.33 mmol, 1.0 equiv) in THF (10 mL) 2 N HCI (10 mL, 20.0 mmol, 8.6 equiv) was added. The reaction mixture was stirred for 3 h at ambient temperature. The reaction mixture was treated with saturated bicarbonate solution, until evolution of carbon dioxide had stopped. The mixture was extracted with EtOAc (3 × 50 mL). The combined extracts were washed with brine (10 mL) and dried over MgSO₄. Chromatography on silica gel [PE/EtOAc (1:1)] yielded diol 25 (582 mg, 2.24 mmol, 97%) as yellow solid. TLC [silica gel, PE/EtOAc (1:1)]: $R_{\rm f}$ = 0.18. **M. p.**: 54 °C. ¹**H NMR** (400 MHz, CDCl₃): δ = 7.24 (d, 2 H, ${}^{3}J = 8.2 \text{ Hz}, mC_{6}H_{4}-H), 7.13 \text{ (d, 2 H, }{}^{3}J = 8.2 \text{ Hz}, oC_{6}H_{4}-H), 3.93-3.83 \text{ (m, 1 H, CHOH)}, 3.62 \text{ (m, 1 H, CHO$ (dd, 1 H, ${}^{2}J$ = 11.2 Hz, ${}^{3}J$ = 2.6 Hz, CH₂OH), 3.44 (dd, 1 H, ${}^{2}J$ = 11.2 Hz, ${}^{3}J$ = 7.1 Hz, CH₂OH), 2.80-2.68 (m, 2 H, C₆H₄CH₂), 2.64 (brs, 2 H, HOCHCH₂OH). ¹³C NMR (100 MHz, CDCl₃): δ = 139.8 (1C, pC₆H₄-C), 129.8 (2C, mC₆H₄-C), 127.4 (1C, ipsoC₆H₄-C), 126.7 (2C, oC_6H_4 -C), 122.1 (q, 1C, ${}^{1}J_{CF}$ = 274.7 Hz, CF₃), 72.7 (1C, OCH), 65.9 (1C, OCH₂), 39.2 (1C, $C_6H_4CH_2$), 28.3 (q, 1C, ² J_{CF} = 40.4 Hz, CN). ¹⁹F NMR (376 MHz, CDCl₃): δ = -65.72 (s, 3F, CF_3). **IR** (ATR): \tilde{v} = 3265 cm⁻¹ (m), 1347 (m), 1229 (m), 1175 (m), 1136 (s), 1086 (s), 1036 (s), 939 (m), 895 (m), 811 (m), 723 (m), 691 (m), 560 (m). **UV** (MeOH): λ_{max} (lg ε) = 201 nm (4.02), 223 (4.13), 360 (2.23). **MS** (EI, 70 eV): m/z (%) = 260 [M]⁺ (0.2), 232 [M-N₂]⁺ (23), 172 $[M-N_2-C_2H_5O_2]^+$ (100), 151 (33), 133 (14), 122 (20), 103 (17), 61 (55), 43 (22). **MS** (ESI): m/z (%) = 543 [2M+Na]⁺ (21), 515 [2M-N₂+Na]⁺ (11), 283 [M+Na]⁺ (100), 255 [M-N₂+Na]⁺ (8). **HRMS** (ESI): calcd. for $C_{11}H_{11}F_3N_2O_2Na [M+Na]^+ 283.06648$; found 283.06643.

1-(tert-Butyldiphenylsilyloxy)-3-(4-(3-(trifluoromethyl)-3H-diazirin-3-yl)phenyl)propan-2ol (26). Diol 25 (0.375 g, 1.44 mmol, 1.0 equiv) and imidazole (0.216 g, 3.18 mmol, 2.2 equiv) were dissolved in dry DMF (2 mL) and cooled to 0 °C. TBDPSCI (475 mg, 1.73 mmol, 1.2 equiv) was added and the reaction mixture was stirred for 1 h. The solution was diluted with PhMe/EtOAc (1:1, 50 mL) and extracted with 20% citric acid (20 mL), water (20 mL), saturated bicarbonate solution (20 mL), and brine (20 mL). The organic phase was dried over MgSO₄ and the solvent was removed in vacuo. The residue was purified by column chromatography [silica gel, PE/EtOAc (8:1)]. Alcohol 26 was obtained as yellow oil (572 mg, 1.15 mmol, 80%). **TLC** [silica gel, PE/EtOAc (8:1)]: $R_{\rm f} = 0.39$. ¹H NMR (400 MHz, $CDCl_3$): δ = 7.68-7.61 (m, 4 H, mPh-H), 7.48-7.32 (m, 6 H, oPh-H, pPh-H), 7.18 (d, 2 H, ${}^{3}J = 8.3 \text{ Hz}, mC_{6}H_{4}-H), 7.07 \text{ (d, 2 H, }{}^{3}J = 8.3 \text{ Hz}, oC_{6}H_{4}-H), 3.95-3.84 \text{ (m, 1 H, OCH)}, 3.64$ (dd, 1 H, ${}^{2}J$ = 10.2 Hz, ${}^{3}J$ = 3.8 Hz, OCH₂), 3.53 (dd, 1 H, ${}^{2}J$ = 10.2 Hz, ${}^{3}J$ = 6.6 Hz, OCH₂), 2.75 (d, 2 H, ${}^{3}J$ = 6.5 Hz, C₆H₄CH₂), 2.49 (d, 1 H, ${}^{3}J$ = 3.8 Hz, OH), 1.07 (s, 9 H, C(CH₃)₃). ¹³**C NMR** (100 MHz, CDCl₃): δ = 140.2 (1C, *p*C₆H₄-C), 135.5 (4C, *m*Ph-C), 132.9 (2C, PhC_a), 129.9 (2C, pPh-C), 129.8 (2C, mC₆H₄-C), 127.8 (4C, oPh-C), 127.0 (1C, ipsoC₆H₄-C), 126.4 $(2C, oC_6H_4-C), 122.2 (q, 1C, {}^1J_{CF} = 274.7 Hz, CF_3), 72.6 (1C, OCH), 67.0 (1C, OCH_2), 39.0$ $(1C, C_6H_4CH_2), 28.3 (q, 1C, {}^2J_{CF} = 40.3 Hz, CN), 26.8 (3C, C(CH_3)_3), 19.2 (1C, C(CH_3)_3).$ ¹⁹**F NMR** (376 MHz, CDCl₃): δ = -65.71 (s, 3F, CF₃). **IR** (ATR): $\tilde{\nu}$ = 3575 cm⁻¹ (w), 1183 (m), 1154 (m), 1109 (s), 1055 (m), 938 (m), 820 (m), 739 (m), 701 (s), 612 (m), 580 (m), 550 (m). **UV** (MeOH): λ_{max} (lg ε) = 204 nm (4.47), 220 (4.46), 259 (3.14), 264 (3.13), 361 (2.39). **MS** (ESI): m/z (%) = 1019 [2M+Na]⁺ (100), 521 [M+Na]⁺ (90). HRMS (ESI): calcd. for $C_{27}H_{29}F_3N_2O_2SiNa [M+Na]^+ 521.18426$; found 521.18432.

(*S*)-*tert*-Butyl 2-((3*R*,4*R*)-4,11,11-trimethyl-5-oxo-10,10-diphenyl-7-(4-(3-(trifluoromethyl)-3*H*-diazirin-3-yl)benzyl)-2,6,9-trioxa-10-siladodecan-3-yl)pyrrolidine-1carboxylate (28). Boc-Dap (27, 50 mg, 0.174 mmol, 1.00 equiv) and alcohol 26 (84 mg, 0.168 mmol, 0.97 equiv) were dissolved in dry DCM (5 mL). DMAP (9 mg, 0.073 mmol, 0.42 equiv) and (*S*)-10-camphorsulfonic acid (10 mg, 0.042 mmol, 0.24 equiv) were added. The solution was cooled to 0 °C and DCC (36 mg, 0.174 mmol, 1.00 equiv) was added. The reaction mixture was stirred with warming to ambient temperature for 16 h. DCU was removed by filtration and washed with DCM (20 mL). The solvent was removed in vacuo and the crude product was purified by column chromatography [silica, PE/EtOAc (8:1)]. Alcohol 26 (19 mg, 0.038 mmol, 22%) was recovered, followed by elution of ester 28 which was obtained as a yellow oil (92 mg, 0.120 mmol, 69%). TLC [silica gel, PE/EtOAc (8:1)]: $R_{\rm f} = 0.35$. ¹H NMR (400 MHz, CDCl₃, 4 isomers): $\delta = 7.67-7.58$ (m, 4 H, mPh-H(Si)), 7.47-7.32 (m, 6 H, oPh-H(Si), pPh-H(Si)), 7.26-7.15 (m, 2 H, mC_6H_4-H), 7.10-7.01 (m, 2 H, oC₆H₄-H), 5.22-5.09 (m, 1 H, OCH₂CH), 3.97-3.77 (m, 0.4 H, CHOCH₃), 3.77-3.59 (m, 3.2 H, CHOCH₃, OCH₂, NCH), 3.59-3.37 (m, 1.4 H, NC H, NCH₂), 3.37-3.25 (m, 3 H, OCH₃), 3.25-3.14 (m, 1 H, NCH₂), 3.07-2.87 (m, 2 H, C₆H₄CH₂), 2.50-2.34 (m, 1 H, CHCH₃), 1.99-1.77 (m, 2 H, NCHCH₂CH₂), 1.77-1.54 (m, 2 H, NCHCH₂CH₂), 1.51-1.41 (m, 9 H, $OC(CH_3)_3$, 1.17 (d, 3 H, ${}^{3}J$ = 6.7 Hz, CHCH₃), 1.07-1.04 (m, 9 H, SiC(CH₃)₃). ${}^{13}C$ NMR (100) MHz, CDCl₃, main isomer): δ = 174.1 (1C, CHCOO), 154.3 (1C, NCO), 139.1 (1C, pC₆H₄-C), 135.6 (4C, mPh-C), 132.9 (2C, PhC₀), 129.9 (2C, mC₆H₄-C), 129.8 (2C, pPh-C), 127.7 (4C, oPh-C), 127.4 (1C, *ipsoC*₆H₄-C), 126.4 (2C, oC₆H₄-C), 122.1 (q, 1C, ${}^{1}J_{CF}$ = 275.6 Hz, CF₃), 83.1 (1C, CHOCH₃), 79.7 (1C, OC(CH₃)₃), 74.5 (1C, OCH₂CH), 63.9 (1C, OCH₂), 61.0 (1C, OCH₃), 59.1 (1C, NCH), 46.5 (1C, NCH₂), 42.7 (1C, CHCH₃), 36.3 (1C, C₆H₄CH₂), 28.6 (3C, OC(CH₃)₃), 28.3-28.1 (m, 1C, F₃CC), 26.8 (3C, SiC(CH₃)₃), 26.1 (1C, NCHCH₂), 23.8 (1C, NCH₂CH₂), 19.2 (1C, SiC(CH₃)₃), 13.6 (1C, CHCH₃). ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -$ (65.66-65.71, m, 3F, CF₃). **IR** (ATR): $\tilde{\nu}$ = 3072 cm⁻¹ (w), 1733 (m), 1691 (s), 1393 (m), 1366 (m), 1156 (s), 1096 (s), 740 (m), 702 (s), 613 (m). **UV** (MeOH): λ_{max} (lg ε) = 205 nm (4.44), 218 (4.42), 265 (3.41), 357 (2.33). **MS** (ESI): m/z (%) = 1558 [2M+Na]⁺ (41), 790 [M+Na]⁺ (100), 768 [M+H]⁺ (18). **HRMS** (ESI): calcd. for C₄₁H₅₂F₃N₃O₆SiNa [M+Na]⁺ 790.34697; found 790.34721.

(2R,3R)-1-(*tert*-Butyldiphenylsilyloxy)-3-(4-(3-(trifluoromethyl)-3*H*-diazirin-3yl)phenyl)propan-2-yl 3-((*S*)-1-((3*R*,4*S*)-4-((*S*)-2-((2*S*,3*S*)-2-(dimethylamino)-3-methyl-

pentanamido)-N,3-dimethylbutanamido)-3-methoxy-5-methylhexanoyl)pyrrolidin-2-yl)-

3-methoxy-2-methylpropanoate (29). Ester 28 (48 mg, 0.062 mmol, 1.0 equiv) was treated at 0 °C with CH₂Cl₂/CF₃COOH (1:1, (2 mL) for 1.5 h. The crude product was concentrated in vacuo and dissolved in DCM (10 mL), followed by removal of the solvent in vacuo. This procedure was repeated twice. The yellow oily residue (48 mg) was treated under argon with a solution of acetate 12 (34 mg, 0.062 mmol, 1.0 equiv) in dry DCM (2 mL). When the mixture had become clear, dry NEt₃ (53 µL, 0.372 mmol, 6.0 equiv) was added. After cooling to 0 °C DEPC (20 µL, 0.133 mmol, 2.14 equiv) was added and the reaction mixture was stirred for 2.5 h. Water (3 mL) and saturated bicarbonate solution (5 mL) were added and the mixture was extracted with chloroform (3 \times 50 mL). The organic phase was washed with brine (15 mL) and dried over MgSO₄. The solvent was removed in vacuo and the crude product was purified by column chromatography (RP-18, MeOH). Acylpyrrolidine 29 (45 mg, 0.024 mmol, 68%) was obtained as yellowish viscous oil. **TLC** (RP-18, MeOH): $R_{\rm f}$ = 0.37. ¹**H NMR** (600 MHz, CDCl₃, 4 Isomers): δ = 7.69-7.57 (m, 4 H, *m*Ph-*H*), 7.47-7.32 (m, 6 H, oPh- H, pPh-H), 7.25-7.17 (m, 2 H, mC₆H₄-H), 7.06-6.98 (m, 3 H, oC₆H₄- H, NH), 5.23-5.09 (m, 1 H, OCH₂CHO), 4.85-4.70 (m, 1 H, NHCH), 4.70-4.60 (m, 1 H, CH₃NCH), 4.19-4.09 (m, 1 H, CH₃NCHCHO), 4.07-3.96 (m, 1 H, CH₂NCH), 3.95-3.83 (m, 1 H, CH₂NCHCHO), 3.75-3.55 (m, 2 H, OCH₂), 3.42-3.22 (m, 8 H, NCH₂, CH₃NCHCHOCH₃, CH₂NCHCHOCH₃), 3.08-2.90 (m, 5 H, C₆H₄CH₂, NCH₃), 2.54 (d, 1 H, ${}^{3}J$ = 5.5 Hz, (CH₃)₂NCH), 2.50-2.26 (m, 3 H, CH₃OCHCH₂, CH₃OCHCHCH₃), 2.26-2.19 (m, 6 H, (CH₃)₂N), 2.05-1.87 (m, 2 H, CH₃NCHC*H*(CH₃)₂, NHCHC*H*(CH₃)₂), 1.87-1.51 (m, 6 H, NCHC*H*₂C*H*₂, CH₃C*H*₂C*H*), 1.22-1.14 (m, 4 H, CH₃CH₂, CH₃OCHCHCH₃), 1.09-1.04 (m, 9 H, C(CH₃)₃), 1.04-0.97 (m, 6 Η. NHCHCH $(CH_3)_2$, CH₃NCHCH $(CH_3)_2$), 0.96-0.89 (m, 9 H, NHCHCH $(CH_3)_2$, CH₃CH₂CHCH₃), 0.85-0.80 (m, 3 H, CH₃NCHCH(CH₃)₂). ¹³C NMR (150 MHz, CDCl₃, major diastereomer): δ = 174.0 (1C, COO), 173.9 (1C, CH₂NCO), 173.4 (1C, CH₃NCO), 172.0 (1C, NHCO), 139.1 (1C, pC₆H₄-C), 135.5 (4C, mPh-C), 133.1 (2C, PhC_a), 130.0 (2C, mC₆H₄-C), 129.8 (2C, pPh-C), 127.7 (4C, oPh-C), 127.1 (1C, ipsoC₆H₄-C), 126.4 (2C, oC₆H₄-C), 122.1 (q, 1C, ${}^{1}J_{CF}$ = 274.5 Hz, CF₃), 81.5 (1C, CH₂NCHCHO), 78.3 (1C, CH₃NCHCHO), 74.9 (1C,

(CH₃)₂NCH), 74.4 (1C, OCH₂CHO), 63.6 (1C, OCH₂), 60.5 (1C, CH₂NCHCHOCH₃), 59.2 (1C, CH₂NCH), 58.4 (1C, CH₃NCH), 58.0 (1C, CH₃NCHCHOCH₃), 53.7 (1C, NHCH), 47.6 (1C, NCH₂), 43.09 (1C, CH₃OCHCHCH₃), 43.06 (2C, (CH₃)₂N), 37.7 (1C, CH₃OCHCH₂), 36.3 (1C, C₆H₄CH₂), 34.4 (1C, CH₃CH₂CH), 31.9 (1C, NCH₃), 30.6 (1C, NHCHCH), 28.4-28.2 (m, 1C, CF₃C) 27.0 (1C, CH₃NCHCH(CH₃)₂), 26.9 (1C, CH₃CH₂), 26.7 (3C, C(CH₃)₃), 24.8 (1C, NCHCH₂), 24.7 1C, NCH₂CH₂), 20.1 (1C, CH₃NCHCH(CH₃)₂), 20.0 (1C, CH₃NCHCH(CH₃)₂), 19.5 (1C, NHCHCH(CH₃)₂), 19.2 (1C, C(CH₃)₃), 18.2 (1C, NHCHCH(CH₃)₂), 14.6 (1C, CH₂CHCH₃), 13.6 (1C, CH₃OCHCHCH₃), 12.0 (1C, CH₃CH₂). ¹⁹F NMR (376 MHz, CDCl₃): $\delta = -65.65/-65.68/-65.69/-65.74$ (s, 3F, CF₃). IR (ATR): $\tilde{\nu} = 3299 \text{ cm}^{-1}$ (w), 2963 (m), 2933 (m), 1625 (m), 1158 (m), 1098 (s), 1033 (s), 981 (m), 940 (m), 704 (s). UV (MeOH): λ_{max} (Ig ε) = 203 nm (4.50), 260 (3.30), 264 (3.30), 357 (2.25). MS (ESI): *m/z* (%) = 1101 [M+Na]⁺ (40) 1079 [M+H]⁺ (100). HRMS (ESI): calcd. for C₅₈H₈₈F₃N₆O₈Si [M+H]⁺ 1079.62230; found 1079.62284.

Photo malevamide D (30). Silylether **29** (44 mg, 0.04 mmol, 1.0 equiv) was dissolved in THF (2 mL). Water (3 drops) was added, followed by TBAF·3H₂O (100 mg, 0.374 mmol, 9.3 equiv). The reaction mixture was stirred at 0 °C for 2 h. The solvent was removed in vacuo and the residue was dissolved in chloroform (100 mL) and washed with water (2·10 mL). The organic phase was dried over MgSO₄ and the solvent was removed in vacuo. The product was purified on HPLC [Phenomenex Luna, 250 x 10, 5 µm, C-18, MeOH/water (9:1), 4.0 mL/min, 210 nm]. Diazirine **30** (11 mg, 0.013 mmol, 33%) was obtained as light yellow oil. **TLC** [silica gel RP-18, MeOH/H₂O (4:1)]: R_f = 0.23. ¹H **NMR** (600 MHz, CDCl₃, four isomers, **a**, **b**, **c**, **d**): *δ* = 7.36-7.27 (m, 2 H, *m*C₆H₄-*H*), 7.15-7.08 (m, 2 H, oC₆H₄-*H*), 6.99 (d, 1 H, ³*J* = 8.9 Hz, N*H*), 5.22-5.15 (m, 0.2 H, HOCH₂C*H*-**a**), 5.05-5.00 (m, 0.2 H, HOCH₂C*H*-**b**), 4.96 (brs, 0.4 H, O*H*), 4.93 (brs, 0.4 H, O*H*), 4.88 (brs, 0.2 H, O*H*), 4.76 (dd, 1 H, ³*J* = 6.6 Hz, ³*J* = 8.9 Hz, NHC*H*), 4.73-4.63 (m, 1 H, CH₃NC*H*), 4.61-4.56 (m, 0.3 H, HOCH₂-**d**), 4.30-4.20 (m, 0.6 H, HOCH₂C*H*-**c**), 4.12-3.88 (m, 3.3 H, CH₃NCHCHO, CH₂NCHCHO, HOCH₂C*H*-**d**), 3.35-3.27 (m, 3.55-3.62 (m, 1.4 H, C*H*₂O), 3.51-3.36 (m, 5.2 H, C*H*₂O-**a**, C*H*₂NCHCHOCCH₃), 3.35-3.27 (m,

3 H, CH₃NCHCHOCH₃), 3.05-2.99 (m, 3 H, NCH₃), 2.99-2.70 (m, 2 H, C₆H₄CH₂), 2.56-2.50 (m, 1.2 H, (CH₃)₂NC H, CH₃OCHCHCH₃-b), 2.48-2.38 (m, 1.6 H, CH₃OCHCH₂, $CH_3OCHCHCH_3-c$, CH₃OCHC*H*CH₃-d), 2.37-2.28 (m, H, CH₃OCHCH₂, 1.3 CH₃OCHC*H*CH₃-a), 2.26-2.20 (m, 6 H, (CH₃)₂N), 2.15-1.95 (m, 3 H, NCHCH₂CH₂, NHCHC H, CH₃NCHCH(CH₃)₂), 1.90-1.73 (m, 4 H, NCH₂CH₂CH₂, (CH₃)₂NCHCH), 1.61-1.52 (m, 1 H, CH_3CH_2 , 1.31 (d, 0.9 H, ${}^{3}J$ = 6.9 Hz, $CH_3CHCOO-d$), 1.28 (d, 0.9 H, ${}^{3}J$ = 7.2 Hz, $CH_3CHCOO-c$), 1.17 (d, 0.6 H, ${}^{3}J = 7.0$ Hz, $CH_3CHCOO-b$), 1.10 (d, 0.6 H, ${}^{3}J = 6.8$ Hz, CH₃CHCOO-a), 1.05-0.80 (m, 18 H, CH₃CH₂CHCH₃, NHCHCH(CH₃)₂, CH₃NCHCH(CH₃)₂). ¹³**C NMR** (150 MHz, CDCl₃, Isomer **207a**): δ = 173.5 (1C, CH₃NCO), 173.2 (1C, CHCOO), 172.0 (1C, NHCO), 170.5 (1C, CH₂NCO), 139.1 (1C, pC₆H₄-C), 129.8 (2C, mC₆H₄-C), 127.1 $(1C, ipsoC_6H_4-C)$ 126.5 $(2C, oC_6H_4-C)$, 122.2 $(q, 1C, {}^{1}J_{CF} = 274.1 \text{ Hz}, CF_3)$, 81.41 (1C, 1)CH₂NCHCHO), 78.2 (1C, CH₃NCHCHO), 75.5 (1C, OCH₂CHO), 74.9 (1C, (CH₃)₂NCH), 62.9 (1C, CH₂OH), 61.44 (1C, CH₂NCHCHOCH₃), 59.9 (1C, CH₂NCH), 58.1 (1C, CH₃NCH), 58.0 (1C, CH₃NCHCHOCH₃), 53.8 (1C, NHCH), 48.0 (1C, NCH₂), 45.5 (1C, CHCOO), 43.1 (2C, (CH₃)₂N), 37.8 (1C, CH₃OCHCH₂), 36.3 (1C, C₆H₄CH₂), 34.5 (1C, CH₂CHCH₃), 31.9 (1C, NCH₃), 30.9 (1C, NHCHCH), 28.3 (q, 1C, ${}^{2}J_{CF}$ = 40.8 Hz, CF₃C), 27.00 (1C, CH₃NCHCH(CH₃)₂), 26.97 (1C, CH₃CH₂), 25.0 (1C, NCH₂CH₂), 24.2 (1C, NCHCH₂), 20.10 (1C, CH₃NCHCH(CH₃)₂), 20.05 (1C, CH₃NCHCH(CH₃)₂), 19.4 (1C, NCHCH(CH₃)₂), 18.3 (1C, NCHCH(CH₃)₂), 14.7 (1C, CH₂CHCH₃), 14.6 (1C, CH₃CHCOO), 12.0 (1C, CH₂CH₃). ¹³**C NMR** (150 MHz, CDCl₃, Me₂IIeVaIMMMAH-(Dap-Photo-PPD)-**b**): δ = 174.2 (1C, CHCOO), 139.1 (1C, pC₆H₄-C), 129.8 (2C, mC₆H₄-C), 127.1 (1C, ipsoC₆H₄-C) 126.5 (2C, oC_6H_4 -C), 122.2 (q, 1C, ${}^{1}J_{CF}$ = 274.1 Hz, CF₃), 81.6 (1C, CH₂NCHCHO), 76.2 (1C, OCH₂CHO), 62.3 (1C, CH₂OH), 60.9 (1C, CH₂NCHCHOCH₃), 59.9 (1C, CH₂NCH), 48.0 (1C, NCH₂), 42.6 (1C, CHCOO), 36.2 (1C, C₆H₄CH₂), 28.3 (q, 1C, ${}^{2}J_{CF}$ = 40.8 Hz, CF₃C), 25.0 (1C, NCH₂CH₂), 24.2 (1C, NCHCH₂), 12.9 (1C, CH₃CHCOO). ¹³C NMR (150 MHz, CDCl₃, Me₂lleValMMMAH-(Dap-Photo-PPD)-c): δ = 173.9 (1C, CHCOO), 139.9 (1C, pC₆H₄-C), 129.8 (2C, mC₆H₄-C), 127.1 (1C, ipsoC₆H₄-C) 126.5 (2C, oC₆H₄-C), 122.2 (q, 1C, $^{1}J_{CF}$ = 274.1 Hz, CF₃), 81.2 (1C, CH₂NCHCHO), 69.4 (1C, OCH₂CHO), 68.9 (1C, CH₂OH), 61.36 (1C, CH₂NCHCHOCH₃), 59.9 (1C, CH₂NCH), 48.2 (1C, NCH₂), 44.7 (1C, CHCOO), 39.1 (1C, C₆H₄CH₂), 28.3 (q, 1C, ²*J*_{CF} = 40.8 Hz, CF₃C), 24.9 (1C, NCH₂CH₂), 24.2 (1C, NCHCH₂), 14.8 (1C, CH₃CHCOO). ¹³C NMR (150 MHz, CDCl₃, Me₂lleValMMMAH-(Dap-Photo-PPD)-d): δ = 173.8 (1C, CHCOO), 140.3 (1C, *p*C₆H₄-C), 129.8 (2C, *m*C₆H₄-C), 127.1 (1C, *ipso*C₆H₄-C) 126.5 (2C, *o*C₆H₄-C), 122.2 (q, 1C, ¹*J*_{CF} = 274.1 Hz, CF₃), 81.4 (1C, CH₂NCHCHO), 69.8 (1C, OCH₂CHO), 68.4 (1C, CH₂OH), 61.40 (1C, CH₂NCHCHOCH₃), 59.9 (1C, CH₂NCH), 48.2 (1C, NCH₂), 44.9 (1C, CHCOO), 39.2 (1C, C₆H₄CH₂), 28.3 (q, 1C, ²*J*_{CF} = 40.8 Hz, CF₃C), 24.9 (1C, NCH₂CH₂), 24.2 (1C, NCHCH₂), 14.7 (1C, CH₃CHCOO). ¹⁹F NMR (376 MHz, CDCl₃): δ = -65.64/-65.66/-65.68/-65.70 (s, 3F, C*F*₃). **IR** (ATR): $\tilde{\nu}$ = 3374 cm⁻¹ (w), 2960 (m), 2927 (m), 1732 (m), 1621 (s), 1452 (m), 1259 (m), 1236 (m), 1182 (m), 1155 (s), 1096 (s), 1056 (m), 938 (m), 803 (m), 544 (m). **UV** (MeOH): λ_{max} (Ig ε) = 202 nm (4.38), 259 (3.18), 357 (2.40). **MS** (ESI): *m/z* (%) = 1682 [2M+H]⁺ (10), 863 [M+Na]⁺ (98), 841 [M+H]⁺ (100). **HRMS** (ESI): calcd. for C₄₂H₆₇F₃N₆O₈Na [M+Na]⁺ 863.48647; found 863.48644.

2. Cytotoxicity tests

Monolayer Assay. A modified propidium iodide assay [3] was used to assess the anticancer activity of the compounds towards panels of 12 and 42 solid tumor cell lines, respectively. Adherent cells were harvested from exponential phase cultures, counted and plated in 96 well flat-bottomed microtiter plates at a cell density depending on the cell line (4,000 to 40,000 cells/well). After a 24 h recovery period to allow the cells to resume exponential growth, 10 µL of culture medium or of culture medium containing the test compound were added. Compounds were applied at 10 concentrations in duplicate and treatment continued for four days. After 4 days of continuous treatment, cells were washed with 200 µL PBS to remove dead cells and next 200 µL of a solution containing 7 µg/mL propidium iodide (PI) and 0.1%(v/v) Triton X-100 were added to the wells. After an incubation period of 1–2 hours at room temperature, fluorescence (FU) was measured using the Envision Xcitemultilabel reader (excitation λ = 530 nm, emission λ = 620 nm) to quantify the amount of attached viable cells.

Tumor cell lines

The characteristics and origin of the 42 cell lines used in the present study are shown in Table S1. Authenticity of cell lines was proven at the DSMZ by STR (short tandem repeat) analysis, a PCR based DNA-fingerprinting methodology [4,5].

Cell lines comprised 15 different tumor histotypes, each represented by one to six cell lines. They were established from cancer of the bladder (three), colon (five), head and neck (one), liver (one), lung (six), breast (three), pancreas (three), prostate (four), ovary (two), kidney (three), stomach (two) and the uterine body (one), as well as from malignant melanoma (three), sarcoma (two), and pleuramesothelioma (three). The 24 cell lines BXF 1218L, BXF 1352L, CXF 269L, GXF 251L, LIXF 575L, LXFL 1121L, LXFA 289L, LXFA 526L, LXFL 529L, LXFA 629L, MAXF 401NL, MEXF 1341L, MEXF 276L, MEXF 462NL, OVXF 899L, PAXF 1657L, PAXF 546L, PXF 1118L, PXF 1752L, PXF 698L, RXF 1781L, RXF 393NL, RXF 486L, UXF 1138L were established at Oncotest from patient-derived tumor xenografts (for reference, see Roth et al. 1999 [6]). The origin of the donor xenografts was described by Fiebig et al. 1992 and 1999 [7,8]. The other 18 cell lines were either kindly provided by the NCI (Bethesda; MD), or were purchased from ATCC (Rockville, MD), DSMZ (Braunschweig, Germany) or JCRB (Osaka, Japan).

Cell lines were routinely passaged once or twice weekly and maintained in culture for up to 20 passages. All cells were grown at 37°C in a humidified atmosphere with 5% CO_2 in RPMI1640 medium supplemented with 10% (v/v) fetal calf serum and 0.1 mg/mL gentamicin (medium and all components from PAA, Cölbe, Germany).

Growth inhibition is expressed as Test/Control × 100 (%T/C) values. Based on the T/C values, relative IC_{50} values were calculated bynon-linear regression analysis using the analysis software GraphPad Prism[®], Prism 5 for windows, version 5.01 (GraphPad Software Inc., CA). The overall potency of a compound was determined by the geometric mean ('geomean') IC_{50} value of all individual IC_{50} values.

If an IC_{50} value could not be determined within the examined dose range (because a compound was either too active or lacked activity), the lowest or highest concentration studied was used for calculation of the geometric mean value.

In the heatmap presentation of IC₅₀ values, the distribution of IC₅₀ values obtained for a test compound in the individual cell lines is given in relation to the geometric mean IC₅₀ value, obtained for all cell lines tested. The individual IC₅₀ values are highlighted in colors ranging from dark green (\leq 1/32-fold geometric mean IC₅₀, equal to very potent compound activity or tumor sensitivity) to dark red (\geq 32-fold geometric mean IC₅₀, equal to lack of compound activity or tumor resistance). The heatmap presentation therefore represents an anti-proliferative "fingerprint" profile of a test compound. Furthermore, antitumor activity is displayed as a mean graph presentation of the absolute IC₅₀ values.

cell line					
#	histotype		name	histopathology	origin
1	Bladder	BXF	1218L	urothel ca, pd	Xenograft
2	Bladder	BXF	1352L	urothel ca, pd	Xenograft
3	Bladder	BXF	T24	urothel ca	ATCC
4	Colon	CXF	269L	rectum carcinoma, pd	Xenograft
5 6 7 8	Colon Colon Colon Colon	CXF CXF CXF CXF	DIFI HCT116 HT29 RKO	rectum carcinoma ² ⁷ , wd colon ca, pd colon adeno ca, pd epithelial colon ca, pd	NCI NCI ATCC
9	Gastric	GXF	251L	adeno ca, pd	Xenograft
10	Gastric	GXA	MKN45	adeno ca, pd	JCRB
11	Head&Neck	HNXF	CAL27	squamous cell ca, tongue	ATCC
12	Liver	LIXF	575L	hepatoma, wd	Xenograft
13 14 15 16 17 18	Lung Lung Lung Lung Lung Lung	LXFA LXFA LXFA LXFL LXFL LXFL	289L 526L 629L 1121L 529L H460	adeno ca, pd adeno ca, pd adeno ca, pd large cell, pd large cell, pd large cell, pd	Xenograft Xenograft Xenograft Xenograft NCI
19	Mammary	MAXF	401NL	adeno ca, wd	Xenograft
20	Mammary	MAXF	MCF7	mamma ca, pd	NCI
21	Mammary	MAXF	MDAMB231	mamma ca, pd	ATCC
22	Melanoma	MEXF	1341L	amelanotic melanoma	Xenograft
23	Melanoma	MEXF	276L	amelanotic melanoma	Xenograft
24	Melanoma	MEXF	462NL	amelanotic melanoma	Xenograft
25	Ovarian	OVXF	899L	papill serous adeno, wd	Xenograft
26	Ovarian	OVXF	OVCAR3	adeno ca	NCI
27	Pancreas	PAXF	1657L	adeno ca, md	Xenograft
28	Pancreas	PAXF	546L	adenosquamous, wd	Xenograft
29	Pancreas	PAXF	PANC1	epitheloid ca	ATCC
30	Prostate	PRXF	22RV1	prostate ca, pd	ATCC
31	Prostate	PRXF	DU145	prostate ca, pd	NCI
32	Prostate	PRXF	LNCAP	prostate ca, pd	DSMZ
33	Prostate	PRXF	PC3M	prostate ca, pd	NCI
34	Pleuramesoth.	PXF	1118L	pleuramesothelioma, pd	Xenograft
35	Pleuramesoth.	PXF	1752L	pleuramesothelioma	Xenograft
36	Pleuramesoth.	PXF	698L	pleuramesothelioma	Xenograft
37	Renal	RXF	1781L	hypernephroma, pd	Xenograft
38	Renal	RXF	393NL	hypernephroma, pd	Xenograft
39	Renal	RXF	486L	hypernephroma, pd	Xenograft
40	Sarcoma	SXF	SAOS2	osteosarcoma	DSMZ
41	Sarcoma	SXF	TE671	Rhabdomyosarcoma	ATCC
42	Uterus	UXF	1138L	endometrium carcino sarcoma, pd	Xenograft

Table S1: 42 solid tumor cell line panel as used in the present study

ATCC : American Type Culture Collection, Rockville, MD, USA; NCI: National Cancer Institute, Bethesda, MD, USA, DSMZ : German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany

²⁾ established from a familial adenomatous polyposis patient with extracolonic features of the Gardner syndrome BXF Bladder, CXF Colorectal, GXF Gastric, HNXF head&neck, LIXF Liver, LXF Lung A adeno, L large cell, MAXF Breast, MEXF Melanoma, OVXF Ovarian, PAXF Pancreatic, PXF Pleuramesothelioma, RXF Renal, UXF Uterus Body ca = carcinoma, pap = papillary, pd = poorly differentiated, wd = well differentiated, md = moderately differentiated

Table S2: List of reference com	pounds used for COMPARE Analysis
---------------------------------	----------------------------------

#	OT-Key	Compound	Mode of Action
1	20959	AT7867	AKT and p70 S6 kinase inhibitor
2	20000	N/P-TA F684	
2	20500	Crizotinib	ALK ROS1 c-Met ibibitor
	10525	4 Hydroperoxy ifosfamide IEOACT	
	16325	Honoulfor NCL 17	
5	19094		
0	18084		Alkylating agent
1	10524	4-Hydroperoxy-cyclopnospnamide	Alkylating agent, Crosslinking agent
8	16693		Alkylating agent, Crosslinking agent
9	18005	Thiotepa, THI	Alkylating agent, Crosslinking agent
10	12824	Elmustin, HECNU	Alkylating agent, Nitrosourea derivative
11	15985	Lomustin, CCNU	Alkylating agent, Nitrosourea derivative
12	12171	Carboplatin	Alkylating agent, Platinum compounds
13	12280	Cisplatin	Alkylating agent, Platinum compounds
14	17106	Oxaliplatin	Alkylating agent, Platinum compounds
15	17984	Tetraplatin	Alkylating agent, Platinum compounds
16	11123	Amsacrine HCI	Alkylating agent, Topoisomerase II inhibitor
17	17187	Pemetrexed, dinatrium	Antimetabolite, Antifolate
18	19215	Methotrexat Hydrat, MTX	Antimetabolite, Folic acid antagonist
19	17396	Raltitrexed, Tomudex	Antimetabolite, Folic acid antagonist
20	10619	6-Mercaptopurine	Antimetabolite, Purine antagonist
21	10623	6-Thioguanine	Antimetabolite. Purine antagonist
22	10570	5-Fluoro-2'-deoxyuridine	Antimetabolite. Pyrimidine antagonist
23	12458	Cyclocytidine	Antimetabolite, Pyrimidine antagonist
24	12460	Cyclopentenyl cytosin NCI-14	Antimetabolite, Pyrimidine antagonist
25	12470		Antimetabolite, Pyrimidine antagonist
26	14609	Ftorafur	Antimetabolite, Pyrimidine antagonist
20	14682	Generitabine HCl	
21	10575	5 Elucrouracil	Antimetabolite, Fyrimidine antagonist
20	10373		Antimetabolite, Pyrimidine antagonist, infyrmuliate
29	50060	DUF 700 Aliantih frankana: MLNI 9227	
30	20969	Alisei IID, Tree Dase, IVILIN-0237	
20	20962		
32	20961		Aurora kinase A Inhibitor
33	20974	A 19283	Aurora kinase A, B inhibitor
34	16075	VX-68U	Aurora kinase A, B inhibitor
35	12448		Aurora kinase A, B innibitor, VEGFR2 innibitor
36	20964	Danusertib, PHA-739358	Aurora kinase A, B, C and Bcr-Abi kinase inhibitor
37	20963	PHA-680632	Aurora kinase A, B, C ininbitor
38	19398	GDC-0879	B-Rat inhibitor
39	18893	PLX-4720	B-Rat inhibitor
40	21919	SB-590885, GSK2118436	B-Raf inhibitor
41	20965	Vemurafenib	B-Raf inhibitor
42	17983	Tetrandrine, TRD	Ca+ channel blocker
43	23969	PHA-767491	CDC7/CDK9 inhibitor
44	11075	Alsterpaullone, APL	CDK inhibitor, CDK1/Cyclin B
45	17847	SU9516	CDK inhibitor, CDK2/Cyclin A
46	17321	Purvalanol A	CDK inhibitor, CDK2/Cyclin B
47	14559	Fascaplysin, synthetic	CDK inhibitor, CDK4/Cyclin D1
48	14574	Flavopiridol HCl	CDK2/4/7 inhibitor
49	23968	BMS 777607	c-Met inhibitor
50	23963	INCB28060	c-Met inhibitor
51	23967	MK-2461	c-Met inhibitor
52	18862	PF-04217903	c-Met inhibitor
53	22479	PHA-665752	c-Met inhibitor
54	20966	SU11274	c-Met inhibitor
55	16946	Nimesulide	COX II inhibitor
56	16697	Mitoxantron HC	DNA Binder Intercalator
57	11916	Bleomycin sulfate	DNA synthesis inhibitor
58	12814	Fchinomycin A	DNA synthesis inhibitor
50	16692	Mithramycin & MTM	DNA/RNA synthesis inhibitor
60	10092		DNA/DNA synthesis inhibitor Intercelator
61	10999		DNA DK inhibitor
01	23902	INU/ 44 I	

#	OT-Key	Compound	Mode of Action
62	15523	Ispinesib, mesylate	Eq5 inhibitor
63	19085	Monastrol	Eq5 inhibitor
64	16759	Monastrolin, HR22C16	Fa5 inhibitor
65	17837	S-TrityI-I -cysteine	Fa5 inhibitor
66	12886	Friotinib HC	FGER inhibitor
67	14677	Gefitinib	EGER inhibitor
68	17153	PD168303	EGER inhibitor
60	17180	Politinih	EGED inhibitor
70	21020	Afotinih froe hoos DID\A/2002	EGEN HED2 inhibitor
70	21039	Aradinib, mee base, bibvv2992	EGER, HERZ INITIATION
70	10930		EGFR, FIERZ III IIIJIIOI
72	16538	Ivianumycin A	
73	12233	Dovitinib, free base	
/4	10611	DON, 6-DIazo-5-oxo-L-Norleucine	Giutamate synthase inhibitor
75	18889	SB216763	Glycogen synthase kinase 3 (GSK3) inhibitor
76	20967	CHIR-99021	Glycogen synthase kinase 3β (GSK 3β) inhibitor
77	23979	CUDC-101	HDAC, EGFR, HER2
78	20903	Vismodegib, free base, GDC-0449	Hedgehog inhibitor
79	20968	Dacinostat, LAQ824	Histon deacetylase (HDAC) inhibitor
80	20970	Droxinostat	Histon deacetylase (HDAC) inhibitor
81	19078	Panobinostat, free base, LBH589	Histon deacetylase (HDAC) inhibitor
82	10981	Acetyl-dinaline	Histon deacetylase (HDAC) inhibitor, Benzamide
83	16803	MS275	Histon deacetylase (HDAC) inhibitor. Benzamide
84	11219	Apicidin	Histon deacetylase (HDAC) inhibitor. Cyclic peptide
85	12598	Romidensin	Histor deacetylase (HDAC) inhibitor. Cyclic peptide
86	16079	M344	Histori deacetylase (HDAC) inhibitor, Hydroxamate
87	17854	Suberic bis-bydroxamic acid	Histori deacetylase (HDAC) inhibitor, Hydroxamate
07	10014	Vorinestat	Histori deacetylase (HDAC) inhibitor, Hydroxamate
00	10214	Alvoonimuoin HCL 17DMAC	
09	10390		
90	20971	BIIBU21	Hsp90 Innibitor
91	17064	PUH64	HSP90 inhibitor
92	18186	VER-49009	HSP90 inhibitor
93	20972	AUY922	HSP90α und HSP90β inhibitor
94	20973	GSK1904529A	IGF-IR and IR inhibitor
95	11220	Apigenin	MAPkinase
96	21000	AS-703026	MEK inhibitor
97	21859	AZD8330	MEK inhibitor
98	18890	CI-1040	MEK inhibitor
99	21861	GSK11220212	MEK inhibitor
100	18891	PD0325901	MEK inhibitor
101	21860	PD318088	MEK inhibitor
102	11443	Selumetinib, AZD-6244	MEK inhibitor
103	18923	TAK-733	MEK inhibitor
104	21862	BIX02188	MEK5 inhibitor
105	21863	BIX02189	MEK5 inhibitor
106	23966	A7 3146	Mos 1 inhibitor
107	D1001	A ZD 8055	mTOP inhibitor
107	1000	AZD-0000	mTOR inhibitor
100	10092	COU003794	
109	21022		
110	17391		
111	17397	Rapamycin	mior
112	18852	Temsirolimus	mi OR inhibitor
113	12570	Dasatinib monohydrate	Multikinase inhibitor
114	18853	Nilotinib HCl	Multikinase inhibitor
115	18861	Pazopanib, free base	Multikinase inhibitor
116	21139	Regorafenib, free base	Multikinase inhibitor
117	17319	Vatalanib, free base	Multikinase inhibitor
118	17783	Sorafenib, free base	Multikinase inhibitor
119	17861	Sunitinib malate	Multikinase inhibitor
120	18864	Tandutinib, free base	Multikinase inhibitor (Flt-3, PDGFR-ß, c-kit)

Table S2 (continued	 List of reference com 	pounds used for	COMPARE Analysi	S
---------------------	---	-----------------	------------------------	---

#	OT-Key	Compound	Mode of Action
121	11835	BIRB796	p38 inhibitor
122	17649	SB-202190	p38 MAP kinase
123	20899	Canertinib. dihvdrochloride. Cl-1033	pan EGFR irreversible
124	20976	GSK1059615	pan-PI3K inhibitor
125	18914	AZD2281	PARP-inhibitor
126	17846	SU6668	PDGF/Kit/KDR inhibitor
127	19068	BKM120	PI3K inhibitor
128	21021	CAL-101	PI3K inhibitor
120	20902	GDC-0941 free base	PI3K inhibitor
130	16010	L X-294 002 HCl	PI3K inhibitor
131	23965	PL103	PI3K inhibitor
132	20000	PIK-90 free base	PI3K inhibitor
133	23081	7STK/7/ free base	PI3K inhibitor
13/	20001	A S-605240	PI3K v inhibitor
135	11726	BE7235 free base	PI3K/mTOR inhibitor
136	23061	N/D BCT226	
127	10005	DE04601502	
107	10000	PF04091502	
130	21020	PRF307	PISIVITITUR ITTIDITUT DKC modulatar, DKC inhibitar
139	17032	Stautosportine	Pro induiator, Pro initibilor
140	1/038	Satrapiatin	Malinum IV agent
141	11738	BI 2530	PIK1 INNIDITOR
142	18913	BI 6727	PIK1 INNIDITOR
143	17066	GSK461364A	Plk1 inhibitor
144	23964	ON-01910	Pik1 inhibitor
145	16662	Methyl-GAG	Polyamine synthesis inhibitor
146	12878	Epoxomicin, synthetic	Proteasome inhibitor
147	16665	MG132	Proteasome inhibitor
148	12078	Bortezomib	Proteasome inhibitor (26S)
149	11137	Anguidine	Protein synthesis inhibitor
150	15301	Homoharringtonine	Protein synthesis inhibitor
151	15380	Hydroxyurea	Ribonucleotid reductase (RNR) inhibitor
152	17451	Rifamycin SV	RNA polymerase (bact.) inhibitor
153	20977	BIBR1532	Telomerase inhibitor
154	17974	MST-312	Telomerase inhibitor
155	10837	7-Ethyl-10-hydroxy-camptothecin, SN38	Topoisomerase I inhibitor
156	12160	Camptothecin	Topoisomerase I inhibitor
157	18065	Topotecan HCI	Topoisomerase I inhibitor
158	12579	Daunorubicin HCl	Topoisomerase II inhibitor
159	12707	Doxorubicin HCl	Topoisomerase II inhibitor
160	12911	Etoposide, VP16	Topoisomerase II inhibitor
161	15419	Idarubicin	Topoisomerase II inhibitor
162	17324	Pyrazoloacridine, NCI-15	Topoisomerase II inhibitor
163	17976	Teniposide, VM26	Topoisomerase II inhibitor
164	12700	Docetaxel, Taxtotere, TXT	Tubulin binder
165	12877	Epothilon D	Tubulin binder
166	20979	Epothilone A	Tubulin binder
167	12876	Epothilone B. free base	Tubulin binder
168	17122	Paclitaxel	Tubulin binder
169	18202	Vinorelbine bistartrate Navelbine	Tubulin binder
170	18194	Vinblastine sulfate, VEI BE	Tubulin binder. Vincaalkaloid
171	18197	Vincristin sulfate	Tubulin binder, Vincaalkaloid
172	18100	Vindesin sulfate	Tubulin binder, Vincaalkaloid
173	18200	Vinflunine di-tartrate	Tubulin binder. Vincaalkaloid
17/	15411	Imatinih mesulate	
175	20075		Tyrosine kinase inhibitor (o kit VECED 2)
175	20975	Dinabulin NDI 2358	vascular disrupting agent
170	20900	Plinauulli, NFF2000	Vasculai ulsi uplii iy ayefil VECED DOCED ECED inhibitar
1//	11/4/		VEGER, PUGER, FGER INNIDILOI

Table S2 (continued): List of reference compounds used for COMPARE Analysis

Table S3. Cytotoxicity of malevamide D and photomalevamide D against a panel of 42 human cancer cell lines.

Heatmap of Abs	Heatmap of Absolute IC50 and IC70 [µM]					
	1 e D	1 e D	2 vamide D	2 vamide D		
	IC70 Li-011 malevamid	IC50 Li-011 malevamid	IC70 Li-011 photomale	IC50 Li-011 photomale		
MAXF 401	0,0002	0.0002	0,049	0,043		
CXF HT-29	0,0003	0.0002	0.09	0.081		
LXFL 529	0,0004	0,0003	0,113	0,081		
PXF 1752	0,0004	0,0003	0,095	0,069		
RXF 393	0,0004	0,0002	0,117	0,064		
CXF RKO	0,0005	0,0004	0,107	0,098		
MAXF MCF-7	0,0005	0,0002	0,13	0,069		
PRXF DU-145	0,0005	0,0005	0,133	0,107		
UXF 1138	0,0005	0,0004	0,078	0,056		
HNXF CAL-27	0,0006	0,0004	0,099	0,073		
LIXF 575	0,0006	0,0003	0,126	0,09		
MEXF 462	0,0006	0,0004	0,099	0,081		
OVXF NIH:OVCAR-3	0,0006	0,0005	0,092	0,068		
LXFA 629	0,0007	0,0004	0,165	0,105		
LXFL NCI-H460	0,0007	0,0006	0,239	0,196		
PRXF PC-3M	0,0007	0,0005	0,16	0,113		
RXF 486	0,0007	0,0005	0,619	0,39		
CXF DiFi	0,0008	0,0006	0,347	0,182		
CXF HCT-116	0,0008	0,0007	0,215	0,157		
LXFL 1121	0,0008	0,0006	0,115	0,091		
MAXF MDA-MB-231	0,0008	0,0005	0,163	0,093		
MEXF 1341	0,0008	0,0005	0,159	0,085		
PRXF 22Rv1	0,0008	0,0006	0,113	0,077		
BXF T-24	0,0009	0,0008	0,39	0,298		
LXFA 526	0,0009	0,0007	0,166	0,115		
PAXF PANC-1	0,0009	0,0006	0,176	0,108		
PRXF LNCaP	0,0009	0,0007	0,168	0,13		
BXF 1218	0,001	0,0006	0,111	0,085		
BXF 1352	0,001	0,0009	0,2	0,148		
GXA MKN45	0,001	0,0005	0,273	0,128		
OVXF 899	0,001	0,0007	0,835	0,476		
PXF 698	0,001	0,0006	0,111	0,061		
SXFO Saos-2	0,001	0,0008	0,217	0,128		
PAXF 1657	0,004	0,001	10	0,389		
GXF 251	0,005	0,0006	2,83	0,344		
SXFS TE671	0,005	0,002	1,623	0,5		
RXF 1781	0,05	0,0004	0,198	0,134		
CXF 269	0,051	0,001	10	0,19		
MEXF 276	0,053	0,0008	5,209	0,132		
LXFA 289	0,1	0,051	10	5,261		
PAXF 546	0,1	0,05	10	5,05		
PXF 1118	0,1	0,006	10	1,48		
geomean IC ₇₀ [µM]	0,00149	0,00068	0,316	0,154		

. 1.4.1050 11070 5.841

1/4 1/2 1 1/32 1/16 1/8 2 4 8 16 32 -fold mean IC₅₀ sensitive cell lines resistant cell lines

Table S4. Results of the Compare analyses performed for malevamide D and photomalevamide D.

Compare Analysis: malevamide D (1, Li-0111)

(based on in vitro antitumor activity in FA) 30.09.2013

Absolute IC50 Ranking

#	Compound	Mode of Action	Spearman	p-value	N
			coefficient		
1	Li-0111		1,000	p<0.001	42
2	Photo-Malevamid D		0,742	0,000	42
3	GSK461364A	Plk1 inhibitor	0,541	0,000	42
4	Vinblastine sulfate	Tubulin binder	0,507	0,000	42
5	ON-01910	Plk1 inhibitor	0,495	0,001	42
6	Epothilone A	Tubulin binder	0,479	0,001	42
7	TAE684	ALK inhibitor	0,452	0,002	41
8	VX-680	Aurora kinase A, B	0,449	0,002	42
9	Dasatinib monohydrate	Multikinase inhibitor (Bcr-	0,445	0,002	42
10	PUH64	Hsp90 inhibitor	0,445	0,003	40
11	BI 6727 3HCI	Plk1 inhibitor	0,437	0,003	42
12	Alvespimycin HCl	Hsp90 inhibitor	0,430	0,004	42
13	Vatalanib, free base	Multikinase inhibitor	0,418	0,007	38
14	BI 2536	Plk1 inhibitor	0,403	0,007	42
15	Epothilon D	Tubulin binder	0,401	0,007	42
16	Nilotinib HCI	Multikinase inhibitor (Bcr-	0,396	0,008	42
17	Docetaxel	Tubulin binder	0,386	0,010	42
18	SU11274	c-Met inhibitor	0,379	0,011	42
19	Plinabulin	Vascular disrupting	0,378	0,011	42
20	AT9283	Aurora kinase A, B	0,372	0,013	42

Compare Analysis: Diazirinyl-subst malevamide D (30, Li-0112)

(based on in vitro antitumor activity in FA) 17.10.2013

Absolute IC50 Ranking

#	OT-Key	Compound Mode of Action		Spearman	p-value	Ν
_				coefficient		
1	25000	Photo-Malevamid D		1,000	p<0.001	42
2	18194	Vinblastine sulfate	Tubulin binder	0,828	0,000	42
3	23244	Li-0111		0,742	0,000	42
4	18200	Vinflunine, di-tartrate	Tubulin binder	0,683	0,000	42
5	18197	Vincristin sulfate	Tubulin binder	0,681	0,000	42
6	18199	Vindesin sulfate hydrate	Tubulin binder	0,617	0,000	42
7	12700	Docetaxel	Tubulin binder	0,590	0,000	42
8	11738	BI 2536	Plk1 inhibitor	0,508	0,000	42
9	17066	GSK461364A	Plk1 inhibitor	0,499	0,001	42
10	18913	BI 6727 3HCI	Plk1 inhibitor	0,490	0,001	42
11	23964	ON-01910	Plk1 inhibitor	0,486	0,001	42
12	17122	Paclitaxel	Tubulin binder	0,480	0,001	42
13	17064	PUH64	Hsp90 inhibitor	0,468	0,002	40
14	15985	Lomustine	Alkylating agent,	0,448	0,002	42
15	17976	Teniposide	Topoisomerase II	0,419	0,006	40
16	12579	Daunorubicin HCI	Topoisomerase II	0,417	0,005	42
17	16697	Mitoxantron 2HCI	DNA binder	0,414	0,005	42
18	12911	Etoposide	Topoisomerase II	0,399	0,007	42
19	12824	Elmustin	Alkylating agent,	0,392	0,008	42
20	16075	VX-680	Aurora kinase A, B	0,373	0,013	42

References:

- 1. Miyazaki, K.; Kobayashi, M.; Natsume, T.; Gondo, M.; Mikami, T.; Sakakibara, K.; Tsukagoshi, S. *Chem. Pharm. Bull.* **1995**, *43*, 1706-1718.
- 2. Sone, H.; Shibata, T.; Fujita, T.; Ojika, M.; Yamada, K. *J. Am. Chem. Soc.* **1996**, *118*, 1874-1880.
- 3. Dengler, W. A.; Schulte, J.; Berger, D. P.; Mertelsmann, R.; Fiebig, H.-H. *Anti-Cancer Drugs* **1995**, *6*, 522–532.
- Masters, J. R.; Thomson, J. A.; Daly-Burns, B.; Reid, Y. A.; Dirks, W. G.; Packer, P.; Toji, L. H.; Ohno, T.; Tanabe, H.; Arlett, C. F.; Kelland, L. R.; Harrison, M.; Virmani, A.; Ward, T. H.; Ayres, K. L.; Debenham P. G. *Proc. Natl. Acad. Sci. USA* 2001, *98*, 8012-8017.
- 5. Dirks, W. G.; Faehnrich, S.; Estella, I. A.; Drexler, H. G. ALTEX 2005, 22, 103-109.
- Roth, T.; Burger, A. M.; Dengler, W.; Willmann, H.; Fiebig, H. H. Human tumor cell lines demonstrating the characteristics of patient tumors as useful models for anticancer drug screening. In *Relevance of Tumor Models for Anticancer Drug Development*, Fiebig, H. H.; Burger, A. M., Eds.; Contributions to Oncology, Vol. 54; Karger: Basel, 1999; pp 145–156.
- Fiebig, H. H.; Dengler, W. A.; Roth T. Human tumor xenografts: Predictivity, characterization, and discovery of new anticancer agents. In *Relevance of Tumor Models for Anticancer Drug Development*, Fiebig, H. H.; Burger, A. M., Eds.; Contributions to Oncology, Vol. 54; Karger: Basel, 1999; pp 29–50.
- Fiebig, H. H.; Berger, D. P.; Dengler, W. A.; Wallbrecher, E.; Winterhalter, B. R. Combined *in vitrol in vivo* test procedure with human tumor xenografts. In *Immunodeficient Mice in Oncology*; Fiebig, H. H.; Berger, D. P., Eds.; Contributions to Oncology, Vol. 42; Karger: Basel, 1992; pp 321–351.

S42

Me₂lle-Val-MMMAH-OH TFA salt (12)

¹H NMR (CDCl₃, 600 MHz)

Dap-PPD-O¹TBDPS TFA salt (13)

Ι

ppm

S49

2-((1S,2S)-1-(Dimethylamino)-2-methylbutyl)-4-isopropyloxazol-5-yl diethylphosphate (18), ¹H NMR (CDCl₃, 400 MHz)

1-(4-(2,3-Dihydroxypropyl)phenyl)-2,2,2-trifluoroethanone oxime (20) ¹H NMR (CDCl₃, 400 MHz)

(*Z*)-1-(4-((2,2-Dimethyl-1,3-dioxolan-4-yl)methyl)phenyl)-2,2,2-trifluoroethanone O-tosyl oxime (*Z*)-(22), ¹H NMR ($CDCl_3$, 400 MHz)

(*Z*)-1-(4-((2,2-Dimethyl-1,3-dioxolan-4-yl)methyl)phenyl)-2,2,2-trifluoroethanone O-tosyl oxime (*Z*)-(22), ¹³C NMR (CDCl₃, 100 MHz)

3-(4-((2,2-Dimethyl-1,3-dioxolan-4-yl)methyl)phenyl)-3-(trifluoromethyl)diaziridine (23)

ppm

3-(4-((2,2-Dimethyl-1,3-dioxolan-4-yl)methyl)phenyl)-3-(trifluoromethyl)-3*H***-diazirine (24), ¹H NMR (CDCl₃, 400 MHz)**

3-(4-((2,2-Dimethyl-1,3-dioxolan-4-yl)methyl)phenyl)-3-(trifluoromethyl)-3*H***-diazirine (24),** ¹³C NMR (CDCl₃, 100 MHz)

3-(4-(3-(Trifluoromethyl)-3*H*-diazirin-3-yl)phenyl)propane-1,2-diol (25) ¹H NMR (CDCl₃, 400 MHz)

S66

1-TBDPS-oxy-3-(4-(3-(trifluoromethyl)-3*H*-diazirin-3-yl)phenyl)propan-2-ol (26) ¹H NMR (CDCl₃, 400 MHz)

1-TBDPS-oxy-3-(4-(3-(trifluoromethyl)-3*H*-diazirin-3-yl)phenyl)propan-2-ol (26)

Boc-Dap-*rac*-O¹TBDPS-Photo-PPD (28)

¹H NMR (CDCl₃, 400 MHz)

 \neg

TBDPS-Photo malevamide D (29)

TBDPS-Photo malevamide D (29)

Photo PPD (25)

DSC diagram 5 degrees/min

• X-ray analysis (*E*)-tosyloxime 22

